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We epidemiologists have long recognized the importance

of using rigorous causal inference approaches to design and

analyze our studies. Causal diagrams comprise one such

tool for formalizing assumed data-generating processes.

And indeed, the ubiquity and importance of causal dia-

grams within epidemiology is evidenced by four articles

presented in this issue of the European Journal of Epi-

demiology [1–4]. As epidemiologic studies are often used

to inform clinical and policy decision-making, we have

also understood the need to unambiguously communicate

our studies’ findings amongst ourselves and across the

disciplines with whom we collaborate. While others have

taught and espoused how causal diagrams can guide and

improve our study designs and analyses [5–7], perhaps one

of the most transformative aspects of the current ‘‘revolu-

tion’’—in the words of Porta et al. [4]—is that we have

adopted tools that enhance the clarity of our study con-

clusions and the premises on which they rest.

Causal diagrams as (formal) story-telling

When and why are causal diagrams useful? One of the

most evident successes of causal diagrams is in supple-

menting story-telling. With a few arrows and letters, an

investigator can tell a story of a data-generating process.

For a reader fluent in causal diagrams, even a dauntingly

complex story can now be quickly and fully digested. In

this way, we have seen a series of ‘‘paradoxes’’ demysti-

fied, including proposed explanations for the so-called

Berkson’s [8], birth-weight [9], obesity [10], and Simp-

son’s [11] paradoxes. Similarly, causal diagrams focused

our attention on the structures of oft overlooked potential

biases, such as biases due to time-dependent confounding

in stratification-based analyses [12], mediator-outcome

confounding in mediation analyses [13], selecting on

treatment in instrumental variable analyses [14], and naı̈ve

per-protocol restrictions in randomized trial analyses [15].

Readers familiar with causal diagrams will recognize that

many of these examples can be described as collider-

stratification biases, and that, while some encompass pre-

viously recognized threats to validity, these potential biases

were infrequently mentioned until their associated causal

diagrams were drawn.

Beyond demystifying perplexing patterns or illuminat-

ing subtle problems that exist across many studies, causal

diagrams can also facilitate debates regarding a specific

study’s conclusions. Consider two investigators who are in

disagreement over whether a specific study’s analysis and

conclusions were appropriate. If these two investigators

‘‘speak DAG’’ (directed acyclic graph) then they may

seamlessly convey their assumptions and ideas to one

another with little fear of miscommunication. Perhaps the

two investigators will realize they had different causal

diagrams in mind, and that favoring one analytic approach

over another depends on which causal diagram is drawn—

and thus on particular assumptions that, undrawn, might

have suggested favoring a different analysis. Perhaps they

will even be able to collect further data to help settle on

which causal diagram—which set of assumptions—is more

reasonable. Such discussions, which can be cumbersome
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and confusing without a formal language, can take place

quickly and explicitly when supplemented with causal

diagrams.

In these ways, a causal diagram, like a picture, is worth

one thousand words. Unlike artwork, however, where the

‘‘thousand words’’ convey a subjective perspective, a

causal diagram should convey exactly the thousand words

its creator and all other fluent readers would attribute to it.

Causal diagrams are useful because they facilitate precise

communication, but ignoring the formal rules that govern

them can lead to miscommunication. For some examples of

this, we can turn to an article in this issue of the European

Journal of Epidemiology in which Greenland and Man-

sournia [3] caution how failing to read a causal DAG as

encoding only structural (not random) confounding or

failing to be explicit about faithfulness when presumed can

lead readers of a causal diagram to perceive a different

‘‘thousand words’’ than intended.

As with any tool that can streamline communication,

there is also a danger of causal diagrams providing a false

sense of security when they are constructed without

investigators applying deep thought and subject matter

knowledge. To see this, consider the use of causal diagrams

in the context of instrumental variable analyses. Many

epidemiology studies with instrumental variable analyses

redraw the same textbook instrumental variable causal

diagram to justify their analysis, yet the story is rarely as

straightforward as the one depicted in that causal diagram.

Hernán and Robins [16], Swanson et al. [14] and Van-

derWeele et al. [17] have presented expanded versions of

this standard graph that illustrate relatively subtle yet

potentially common ways in which bias could arise. Thus,

redrawing the textbook version of a causal diagram may

oversimplify the likely data-generating process and even

offer false comfort when applied to a specific study. Of

note, some have argued that causal diagrams are not useful

in the context of instrumental variable analyses because

‘‘the’’ DAG seems so simple that drawing it does not add to

our understanding of the process [18]. While causal dia-

grams (arguably) add less to our understanding of what is a

true instrument, we have seen many examples of causal

diagrams adding substantially to our understanding of what

is not an instrument.

If two epidemiologists ‘‘speak DAG’’ fluently and think

deeply while constructing causal diagrams, they can

cleanly convey their premises and ideas to one another with

little fear of miscommunication. However, many of us are

not fluent in causal diagrams. Moreover, fluency or even

familiarity with causal diagrams is currently rare among

the broad range of medical researchers, clinicians, and

policy-makers with whom we work. While our field would

doubtlessly benefit from having more fluent speakers, we

as a field ought to ask ourselves: should fluency in causal

diagrams be a requisite in our training and communication

standards?

The case for causal inference ‘‘multilingualism’’

Causal diagrams are attractive because they facilitate clear

communication. Of course, the same argument can be

made for other formal representations, including the

counterfactual outcome framework that DAGs are linked

with in this issue [2]. Should epidemiologists favor one

framework over another? Ultimately, translations between

these representations are achievable, as evident by the

mathematical equivalencies between the DAG-based do-

calculus and the counterfactual-based g-formula [2, 19–

21]. Nonetheless, in our day-to-day work as epidemiolo-

gists, an argument could be made that learning to both

‘‘speak DAG’’ and ‘‘speak counterfactuals’’ will deepen

our own comprehension of our subject matter.

Being well-versed in multiple formal representations of

causality can lead to not just clearer but also more efficient

communication. For example, some assumptions (e.g.,

directionality or monotonicity of treatment effects) are

readily stated via counterfactuals but require augmenta-

tions to our causal diagrams. Indeed, defining causality

without mention of counterfactual outcomes—as counter-

factuals are not immediately apparent in DAGs, although

they do take center-stage in single-world intervention

graphs [22]—may seem at times like learning a language

with one less tense. On the other hand, particularly in high-

dimensional data, translating a data-generating process

from a causal diagram to a list of independencies expressed

with counterfactuals can be onerous—why do we need to

use so many phrases to express something that would

otherwise be succinctly (and appropriately) stated in a

diagram? Each representation has advantages, and being

facile with multiple formal representations allows us to

capitalize on the benefits of all.

Considering the benefits of causal inference ‘‘multilin-

gualism’’ lends itself to another question we should ponder:

should every epidemiologist learn every language? As a

corollary question, what would be the benefits of a causal

inference Esperanto that explicitly combines the best of

graphical and counterfactual language? Perhaps the future

of succinct and clear communication in epidemiology lies

in single-world intervention graphs [22].

Conclusion

Regardless of the framework in which it is couched,

inferring causality comes down to combining data and

assumptions. As epidemiologists, we make causal
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inferences all the time. Consequently, it is our responsi-

bility to communicate effectively the assumptions we are

making and the way in which we combine assumptions

with data. Science benefits when communication is flaw-

less—i.e., when our premises are precisely and transpar-

ently stated, and our results are accurately interpreted. In

embracing causal diagrams, we are indicating our com-

mitment to unambiguous communication.
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