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Abstract

Mast cells are rich in proteases, which are the major proteins of intracellular granules and are 

released with histamine and heparin by activated cells. Most of these proteases are active in the 

granule as well outside of the mast cell when secreted, and can cleave targets near degranulating 

mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach 

the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast 

cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, 

dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce 

granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are 

almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are 

expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared 

by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, 

although human basophils are protease-deficient compared with their murine counterparts. The 

major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. 

Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. 

Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and 

anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune 

arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, 

pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies 

performed in mouse models suggest protective or homeostatic roles for specific proteases (or 

groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic 

inflammation. At the same time, a clearer picture has emerged of differences in the properties and 

patterns of expression of proteases expressed in human mast cell subsets, and in humans versus 

other mammals. These considerations are influencing prioritization of specific protease targets for 

therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of 

topical versus systemic routes of inhibitor administration.
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1. Introduction

A number of reviews published over the past decade have focused on mammalian mast cell 

and basophil proteases (Cairns, 2005; Caughey, 2007, 2011; Douaiher et al., 2014; Hallgren 

and Pejler, 2006; Harvima et al., 2014; Hellman and Thorpe, 2014; Pejler et al., 2010; 

Schwartz, 2006; Stevens and Adachi, 2007; Tojo and Urata, 2013; Trivedi and Caughey, 

2010; Valent et al., 2012). These reviews emphasized major thrusts of research, including the 

use of these proteases in histochemical visualization and mast cell subsetting, their uses in 

clinical practice and research as biomarkers of mast cell activation, mastocytosis, and 

allergic disease phenotypes, their links to diseases not known to be associated with allergy 

and atopy, their sometimes unique properties as enzymes, their modes of activation, packing 

into granules, pathways of regulation and inactivation following release, and druggability, 

their genetic evolution in mammals, natural variation in mouse strains and human 

populations, their deficiency phenotypes, and, more recently, their suspected roles in 

homeostasis and host defense. The present review emphasizes recent developments and 

challenges in targeting mast cell granule-associated proteases for therapeutic inhibition. The 

primary focus is on human enzymes because these are presently the main targets of 

pharmaceutical development. The secondary focus is on mouse proteases because numerous 

genetically modified strains have been developed, including strains deficient in or over-

expressing one or more mast cell proteases. Some of these strains have been offered as 

models of human disease. The differences between mouse and human mast cell and basophil 

proteases, in addition to their similarities, need to be appreciated to translate mouse genetic 

and pharmacological studies to human diseases and therapeutic responses.

This review concentrates on granule-associated proteases, especially those that are released 

outside of the cell in an active form with histamine following mast cell activation by 

allergen-bound IgE or other stimuli. However, it should be borne in mind that some secreted 

proteases, notably the soluble tryptases and the matrix metalloproteinase (MMP)9, are also 

shed in a non-regulated (i.e., constitutive) manner by unstimulated mast cells as pro-

enzymes that may be activatable outside of the cell. The fate and roles, if any, of 

constitutively shed pro-tryptases are not yet clear. The granule-associated enzymes released 

in a regulated manner include serine-class proteases, such as soluble and transmembrane 

tryptases, chymases, cathepsin G, thiol (cysteine)-class proteases, such as 

dipeptidylpeptidase I (otherwise known as the exopeptidase cathepsin C), and the zinc 

metalloexopeptidase carboxypeptidase A3. Expression of the zinc metallo-endopeptidase 

MMP9 in mast cells may be regulated separately from the classic secretory granule serine 

proteases and may be released from separate structures, although this remains to be 

determined (Di Girolamo et al., 2006; Fang et al., 1997; Fang et al., 1996; Fang et al., 1999).
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Mast cell proteases receive more attention than basophil proteases not only because we 

know more about the mast cell enzymes but because human basophils appear to have fewer 

and much smaller amounts of proteases compared with, for example, mouse basophils 

(Jogie-Brahim et al., 2004; Liu et al., 2012; Poorafshar et al., 2000; Raymond et al., 2005; 

Ugajin et al., 2009; Xia et al., 1995), and so have not been specifically targeted for 

therapeutic purposes. It is also worth stressing the general point that although mast cell 

proteases were at one time assumed to be destructive, inflammatory, and “bad” in the 

context of allergic disease, more recent evidence suggests that some of these proteases play 

homeostatic, protective, and even anti-inflammatory roles, with the present evidence being 

more definitive in mice than in humans (Balzar et al., 2005; Caughey et al., 1988; Dougherty 

et al., 2010; Mallen-St Clair et al., 2004; Maurer et al., 2004; Metz et al., 2006; Piliponsky et 

al., 2008; Piliponsky et al., 2012; Roy et al., 2014; Sugimoto et al., 2012; Thakurdas et al., 

2007; Waern et al., 2013). In gauging the value of individual mast cell proteases as targets 

for therapeutic inhibition, one of course needs to consider what functions of general value 

may be lost to the host as a consequence of inhibition or depletion, in addition to impacts on 

a particular disease for which targeting of one or more mast cell proteases may be 

advantageous. This calculus is easier for some targets than others. And it should be noted 

that mast cell tryptases are considered not only targets for inactivation but also potentially as 

drugs themselves, for example to detoxify venins in human victims of envenomation by 

snakes.

2. Tryptases

2.1. A gene family

Tryptases occur in soluble and membrane anchored forms, which are related products of 

different genes (Caughey et al., 2000a; Hellman and Thorpe, 2014; McNeil et al., 2007; 

Miller et al., 1990; Pallaoro et al., 1999; Trivedi et al., 2007; Vanderslice et al., 1990; Wong 

et al., 1999). In mouse models of human disease, one or more tryptases have been implicated 

in a rather startling range of pathologies, including allergic airway inflammation (Oh et al., 

2002), cigarette smoke-induced COPD (Beckett et al., 2013), itch (Ui et al., 2006); visceral 

pain (Cenac et al., 2007), aortic aneurysms (Zhang et al., 2011), colitis (Corvera et al., 1997; 

Hamilton et al., 2010; Jacob et al., 2005), and inflammatory arthritis (McNeil et al., 2008; 

Shin et al., 2009). In humans, measurements of soluble tryptases in the blood have become 

widely used as biomarkers of mastocytosis, anaphylaxis risk, and mast cell activation, as has 

been covered extensively in other reviews (Caughey, 2006, 2007; Hallgren and Pejler, 2006; 

Harvima et al., 2014; McNeil et al., 2007; Schwartz, 2006). Human mast cells are so 

abundantly endowed with tryptase transcripts and protein that these have emerged as perhaps 

the most sensitive and specific means of detecting mast cells in tissues and biopsies. For 

example, tryptase mRNAs are among the most abundant transcripts in epithelial brushings 

and biopsies in “Th2 high” asthma (Dougherty et al., 2010), allergic rhinitis (Takabayashi et 

al., 2012), and eosinophilic esophagitis (Abonia et al., 2010), even though mast cells are a 

small fraction of cells retrieved in such samples. Evidence of tryptase involvement in the 

gamut of pathologies suggested by the murine studies is less direct and less dramatic. The 

main focus to date has been on contributions of soluble tryptases to allergic inflammation 

and tissue remodeling in rhinitis and asthma. A second focus has been on intestinal 
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inflammation, especially colitis. Several early-phase trials involving tryptase inhibitors have 

shown efficacy in allergic asthma (Krishna et al., 2001), allergic rhinitis (Erin et al., 2006), 

and ulcerative colitis (Tremaine et al., 2002).

2.2. Soluble, tetramer-forming tryptases

Soluble tryptases are primarily restricted to mast cells and the classic and most extensively 

investigated members of the tryptase family. These enzymes are activated prior to storage in 

granules by removal of a unique pro-peptide (Hallgren et al., 2005; Le et al., 2011a; Le et 

al., 2011b; Sakai et al., 1996; Vanderslice et al., 1989; Wolters et al., 2001), and then are 

packed into the same secretory granules that contain other pre-formed mast cell products, 

most famously histamine. In human mast cells, especially, soluble tryptases can be highly 

concentrated, becoming incorporated into semi-solid lattices and crystalline forms (Craig et 

al., 1988). They achieve this by self-assembling into tetramers, which bind strongly to the 

granule’s polyanionic heparin matrix. Even at high concentrations, they avoid damaging the 

cell because they are segregated into membranebound organelle (secretory granules) that 

maintain a low pH that suppresses enzyme activity, and by organizing into a toroidal 

oligomer with the active sites facing into a central pore, which restricts access to large 

substrates that a monomer would otherwise be able to cleave (Pereira et al., 1998). Tight 

packing within a macromolecular matrix of proteoglycan also restricts access of potential 

substrates.

Soluble tryptases retain their tetrameric configuration upon exocytosis of granule contents, 

and are thought to remain associated with heparin, even while diffusing away from the 

degranulated mast cell. How far tetrameric human tryptases travel as active, heparin-bound 

enzyme complexes after being ejected from mast cells is not clear. After all, these complexes 

can be very large and presumably sticky and would not be expected to diffuse readily out of 

tissues or across epithelial and endothelial barriers. What is clear is that immunoreactive 

tryptase appears in the bloodstream after major mast cell activation events, such as bee-sting 

anaphylaxis (Schwartz et al., 1987; Schwartz et al., 1989). How much, if any, of this tryptase 

is active is not known. It is likely that the remnants of exocytosed tryptase are mainly 

inactive monomers, which lost their association with heparin, dissociated from the tetramer 

(which is stabilized by heparin), and underwent spontaneous denaturation with resulting loss 

of activity (Schwartz and Bradford, 1986). Immunoreactive tryptases also are present in the 

bloodstream in the absence of systemic mast cell activation, but these proteins appear to be 

mainly inactive monomeric, unprocessed pro-enzymes that are shed constitutively by mast 

cells rather than being stored in secretory granules (Schwartz et al., 2003). Baseline levels of 

immature pro-tryptases in blood therefore are thought to reflect total body mast cell burden 

rather than activation per se, and are elevated in mastocytosis syndromes (Akin et al., 2007).

2.2.1. General strategies for inactivating or preventing release of soluble 
tryptases—The ability of human mast cells to store pre-activated tryptases with sterically 

restricted active sites at high concentration in a low-pH environment within a membrane-

bound organelle presents challenges to those pondering pharmaceutical strategies to 

inactivate them. These challenges include identifying a tryptase-selective inhibitor that 

penetrates mast cell plasma and secretory granule lipid bilayers, passes into the interstices of 
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a semi-crystalline, polyanionic matrix, accesses the interior of the donut-shaped tryptase 

tetramer to reach the active sites sheltered within, and retains inhibitor properties following 

release of tryptase into the high-pH environment outside of the cell. This is a tall order for a 

drug. Recognizing these challenges, most pharmaceutical development of tryptase inhibitors 

has emphasized compounds that engage and inactivate tryptase not before but after release 

from a stimulated mast cell. This strategy, too, has its challenges. For one thing, because 

soluble tryptases are the major proteins of mast cells and nearly all of this protein can be 

released from a maximally stimulated mast cell in seconds to minutes, the concentration of 

tryptase in the immediate vicinity of a degranulating mast cell can be very high. This 

generates a requirement, if complete inhibition is to be achieved, of high local levels of 

inhibitor, very high inhibitor potency, or both. For some disease conditions in which tryptase 

has been implicated, high local levels are more likely to be achieved with topical rather than 

systemic inhibitors. These considerations also have led some to consider strategies other 

than those involving active-site inhibition to oppose unwanted effects of tryptases. 

Alternative strategies include preventing mast cells from degranulating in response to 

allergic stimuli by targeting IgE or IgE receptor, interfering with downstream degranulation 

signals, depleting mast cells themselves, or destabilizing released tryptases to promote 

tetramer dissolution and spontaneous inactivation.

2.2.2. Insights from models of disease in mice and genetic variation of human 
tryptases—Additional concerns influencing strategic approaches to development of 

inhibitors are raised by findings from mice lacking one or more tryptases. Although studies 

in genetically modified mice implicate soluble tryptases in several disease models, including 

immune arthritis, inflammatory bowel disease, and smoke-induced lung inflammation, mice 

lacking some tryptases are more susceptible to lethal peritonitis resulting from introduction 

of a gram-negative bacterium introduced into the abdominal cavity. These findings raise 

legitimate concerns that inhibition of mast cell tryptases may seriously impair host defense, 

especially if inhibition is systemic. It is presently unclear whether the findings in these 

mouse models can be freely extrapolated to human diseases and host defense. However, 

several differences between mice and human tryptases suggest reasons to be cautious in this 

regard. For one thing, human mast cells appear to make more tryptase protein than mouse 

mast cells do, and humans have more soluble mast cell tryptase genes. The mouse tryptase 

gene most similar to the classic human β-tryptases (which are expressed at two adjacent but 

separate loci) in form and biophysical properties is mast cell protease 6 (product of the 

Mcpt6 gene). A second mouse tryptase (mast cell protease 7, product of Mcpt7), appears to 

be most closely related in a phylogenetic sense to a different human tryptase, δ, which is 

produced by TPSD1 gene (Min et al., 2001; Pallaoro et al., 1999; Trivedi et al., 2008). 

However, human δ tryptase is severely truncated and its enzymatic activity is either severely 

reduced or absent (Trivedi et al., 2008; Wang et al., 2002). Furthermore, some mouse strains, 

including commonly used mice of the C57BL/6 background, natively do not express mast 

cell protease 7 (Hunt et al., 1996), though mice of other backgrounds, such as BALB/c, do 

express this enzyme, which is more independent of heparin than is the human enzyme, and 

can appear in active form in mice with mastocytosis (Ghildyal et al., 1996). Thus, 

differences between humans and mice, and between strains of mice with different disease 

phenotypes and genetic backgrounds, need to be considered when weighing implications of 
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mouse findings in strategies for developing anti-tryptases. Murine mast cells and basophils 

also have a tryptase-like mastin (mast cell protease 11, see below) that humans lack because 

the human mastin gene is a pseudogene (Raymond et al., 2005; Raymond et al., 1995; 

Reimer et al., 2010; Ugajin et al., 2009; Wong et al., 2004). These differences warrant 

consideration in weighing relative contributions of mast cell and basophil tryptases in 

allergic inflammation and other phenotypes.

Human populations manifest surprising degrees of variation in the numbers and types of 

tryptases inherited by individuals (Akin et al., 2007; Soto et al., 2002; Trivedi et al., 2008; 

Trivedi et al., 2009; Trivedi et al., 2007). Additional diversity arises from size isoforms 

translated from mRNA splice variants (Jackson et al., 2008). These variations potentially 

influence the relative importance of contributions of the inherited complement of soluble 

tryptases to diseases and to host defense functions. They also may lead to variations in 

inhibitor response, and so are summarized here. Inheritance of loss-of-function tryptase 

alleles (in addition to the universally defective δ genes) is common (Soto et al., 2002; 

Trivedi et al., 2009). Loss-of-function genes include α-tryptase and frame-shifted βIII-

tryptase (Trivedi et al., 2009). Individuals with 4 active β genes lack α genes altogether, a 

situation that arises because α genes in most cases are alleles at a locus that also accepts β 

genes. Some individuals also may have duplicated loci containing α genes (Abdelmotelb et 

al., 2014). Among active β tryptases, one of the common variations is loss of an N-linked 

glycosylation site in βII tryptase, compared to the classical βI form, which may alter 

stability. The implications of these genetic variations for diseases susceptibility and host 

defense capabilities are presently not well understood but are under investigation. Inherited 

differences in circulating levels of immunoreactive tryptase, the genetic basis of which 

remains to be explained, potentially relate to differences in inheritance of tryptase alleles 

(Lyons et al., 2014; Sabato et al., 2014).

2.2.3. Inhibitors of β-tryptase: the challenge of generating selectivity and 
potency—Earlier efforts to develop selective inhibitors of soluble mast cell tryptases were 

reviewed previously (Cairns, 2005; Caughey, 2007, 2011). In general, the sheltering of β-

tryptase active sites in the interior of a donut-shaped tetramer (Pereira et al., 1998) confers 

resistance to larger, proteinaceous serine protease inhibitors, including all of the many 

general anti-peptidases circulating in human blood and extravascular fluids. This resistance 

is a property of the tryptase tetramer, not the monomer, which is inhibitor-sensitive (Fajardo 

and Pejler, 2003; Fukuoka and Schwartz, 2004). There is presently no strong evidence that 

the catalytically active monomer, although it can be created in the laboratory using highly 

specific conditions, exists in vivo. To a small molecule, active sites in the tryptase tetramer 

are readily accessible. The maximum size of an inhibitor that can be accommodated in the 

active sites of tetrameric tryptases varies. Human β-tryptases are more restrictive in this 

regard than certain other tryptases, for example resisting aprotinin (a compact ~6-kDa 

protein of that has been used as an anti-protease drug in humans), whereas dog tryptase is 

sensitive to aprotinin (Raymond et al., 2005). Potent natural inhibitors of tryptase have been 

identified in leeches (Raymond et al., 2005; Sommerhoff et al., 1994; Stubbs et al., 1997) 

and ticks (Paesen et al., 2007), which may use these inhibitors to minimize 

tryptaseassociated inflammation and itching linked to mast cell degranulation in response to 
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skin penetration by parasites seeking a blood meal. Other compact proteins, notably a cyclic 

cystine-knot miniprotein from seeds of Momordica cochinchinensis (gac) (Sommerhoff et 

al., 2010), have been modified to produce potent inhibitors of additional potential 

pharmaceutical interest. The stoichiometry of inactivation of active sites in the tryptase 

tetramer may be less than one and still achieve effective inhibition, especially towards large 

substrates, due to steric blockage of the activesite donut hole (Raymond et al., 2005).

The lion’s share of effort in developing inhibitors of human β-tryptases has been devoted to 

identifying small, high-potency compounds that are selective for tryptase and occupy active 

sites reversibly, while meeting pharmacodynamic and pharmacokinetic goals, such as oral 

absorbability. Achieving selectivity and avoiding off-target effects is challenging, because 

there are dozens of tryptic serine proteases involved in essential processes such as food 

digestion, fibrinolysis, hemostasis, complement activation, cellular signaling and growth, 

and control of ion flux. To small molecules, many of these proteases have active sites that 

look similar to those of tryptase. The first high-potency β-tryptase inhibitors to be reported 

were aromatic diamidines (Caughey et al., 1993a), including bis (5-amidino-2-

benzimidazolyl) methane, which blocked aeroallergen-induced bronchoconstriction in a 

sheep model of asthma (Clark et al., 1995). These inhibitors were not highly selective for β-

tryptase versus pancreatic trypsin, but helped pave the way for more selective amidino 

compounds (Burgess et al., 1999; Oh et al., 2002; Ono et al., 1999; Wright et al., 1999), 

including elongated, bivalent compounds designed to bridge the central pore of tryptase 

tetramer by engaging two active sites (Schaschke et al., 2002; Selwood et al., 2003). A 

related compound, nafamostat, that was already in use as a drug in humans but not for the 

purpose of targeting tryptase, was discovered to be an usually potent inhibitor of β-tryptase 

(Mori et al., 2003), raising the question of whether some of the drug’s effects are due to 

tryptase inactivation. Nafamostat differs from some other dibasic aromatic protease 

inhibitors in that can form long-lasting, covalent adducts with the active site serine (Ramjee 

et al., 2000), and thus is not a typical competitive inhibitor. Inhibition of tryptase is proposed 

to be the basis of protection from lung dysfunction in a rat model of iodinated contrast agent 

allergy (Sendo et al., 2003), protection from colitis in rats (Isozaki et al., 2006), and allergic 

airway inflammation in mice (Chen et al., 2006), all of which may involve mast cell 

inactivation and tryptase release. Additional de novo pharmaceutical development of 

tryptase inhibitors, encouraged by efficacy in human allergic rhinitis of a topical dual 

inhibitor of tryptase and trypsin (Erin et al., 2006), identified more selective inhibitors of 

tryptase with oral activity in pre-clinical models of asthma in guinea pigs and sheep 

(Costanzo et al., 2008).

2.3. Transmembrane γ-tryptases

γ-Tryptases differ from the soluble tryptases in being I transmembrane proteins with a short, 

C-terminal extension of the catalytic domain. The C-terminal peptide is just long enough to 

span a lipid bilayer (Caughey et al., 2000a). Although several related type I transmembrane 

peptidases, such as prostasin, exchange the membrane-spanning peptide for a lipid 

(glycosylphosphatidylinositide) anchor, this does not appear to be the case for γ-tryptases 

(Verghese et al., 2006). Although being a transmembrane protein on first inspection would 

seem to place γ-tryptases into a class of peptidases not closely related to soluble tryptases, 
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phylogenetic analysis suggests that soluble mast cell tryptases evolved from γ-like ancestral 

transmembrane proteins early in mammalian evolution (Trivedi et al., 2007). In further 

support of such a transition, the example of marapsin suggests a rather facile, one-step 

evolutionary pathway for converting a type 1 transmembrane tryptic protease to its soluble 

homologue (Raman et al., 2013). The standard topology of type I proteins predicts that γ-

tryptase is anchored to the inside of the secretory granule lipid bilayer (Caughey et al., 

2000a). Thus it is unlikely to be able to achieve the concentrations inside the granule 

reached by the soluble tryptases, which can be packed into the interior. Upon degranulation, 

γ-tryptase catalytic domains are expected to decorate the outer surface of the mast cell as the 

membranes of exocytosing granules fuse with the plasma membrane. In the human and 

mouse genomes, the γ-tryptase gene TPSG1/Tpsg1 anchors one end of the multi-gene locus 

containing soluble tryptase genes. It should be noted that many mammals lack the TPSG1 
gene entirely (Trivedi et al., 2007). When the catalytic domain of human γ-tryptase is 

expressed as a recombinant, soluble enzyme, unlike β-tryptases it does not oligomerize and 

it is susceptible to inhibition by endogenous anti-proteases (Wong et al., 2002). However, 

there is no evidence that γ- tryptase is shed from the membrane by proteolysis or exists in 

vivo as a soluble enzyme (Verghese et al., 2006). Nonetheless, the little that is known of the 

enzymatic properties of γ-tryptase comes from studies of the recombinant soluble enzyme 

(Wong et al., 2002; Yuan et al., 2006), the properties or which differ from those of human 

β1-tryptase both in terms of substrates preferred in a library of peptidic substrates and in 

comparative susceptibility to inactivation by a library of druglike inhibitors. It is possible 

that the substrate preferences and inhibitor susceptibility of γ-tryptase in its membrane-

anchored form differ from those of its soluble forms. Although, knowledge of its enzymatic 

properties in vivo is limited and the absence of the TPSG1 gene suggests that the enzyme is 

expendable in many mammals, several lines of evidence suggest that it has the potential to 

influence pathological phenomena in mice and humans. The first evidence of this came from 

the demonstration of inflammation and airway hyperresponsiveness in mice into which 

recombinant human γ-tryptase was introduced to the respiratory tract (Wong et al., 2002). 

More recently, mice with inactivated γ-tryptase gene Tpsg1 in mice were shown to resist 

development of inflammation in models of colitis and cigarette-induced lung inflammation 

(Hansbro et al., 2014), thus suggesting roles in pathogenesis of inflammation not redundant 

with soluble tryptases, the absence of which is associated with similar phenotypes (Beckett 

et al., 2013; Hansbro et al., 2014).

2.4. Mastins

Mastins are oligomerizing, tryptase-like serine proteases that are not expressed in humans 

because of mutations in a non-transcribed pseudogene located in the tryptase gene cluster on 

chromosome 16p13.3. From the perspective of developing drugs to treat human diseases, 

mastin’s importance lies in its presence in mammals that serve as pre-clinical models, where 

mastin activity may lead to results that are confusing to translate to humans. Mastin in dogs 

was the first tryptase-like protease of any kind to be cloned and sequenced as a cDNA 

(Vanderslice et al., 1989). Initially it was labeled “mastocytoma protease” because it was 

identified in mast cell tumors, from which it was cloned and then purified as a highly active 

peptidase separate from canine tryptase, with unique properties (Raymond et al., 2005; 

Raymond et al., 1995). Canine mastin forms disulfide-linked multimers and is even more 
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inhibitor-resistant than either canine or human tryptase—resisting leech-derived tryptase 

inhibitor, for example, thereby suggesting highly protected active sites. Apart from 

mastocytomas, canine mast cells and a subset of circulating polymorphonuclear cells (that 

may be basophils) express mastin. Subsequently, mastin was identified in porcine lungs (as 

influenza A-activating enzyme “tryptase TC30”) and in mice as “mast cell protease 11”, 

which is transcribed from the Prss34 gene. Phylogenetic surveys of other mammalian 

genomes suggest that mastins are a distinct branch of tryptase-related enzymes, and that 

several other mammals have intact mastin genes, including cattle, which may have two 

(Trivedi et al., 2007). Mouse mastin is expressed by mast cells and basophils, is catalytically 

active as a tryptic protease, and appears to be a major protein of basophil granules (Ugajin et 

al., 2009; Wong et al., 2004). Thus, mastin expression is a major phenotypic difference 

between human and mouse basophils. In mouse basophils, mastin may be the protease 

responsible for degradation of chaperone gp96 (Liu et al., 2012), which is a phenomenon not 

seen in human basophils.

3. Chymase-related proteases

3.1. Chymases with chymotryptic activity

Human genomes possess a single chymase gene (CMA1) encoding a serine-class 

endoprotease that is primarily chymotryptic, which is to say that it cleaves peptides after 

aromatic amino acids, especially phenylalanine and tyrosine (Caughey et al., 1993b; 

Caughey et al., 1991). This tendency is especially pronounced when preferences are profiled 

using small (peptidic) substrates (Andersson et al., 2009; Powers et al., 1985; Raymond et 

al., 2003). However, when confronting globular proteins, which tend to bury aromatic 

residues in hydrophobic interiors where they are inaccessible to hydrolytic attack, chymase 

can cleave after leucine (Caughey et al., 2008; Raymond et al., 2006). In vitro, human 

chymase is not highly selective, and is capable of cleaving a variety of peptide and protein 

targets, both endogenous and exogenous (as from pathogens) (Powers et al., 1985). Given 

this broad capability, it is likely that some chymase functions are related to general peptidase 

activity rather than to hydrolysis of one or a few selected targets. Nonetheless, human 

chymase, among mammalian chymases, is exceptionally active in hydrolyzing angiotensin I 

at a specific site to its active form, angiotensin II (Caughey et al., 2000b; Kinoshita et al., 

1991; Muilenburg et al., 2002; Reilly et al., 1982; Wintroub et al., 1984). This cleavage not 

only exhibits favorable kinetic attributes (perhaps more favorable than for angiotensin 

converting enzyme itself) but is highly selective for angiotensin Phe8, rather than the Tyr4 

that is attracted to other chymotryptic enzymes, including some rodent chymases, which 

thereby destroy angiotensin. Moreover, human chymase has the unusual capability of 

activating angiotensin while bound to circulating alpha-2-macroglobulin (Raymond et al., 

2009), which is proposed to allow human chymase to generate angiotensin II systemically, 

perhaps supporting blood pressure during anaphylaxis, influencing recovery from ischemia, 

or affecting vascular and myocardial remodeling. Indeed, transgenic mice expressing human 

chymase are hypertensive (Koga et al., 2003), as are transgenic mice expressing rat vascular 

chymase, which is not found in humans but is similar to human chymase it ability to 

generate angiotensin II (Ju et al., 2001). It remains to be established whether angiotensin II 

generated by human chymase is good, bad, or indifferent (or perhaps more than one of these 
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possibilities depending on context). Nonetheless, attention in the arena of pharmaceutical 

development of chymase inhibitors primarily has focused on cardiovascular indications 

(Dell'Italia and Husain, 2002; Miyazaki et al., 2006; Nishimoto et al., 2001; Pat et al., 2010; 

Zheng et al., 2014). Studies in mice suggest that mast cell chymases are the main source of 

angiotensin-converting enzyme-independent generation of angiotensin II and are responsible 

for the portion of angiotensin-dependent blood that resists angiotensin-converting enzyme 

inhibitors while responding to angiotensin receptor blockers (Li et al., 2004).

In contrast to human genomes, mouse and rat genomes contain several genes encoding 

chymase-like proteins (Gallwitz and Hellman, 2006; Gallwitz et al., 2006; Lutzelschwab et 

al., 1997). Several aspects of this multiplicity are challenging to relate to the sole human 

chymase gene and the properties and functions of its product. First of all, all or nearly all 

mouse and rat mast cells express one or more chymotryptic chymases (Reynolds et al., 1990; 

Stevens et al., 1994), whereas chymase expression in human mast cells is confined to subsets 

of cells, which are present in many organs but are especially abundant and a very high 

fraction of total mast cells in the dermis of skin (Irani et al., 1989). Compared to humans, 

mice and rats express chymases in a higher fraction of mast cells residing in mucosal 

locations. Most mouse mucosal mast cells, for example, express mast cell protease (MCP)-1, 

which is an active, chymotryptic enzyme with no phylogenetic or functional equivalent in 

humans (Caughey, 2004, 2007; Gallwitz et al., 2006). MCP-1 is the product of the Mcpt1 
gene. Although the biological targets of MCP-1 remain to be identified, studies in mice 

lacking MCP-1 suggest that this enzyme helps to defend against certain intestinal parasites 

(Knight et al., 2000) and may influence bronchial responses to allergic inflammation 

(Sugimoto et al., 2012). The mouse enzyme that is the phylogenetic equivalent of human 

chymase is MCP-5 (product of the Cma1 gene) (Caughey et al., 2008; Gallwitz et al., 2006; 

Gurish et al., 1993; Huang et al., 1991; McNeil et al., 1991) and is expressed in similar 

locations in mice and humans. However, mutations in the active site introduced during 

rodent evolution changed specificity so that it is no longer chymotryptic (see additional 

discussion below) (Kunori et al., 2002).

In mice, the second major chymase with chymotryptic activity is MCP-4 (product of the 

Mcpt4 gene). Although this enzyme has no phylogenetic equivalent in human or other 

primate genomes, its patterns of expression in mast subsets—as well as certain biophysical 

and functional properties, including angiotensin II-generating and MMP-9-activating activity

—resemble those of human chymase (Caughey et al., 2000b; Lundequist et al., 2004; 

Tchougounova et al., 2005; Tchougounova et al., 2003). Therefore, mouse MCP-4 in mice 

often is considered to be the “functional equivalent” of human chymase. With respect to 

bronchial reactivity in allergic inflammation, the actions of MCP-1 and MCP-4 appear to be 

opposed (Sugimoto et al., 2012). Indeed, selective absence of MCP-4 in mice appears to 

enhance allergic inflammation (Waern et al., 2009; Waern et al., 2013), which is consistent 

with the absence of chymase in human mast cells infiltrating the lower and upper airway in 

asthma (Dougherty et al., 2010), allergic rhinitis (Takabayashi et al., 2012), and eosinophilic 

esophagitis (Abonia et al., 2010), and with the correlation of chymase-positive mast cells in 

small airways with better lung function in severe asthma (Balzar et al., 2005; Balzar et al., 

2010). Although MCP-4’s apparent opposition to allergic inflammation may suggest that 

chymase is an unsuitable target for pharmaceutical inhibition to relieve this condition, 
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human chymase’s roles in this regard remain to be established. MCP-4 also may play 

protective roles in protection from the lethal effects of sepsis (by cleaving TNFα (Piliponsky 

et al., 2012) and alarmins (Roy et al., 2014)), and of toxins (for example, Gila monster venin 

(Akahoshi et al., 2011)), although, again, human chymase’s in these phenomena is 

uncertain.

3.2. Chymases with elastolytic, leu-ase or absent catalytic activity

Mouse chymase-like genes cluster on chromosome 14 (Gurish et al., 1993). Even more such 

genes are in the rat genome (Hellman and Thorpe, 2014; Lutzelschwab et al., 1997; Puente 

and Lopez-Otin, 2004). Mcpt1 and Mcpt4, respectively encode the chymotryptic proteases 

MCP-1 and MCP-4 noted above. The other mouse “chymases” appear to lack chymotryptic 

activity due to mutations affecting amino acids near the active site. For example, MCP-2, 

which is co-expressed with MCP-1 in mucosal mast cells, appears to be enzymatically 

inactive, has no known function, and lacks a human counterpart (Caughey, 2011). MCP-5, 

like orthologs in rats and hamsters, is elastolytic (able on to hydrolyze peptides after small 

neutral amino acids) (Karlson et al., 2003; Kervinen et al., 2008; Kunori et al., 2002), 

although its nucleotide and amino acid sequence overall are most similar to those of the sole 

human mast cell chymase, which is not an elastase and has almost no overlap in the types of 

substrates it can hydrolyze. Therefore, MCP-5 is not an enzyme that is an attractive target in 

efforts to model the roles of human chymase in host defense and pathobiology, although in 

mice it appears to contribute to ischemia-reperfusion injury in skeletal muscle (Abonia et al., 

2005) and to inflammation after burn injury to the skin (Younan et al., 2010). Human mast 

cells do not produce or secrete an elastase per se, although human cathepsin G’s activity 

profile overlaps to a minor extent with that of elastases (Raymond et al., 2010). The major 

chymase-related enzyme in guinea pigs appears to have diverged even more, for this enzyme 

is neither primarily chymotryptic nor elastolytic, but a leu-ase (Caughey et al., 2008). The 

differences in mast cell subset-specific expression, primary specificity, and target 

preferences among mammalian chymases present a challenge in selecting appropriate pre-

clinical models in which to explore the roles of human chymase in disease (Kervinen et al., 

2010), and also illustrate that it is comparatively easy in the evolutionary sense to change 

“chymase” specificity by changing key residues in the active site. Potential solutions to 

using mice as a pre-clinical model of chymase function in humans include 1) focusing on a 

particular mouse chymase, MCP-4, which has properties similar but not identical to the 

human enzyme (Tchougounova et al., 2005; Waern et al., 2009; Waern et al., 2013), 2) 

studying transgenic mice expressing human chymase (Chen et al., 2002; Rafiq et al., 2014), 

and 3) choosing another model mammal, such as dogs, which express a single chymase with 

properties highly similar to those of the human enzyme (Caughey et al., 1991; Fang et al., 

1997; Muilenburg et al., 2002; Zheng et al., 2014).

3.3. Cathepsin G

Cathepsin G is different from classic lysosomal cathepsins in that it is a serine-class 

protease. It deserves attention in discussions of mast cell chymotryptic proteases because it 

is related to chymases and is expressed by mast cells, but also by other myeloid cell types. It 

is especially abundant in neutrophils, from which it is released to the cell surface and is a 

component of neutrophil extracellular traps. In humans, cathepsin G is the closest relative of 
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chymase and its gene CTSG is next door to chymase gene CMA1 on human chromosome 14 

(Caughey et al., 1993b; Hohn et al., 1989). In human mast cells, cathepsin G is expressed in 

the same subsets of cells that express chymase and in similar amounts (Schechter et al., 

1990), and, like chymase, is activated by cathepsin C, which removes its pro-dipeptide 

(Adkison et al., 2002). Human cathepsin G shares some functional properties with human 

chymase, such as the ability to cleave angiotensin I at a selective site to generate angiotensin 

II (Raymond et al., 2010; Tonnesen et al., 1982). However, it is a weaker general 

endopeptidase, with broader specificity, including the unusual ability to cleave targets at 

tryptic as well as chymotryptic sites (Raymond et al., 2010). In mast cells, its functions 

relative to those of chymase are not known. Although it is thought to be secreted with 

chymase from activated human mast cells, its fate after release may differ, for it is more 

likely to be irreversibly inactivated by serpins (Travis et al., 1978), and less likely to be 

captured by macroglobulin (Raymond et al., 2009). The broad specificity of human 

cathepsin G appears to be anomalous among mammalian cathepsin Gs, including mouse, 

which is a highly active though more narrowly chymotryptic enzyme (Kalupov et al., 2009; 

Raymond et al., 2010). The difference in substrate profile between the human and mouse 

enzymes is due largely to a single mutation near the substrate binding site that appeared in a 

recent primate ancestor of humans and closely related great apes (Raymond et al., 2010). In 

mice, cathepsin G appears to contribute to effective host defense against certain bacterial 

infections (Hahn et al., 2011; Raptis et al., 2005; Steinwede et al., 2012; Woloszynek et al., 

2012), but it is not known whether its expression in neutrophils, other myeloid cells, or mast 

cells (or combinations of these cells) is important in this regard. In humans, its contributions 

to host defense remain to be demonstrated. Given the major, recent changes in enzymatic 

properties late in primate evolution, it is speculated that cathepsin G in humans is more 

destructive and less helpful to host defense that is its murine ortholog (Raymond et al., 

2010). Because human chymase and cathepsin G have similar active sites and share some 

functions as well the attribute of mast cell expression, one pharmaceutical strategy has been 

to develop dual chymase-cathepsin G inhibitors (de Garavilla et al., 2005). The use of mice 

as pre-clinical models of cathepsin G function in human disease is complicated by 

potentially redundant function with murine chymases and by the differences in activity and 

substrate preferences of the human and mouse versions of cathepsin G (Kalupov et al., 2009; 

Raymond et al., 2010).

4. Carboxypeptidase A3

At one time carboxypeptidase A3 was termed mast cell carboxypeptidase (Irani et al., 1991; 

Pejler et al., 2009). However, as transcripts encoding this enzyme were discovered in 

basophils, its name was changed to reflect broader expression. The carboxypeptidase A3 

gene CPA3 also may be transcribed in other cell types, although there is little information 

concerning its functions and potential for storage in non-mast cells. In basophils, there is 

scant evidence that it can be stored and accumulated in granules as it is in mast cells, in 

which carboxypeptidase A3 seems to be codependent on the presence of chymase and 

heparin proteoglycan (Feyerabend et al., 2005; Goldstein et al., 1992; Grujic et al., 2013; 

Humphries et al., 1999). Lack of chymase in basophils and/or low levels of heparin may 

explain weak storage of carboxypeptidase A despite the presence of transcripts. This co-
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dependence makes functional sense, for carboxypeptidase A3 can remove aromatic amino 

acids at the neo-C-termini of peptides and proteins attacked by chymase. Thus, these endo- 

and ecto-proteases can act in tandem and may serve host defense and homeostatic functions 

as a team. On the other hand, a new human mast cell subtype appearing in mucosa of tissues 

involved with allergic inflammation appears to have high levels of carboxypeptidase and 

tryptase but little chymase. This cell has been reported in “Th2-high” asthma (Dougherty et 

al., 2010), allergic rhinitis (Takabayashi et al., 2012), and eosinophilic esophagitis (Abonia 

et al., 2010). In these tissues, the CPA3 transcript is highly upregulated and readily detected 

in luminal brushings and biopsies, making it a useful biomarker of allergic inflammation. 

Whether carboxypeptidase A3 expressed in these cells augments or potentially opposes 

inflammation in these tissues is unknown at this point. Initially, the functions of 

carboxypeptidase A3 were hard to determine from Cpa3 knockout mice because of 

disturbances involving other mediators and the very structure of the mast cell secretory 

granule (Feyerabend et al., 2005). More recently, using a selective knockin mutation 

rendering the carboxypeptidase inactive but still present as a “placeholder” and allowing 

preservation of granule structure, evidence was found that active carboxypeptidase A3 

protects from toxic effects of endogenous endothelin and from endothelin-like sarafotoxin 

class of snake venins (Schneider et al., 2007). Similarly, chymase protects from toxic effects 

of Gila monster and scorpion venoms (Akahoshi et al., 2011). These studies suggest roles 

carboxypeptidase and chymase in detoxification, acting individually or in tandem. It is also 

notable that the Cpa3 promoter has found use in generating mice lacking mast cells and with 

reduced or absent basophils (Feyerabend et al., 2011; Lilla et al., 2011). However, at this 

point it is an open question whether pharmaceutical targeting of carboxypeptidase A3 for 

inhibition would have therapeutic benefits, or would perhaps interrupt an important 

homeostatic mechanism for limiting dangerous effects of internal and external toxins.

5. Cathepsin C/Dipeptidylpeptidase I

Cathepsin C (gene name CTSC), also known as dipeptidylpeptidase I, is a cysteine 

exopeptidase that is expressed in many cells but is especially abundant in mast cells (Wolters 

et al., 2000). It is a potential pharmaceutical target because of its role as an upstream 

activator of tryptases, chymases, and cathepsin G, from which it removes N-terminal pro-

dipeptides from the zymogen forms of these proteases. It plays a similar role for other 

immune cell proteases, including neutrophil elastase and many granzymes of cytotoxic 

lymphocytes and natural killer cells (Adkison et al., 2002; McGuire et al., 1993; Pagano et 

al., 2007; Pham and Ley, 1999). These activation events occur inside the cell. Although 

cathepsin C is found in mast cell granules and can be secreted, its activity outside of cells is 

limited by its restricted endopeptidase activity and susceptibility to inactivation by cystatins 

(Wolters et al., 2000; Wolters et al., 1998). As a potential assist to structure-based design of 

inhibitors, crystal-derived structures of cathepsin C, reveal a tetramer with restricted active 

sites compared to related cysteine cathepsins (Turk et al., 2001; Turk et al., 2012). Studies in 

cathepsin C knockout mice suggest that chymases, including mast cell protease 4, are 

present as proenzyme zymogens in mast cells but are almost completely inactive in these 

mice (Wolters et al., 2001). Levels of active tryptase mast cell protease 6 are reduced but not 

absent, suggesting the presence alternative pathways for activating pro-tryptases in mice. In 
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human mast cells, alternative tryptase activation pathways include the classic lysosomal 

cysteine protease cathepsin L (Le et al., 2011a; Le et al., 2011b). Notwithstanding multiple 

deficits in immune cell proteases, cathepsin C-null mice are viable and fertile when raised in 

barrier conditions. Indeed, in some models, as in septic peritonitis (Mallen-St Clair et al., 

2004) and gram-negative pneumonia (Sutherland et al., 2014), the lack of cathepsin C 

confers a surprising survival advantage, possibly related to higher local levels of 

interleukin-6 and surfactant collectin proteins that would otherwise be degraded directly by 

cathepsin C or indirectly by one or more of the proteases activated by cathepsin C. These 

findings provide further incentive for considering therapeutic inhibition of cathepsin C. 

However, the nature and significance of the host defense deficits in cathepsin C-null mice 

remain to be fully explored. In humans, mutations of the CTSC gene can produce Papillon-

Lefevre syndrome, which includes severe periodontitis (Pham et al., 2004), but is overall 

perhaps surprisingly well tolerated. It is not yet clear if the involvement of cathepsin C in 

activating human mast cell and other inflammatory cell proteases is as important as it 

appears to be in mice.
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Table 1

Disease associations

Tryptases

  Anaphylaxis (Caughey, 2006; Schwartz, 2006)

  Asthma (Cairns, 2005; Chen et al., 2006; Costanzo et al., 2008; Krishna et al., 2001)

  Allergic rhinitis (Erin et al., 2006; Takabayashi et al., 2012)

  Eosinophilic esophagitis (Abonia et al., 2010)

  Inflammatory bowel disease (Hamilton et al., 2010; Hansbro et al., 2014; Isozaki et al., 2006; Tremaine al., 2002)

  Arthritis (Shin et al., 2009)

  Cigarette-associated lung and airway disease (Beckett et al., 2013; Hansbro et al., 2014)

  Allergic skin disease (Järvikallio et al., 1997)

  Bacterial infection (protective) (Thakurdas et al., 2007)

  Aortic aneurysm (Zhang et al., 2011)

Chymases

  Systemic arterial hypertension (Ju et al., 2001; Koga et al., 2003; Wei et al., 2010)

  Ischemia-reperfusion injury (Abonia et al., 2005; Jin et al., 2001; Morikawa et al., 2005; Pat et al., 2010)

  Fibrosis: skin, lung, kidney, heart, liver (Cha et al., 2012; Shiota et al., 1997; Tchougounova et al., 2005)

  Pulmonary artery hypertension (Kosanovic et al., 2014; Wang et al., 2010)

  Asthma (protective) (Balzar et al., 2005; Sugimoto et al., 2012; Waern et al., 2009)

  Envenomation (protective) (Akahoshi et al., 2011)

  Intestinal parasitosis (protective) (Knight et al., 2000)

  Skin malignancy (Coussens et al., 1999)

  Aortic aneurysm (Furubayashi et al., 2008; Inoue et al., 2009; Sun et al., 2009)

Carboxypeptidase A3

  Envenomation (protective) (Metz et al., 2006)

Cathepsin C/Dipeptidylpeptidase I

  Septic peritonitis (Mallen-St Clair et al., 2004)

  Gram-negative pneumonia (Sutherland et al., 2014)

  Periodontitis/Papillon-Lefevre syndrome (Pham et al., 2004)
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