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Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge
to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole
computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore
provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep
atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation
waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell
model (ordinary differential equation) and the other is the diffusion term of the monodomainmodel (partial differential equation).
Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed
based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In
conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole
heart simulations.

1. Introduction

With rapid advances in imagingmodalities, computermodels
of the whole heart become more sophisticated with detailed
anatomical structures with high spatial resolution, which
are integrated with detailed cardiac electrophysiology. With
a spatial resolution higher than 150 micrometers which is
equivalent to the length of a cardiac myocyte, a 3D heart
model can easily have discrete elements more than tens
of millions or even billions. Given the fact that for each
element a few dozens of state variables are required to
describe the electrical activity, ion channel kinetics, and ion
concentration homeostasis, simulation of cardiac tissue with
real heart geometry and detailed electrophysiology is large-
scale, imposing a big challenge for computation power and
resources.

For large-scale cardiac modeling, systems of high-per-
formance computing (HPC) with tens to hundreds of CPUs

have been used. In their study, Niederer et al. [1] implemented
an algorithm of HPC with 16384 CPUs to simulate human
cardiac electrophysiology. A simulation of 1000 millisecond
cardiac electrical activity was performed within 5 minutes, a
time scale closer to practical clinical applications. However,
uses of HPC, either OpenMP (Open Multi-Processing,
http://openmp.org/) [2] or MPI (Message Passing Interface,
http://www.mpi-forum.org/) [3–5] systems, can have a
very obvious speedup in simulations after overcoming the
difficulties of multithreads programming, but they are still
cost-ineffective due to their high price and operation com-
plexity, each of which hinders their practical applications.

GPU, the widely available Graphical Processing Units
(GPUs), can offer a cheap, convenient alternative to large
numbers of CPUs, providing a cost-effective parallel com-
puting technology in a standalone desktop PC environment.
Over the last decade, especially after the launch of Compute
Unified Device Architecture (CUDA) by Nvidia cooperation
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in 2007, GPU has been widely used for general computing
including large-scale cardiac simulations [6–11]. It has been
shown that tens of speedup factors as compared to the
CPU can be achieved in monodomain and bidomain models
of cardiac tissue with biophysically detailed mathematical
equations of cardiac electrical activities [7, 8]. Whilst imple-
mentation of single precision float showed better speedup
performance than that of double precision float, it yielded
a loss of simulation accuracy [9]. In their study, an about
70-fold speedup was obtained by Vigueras et al. [10] and
Mena and Rodriguez [11], which was close to that obtained
by us in a previous study [12]. A higher speedup performance
was achieved by using multiple GPUs [13, 14]. In addition,
CUDA showed better speedup performance in cardiac simu-
lations than other programming languages, such as OpenCL.
Though OpenCL is a more portable way of programming for
scientific computing problem, it is not as efficient as CUDA
when running on Nvidia GPUs for cardiac simulations [15,
16].

Because of differences between CPU and GPU architec-
tures, it is not trivial to port CPU programs of cardiac models
to GPU directly as some special considerations are needed.
Although the platforms developed by Lionetti et al. [17] and
Amorim et al. [18] provided a tool for automatically porting
cardiac simulation codes fromCPU toGPU for users without
detailed knowledge of GPU, such automatically generated
CPU codes are not optimized and have low efficacy.

An optimized GPU performance of cardiac simulation
codes can be achieved by special considerations of data
structure and algorithms of cardiac models. In this study, we
presented an optimized GPU code of 3D model of the sheep
atria [19] by using a recently launched GPUK40 system (tone
the Tesla series). The optimized GPU algorithm achieved up
to 200-fold speedup as compared to the CPU counterpart. In
the sections below, we present some numerical strategies and
the GPU optimization skills in detail.

2. Numerical Methods for
the Sheep Atria Model

2.1. 3D Model of the Sheep Atria. Sheep are often used as
animal models for experimental studies into the underly-
ing mechanism of cardiac arrhythmias. Recently, we have
developed a family of mathematical models for the electrical
action potentials of various sheep atrial cell types [19]. The
developed cell models were then incorporated into a three-
dimensional anatomical model of the sheep atria, which was
recently reconstructed and segmented based on anatomi-
cal features within different regions. This created a novel
biophysically detailed computational model of the three-
dimensional sheep atria [19].

Although bidomain model was the most general and
accurate description for cardiac electrical activity, the com-
plexity of computation caused much trouble for application.
In fact, the bidomain model could be reduced to mon-
odomain model based on some assumptions [20].

In this paper, the action potential propagation throughout
the 3D sheep atria tissue was simulated using the mon-
odomain reaction-diffusion equation, and the atria model
can be described by

𝑑𝑉

𝑑𝑡
= ∇ ⋅ (𝐷∇𝑉) −

𝐼ion + 𝐼stim
𝐶
𝑚

, (1)

𝐼ion = 𝐼Na + 𝐼Ca + 𝐼NaK + 𝐼ClCa + 𝐼Kr + 𝐼Ks + 𝐼to + 𝐼Kurd

+ 𝐼NaCa + 𝐼pCa + 𝐼bNa + 𝐼bCa + 𝐼K1,
(2)

where 𝑉 is the transmembrane voltage, 𝐼ion is the total ionic
current, 𝐼stim is the stimulate current, 𝐶

𝑚
is the transmem-

brane capacitance, and𝐷 is the diffusion tensor.

2.2. Numerical Solvers. The model described in (1) is a set
of nonlinear coupled system including ODEs and a PDE.
To solve the equation, the operator splitting technique in
[21] was used for discretization. In order to implement GPU
parallelization, we split the model into two parts: single
cell model with ODEs for describing the cellular electrical
activity of cardiac cells and the PDEmodel for describing the
intercellular electronic interactions between cells, which was
defined as

𝑑𝑉

𝑑𝑡
= −

𝐼ion + 𝐼stim
𝐶
𝑚

, (3)

𝑑𝑉

𝑑𝑡
= ∇ ⋅ (𝐷∇𝑉) . (4)

For each time step, the ODE solver and PDE solver
were executed in turn, and two kernel functions were used
for the ODE solver and PDE solver separately. A finite
difference discretization was used to discretize space. And
a forward Euler method [22] with a time step 0.005ms was
implemented to solve the equations, which gave accurate
results as compared to the solutions reported in our previous
study [19].

2.2.1. ODE Solver. First of all, equilibrium potentials for Na+,
K+, Cl−, and Ca2+ ionic channels were updated based on the
current transmembrane voltage and their initialized param-
eters. Then, various ionic currents and the total current were
updated. Furthermore, the transmembrane voltages were
updated based on the forward Euler method for (3). After
transmembrane voltage update, the ionic concentrationswere
also updated by the forward Euler method. At last, various
gate control variables are updated based on the following
method.

For a gate control variable 𝑥, the governing equation was
defined as

𝑑𝑥

𝑑𝑡
= 𝛼
𝑥
(𝑉
𝑚
) (1 − 𝑥) − 𝛽

𝑥
(𝑉
𝑚
) 𝑥. (5)

According to the Rush-Larsen method [23], the solution of 𝑥
was obtained by

𝑥 (𝑡 + Δ𝑡) = 𝑥
∞
− (𝑥
∞
− 𝑥 (𝑡)) ⋅ 𝑒

−Δ𝑡/𝜏
𝑥 , (6)
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(7)

Because the computation of ODE solver was only for a
single cell and the coupling between cells could be ignored,
the ODE solver was very ideal for parallelization.

2.2.2. PDE Solver. In order to match the actual electrophys-
iological conduction of excitation waves in the sheep atria,
a 3D anisotropic diffusion tensor was used. The produced
activation time sequence within the model and the measured
conduction velocities of the atria matched the experimental
data as well as those reported in our previous study [19], vali-
dating the performances of themodel. For the 3D anisotropic
tissue, the diffusion tensor𝐷 was defined as

𝐷 = (

𝐷
𝑥𝑥

𝐷
𝑥𝑦

𝐷
𝑥𝑧

𝐷
𝑦𝑥

𝐷
𝑦𝑦

𝐷
𝑦𝑧

𝐷
𝑧𝑥

𝐷
𝑧𝑦

𝐷
𝑧𝑧

). (8)

Then, (4) was transformed to

𝜕𝑉

𝜕𝑡
= ∑

𝑖,𝑗=𝑥,𝑦,𝑧

[
𝜕

𝜕𝑖
(𝐷
𝑖𝑗

𝜕𝑉

𝜕𝑗
)] . (9)

The forward Euler method was used for the discretiza-
tion of (9) in the time domain. The tissue space was
discretized by a finite difference method with a space step
of 0.33mm, the same as in our previous study [19]. The
fibre orientation vectors were averaged to provide local
directions of fibres in 0.9mm3 voxels. A diffusion ratio of
6 : 1 (parallel : perpendicular to fibre direction) was chosen
for the best matching of anisotropic conduction velocities
to electrophysiological experimental data, with which 𝐷

‖
=

0.3mm2/ms, 𝐷
⊥1

= 𝐷
⊥2

= 0.05mm2/ms were used,
respectively.

The computation of PDE solver was based on a 3-
dimensional array. It might cause some troubles for data
access efficiency on GPU platform, therefore increasing the
computing time without special considerations of GPU opti-
mization. Below, we described some optimization strategies
of the GPU algorithm.

3. Programming on the GPU

3.1. GPU Architecture. To optimize the GPU code, we first
need to know GPU architectures. A modern GPU is a
highly data-parallel processor, containing several or tens
of hundreds of processors running in a Single Instruction
Multiple Data (SIMD)model, which reduces computing time
by letting the same operation being carried out simulta-
neously on each of the multiple threads with very little
memory overhead. Though this allows near-simultaneous

calculation of many independent floating point operations,
it does suggest that the GPU architecture is suitable only for
independent and data-parallel computations.

The CUDA architecture enables a GPU as a data-parallel
computing device. A CUDA program consists of two parts
including theCPUpart (host) and theGPUpart (device).The
host runs nonparallel or simple task by allocating memory
for host and device and transferring data between host
and device. Kernel function is executed in device, which is
decomposed into blocks that are allocated to stream multi-
processors. Furthermore, there are multiple threads within
one block which can be set by developer. All threads within
one block will get the same computation resources, and the
communication between threads is based on share memory
in multiprocessor or global memory. One thread will be
mapped to one processor. In particular, all the threads within
a block are grouped into warps and a warp generally includes
32 threads, which can run concurrently in the best case.

3.2. Programming Procedures for GPU. For GPU program-
ming, CUDAC++was used. As being described in Section 2,
models for the electrical activity in cardiac tissue were
decomposed into two parts. One was for the single cell model
which was suitable for GPU parallelization, and the other
was for the interaction between cells, which was unsuitable
for GPU parallelization. For the 3D atrial model, each mesh
node represented a single cell. Simulation flow was divided
into three phases: preprocess, iteration and data refreshing,
and postdata process. In the preprocess, model initializa-
tion, including mesh building, definition of mesh data, and
mapping of fiber orientation, was conducted. This process
was implemented on the CPU. The process of iteration and
data refreshing includes computations of cell excitation, state-
variable updating from ODE, and PDE solvers. This part of
computation was executed recursively, forming a vital part
for the GPU speedup. Finally, postprocess was used for data
storage and analysis, which runs on the CPU.

Details of each of the procedures were described below.
Preprocess (run on host) is as follows.

(1) Buildmesh including data structure for single cell and
diffusion tensors between cell neighbors and allocate
memory for mesh.

(2) Read fiber orientation and cell categories of each cell
node.

(3) Map fiber orientation and cell categories to meshes.
(4) Compute diffusion tensors between cell neighbors

based on fiber orientation.
(5) Allocate memory for device.
(6) Copy data from host to device.

Data iteration and refreshing (run on device) is as follows.
One finds the following.

(7) Initialization of state-variable data in device.
(8) Cell stimulation: all cells of sinoatrial node were stim-

ulated by setting their action potentials to +20mV at
the beginning.
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(9) Iteration for a certain duration.

(a) ODE solver, state-variable updating, and impor-
tant data saving.

(b) PDE solver, state-variable updating, and impor-
tant data saving.

(c) Save action potentials of all cells for a next time
step.

Postprocess (run on host) is as follows.

(10) Copy data from device to CPU.
(11) Free device memory.
(12) Analyze the data.
(13) Save necessary data to files.
(14) Free host memory.

4. GPU Optimization Strategies

For cardiac tissue simulations, at each iteration step, intensive
computations are required for tens of state-variable loading,
updating, and storage. Therefore, data structure for storage
is a key factor for the speedup of simulations. In addition, a
reasonable allocation of the threads is also an important fac-
tor. In this section, we present some strategies to optimize the
GPU parallelization by considering the memory usage and
thread arrangement. Although other optimization strategies
improve the GPU performance, their role was less significant
compared to the memory usage and thread arrangement.

4.1. Optimization ofMemoryAccess. At each iteration, though
the computational complexity for each individual cell was
not high, the total computational cost was high due to the
large number of cells. In addition, the total number of model
parameters was over a hundred, and many of them were
voltage-dependent and required to be updated and saved
at each iteration. It was obvious that the efficiency of data
storage, reading, and writing was a key problem for the
speedup of the GPU code.

There are a variety of storage media in the GPU, mainly
including register, shared memory, multistage cache, local
memory, and global memory. Local memory is a part of
global memory in fact, so the technique characteristic of
these two memory types is the same. Among all memory
media, register is the fastest, but the number of register is
very limited, up to 64K in a stream multiprocessor. Register
is mainly used for the allocation of some local variables in
kernel functions or device functions. The speed of shared
memory is also very quick, but the memory size is also
very small, about dozens of KB in a stream multiprocessor.
Sharedmemory ismainly used for communication of threads
within a block. Global memory is the slowest, but the
storage capacity is large. There is over 1 GB memory size for
mainstream GPU card. In particular, memory size of 12GB
can be found in some recently launched GPU cards, such as
K40, a device from Tesla series.

For millions, even tens of millions of myocardial cells,
model parameters demand storage space of several GB, even

more. Such a large memory demand can only be satisfied
by using global memory. In order to improve the efficiency
of reading and writing for global memory, we present three
optimization ways: one is to cut the number of variables that
need to be stored; the second is to use an appropriate design
of data storage structure; and the third is the appropriate use
of registers, shared memory, and cache to improve the speed
of memory reading.

4.1.1. Variables Decrease. The time for the reading or writing
of global memory is more than 400 machine cycles. For the
sheep atria model, there are more than 100 variables and
parameters used for each iteration. If all variables were saved
in global memory, the efficiency of variable access was very
low. In fact, some variables were not necessary to be saved
in global memory, which could be updated based on other
variables, not itself. As the bottleneck of GPU speedup was
the memory access, we analysed the model aiming to reduce
memory access. It was found that about 60 variables and
parameters need to be arranged in global memory, among
them about 40 variables required to be read and written;
about 20 variables only required to be read. If there were
10M mesh nodes considered, the required memory size was
10M ∗ 60 ∗ 8 = 4.8GB. If time step was set to be 0.001ms,
there was about 1 million iterations for 1 s simulation. It was
obvious that the memory access required to be considered
more thoroughly.

4.1.2. Data Structure of Storage. In the program of CPU
version, we defined a class for each cell mesh, all param-
eters of cell, including action potential, current, and ionic
concentration, were declared as member variables within the
class, which was very convenient and clear for programming.
But for GPU version, the data structure of cell class was
very low in efficiency. The reason is that memory access in
single thread programming is very different from that in
multithread multiprogramming. In general, for the present
mainstream GPU, one operation of memory reading will get
continuous 128 bytes. Based on this fact, we constructed a
continuous memory access for variables and parameters in
multithread as shown in Figure 1.

Figure 1 illustrated the data structure for CPU
(Figure 1(a)) and GPU (Figure 1(b)). In the GPU implemen-
tation, parameters of cells in the 3D spatial geometry
were split into multiple arrays of 3D parameters with one
array containing one homogeneous parameter, allowing a
continuous storage of the parameter, which improved the
efficiency of data access on the GPU.

4.1.3. Sparse of Data. Furthermore, a linear and compact
indexing of mesh nodes helped to increase GPU implemen-
tation efficacy. In the 3D atria, there were many mesh nodes
representing atrial cavity or blood, which could be ignored
directly by reindexing the 3D mesh into a 1D linear and
compact cell storage array. In the 3D model, a variety of
different cell types were used to represent the intrinsically
electrical heterogeneity of the atria including left atrium,
right atrium, pectinatemuscles, Bachmann’s bundle, and pul-
monary veins and the empty cavity. During kernel function
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Figure 1: Data structure comparison between CPU and GPU. (a) CPU with heterogeneous storage of model parameters; (b) GPU with
homogeneous storage of model parameters reducing memory access time for each iteration of simulations.

of ODE solver or PDE solver, cell type was required to be
launched first. If the node was for an empty cell, then return
without performing computing. This process might cause
some problems for multithreads programming. First, the
thread of empty cell was meaningless and wasted resources
and time. Second, continuous 32 threads within a warp
existed in the process of branching calculation of different
cell types, which caused the threads within a warp not to be
synchronized. Therefore, without use of a compact indexing
reduced the computational parallelism. So, it was necessary
to reindex the 3D mesh in a compact format by omitting the
empty cells in order to enhance the GPU performances.

4.2. Thread Arrangement. Appropriate arrangement of
threads can effectively improve the occupancy rate of the
GPUs. In order to effectively use the register, each processor
should have at least 192 active threads, which can reduce the
effects of the time delay of writing after reading. In order
to guarantee the GPU resources occupancy rate close to
100%, the number of threads run on a streammultiprocessor
should be more than 192.

As each block is mapped to a stream multiprocessor,
the number of blocks should be arranged not less than the
number of stream multiprocessors. In particular, in order
to avoid the waste of resource due to block blocked, the
number of blocks should be as many as possible, such that
the blocks with different states overlap on the timeline. The
later experimental results also illustrated this point.

Due to the fat that the warp is the minimum unit for
thread scheduling on the GPU, and the number of threads

within a warp is 32, and in order to improve the utilization
rate of resources, the number of threadswithin a block should
be the multiple of 32. For more than one stream multipro-
cessor, we should reasonably arrange the number of blocks
and that of threads within a block. In this study, we adopted
various different thread configurations for performance test.
Results were presented in the result section.

For the design of thread, the strategy of the ODE solver
is different from that of the PDE solver. For ODE, only
single cell needs to be considered for one thread. So, the
number of valid cells is set as the number of threads and a
simple 1-dimensional thread traverse is used. However for
the PDE, it is more convenient if a 3-dimensional thread
traverse structure is used because the computation of a cell
is related to 26 adjacent cells. So, the number of all cells is set
as the number of threads. Because all parameters of cell have
been saved by compact storage as described in Section 4.1.2,
a mapping table from 1 dimension to 3 dimensions needs to
be constructed.

5. Experimental Results

We used a computer with CPU @ Intel Ivy Bridge E5-
2620v2/2.1 GHz and a Nvidia GPU card K40 for testing
the developed CUDA algorithm. The simulated data was
visualized and compared to the results from our previous
study [19] to validate the correctness of the GPU algorithm.
Furthermore, various optimization strategies onGPUperfor-
mance were evaluated.
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Figure 2: Snapshots of propagating action potentials across the whole 3D atria. (a) 0ms; (b) 15ms; (c) 30ms; (d) 45ms; (e) 90ms; (f) 120ms;
(g) 150ms; (h) 210ms.

5.1. Simulation Results. In GPU implementation of the 3D
sheep atrial model, nine different cell types were defined
and different initializations were done for different cell types
as done in our previous study [19]. The model consisted of
about 7.1 million mesh nodes (317 × 204 × 109). Because the
atria have very thin walls, the number of valid cell nodes
was actually only about 1 million. Therefore, the data was
sparse and special strategy was needed for data access and
storage for the best performance. Each node was mapped to
a cell model according to the segmentation of the tissue [19].
Double precision for parameters was used for guaranteeing
simulation accuracy. There were over a hundred parameters
and state-variables for each node, 60 of which were saved in
global memory on the GPU for frequent reading during sim-
ulations.Therewere about 40 state-variables requiring update
and storage for each iteration mainly for ODE solver. We
tested the GPU algorithm efficiency in a simulation duration
of 600ms with a time step of 0.005ms. The action potential
of each node was saved at a 5ms interval (i.e., every one thou-
sand time steps) for data analysis and visualization off-line.

Figure 2 showed the simulated excitation wave prop-
agation in the 3D sheep atria. The electrical wave was
first initiated in the central sinoatrial node region. Then,
it diffused to all tissue in the right and left atria. After
200ms, the atria completed repolarization and returned to

its resting state. The activation pattern of excitation waves is
consistent with the sheep atria electrophysiology andmatches
the simulation data of Butters et al. [19] by using CPU
algorithm.This illustrated a successful implementation of the
GPUcode for 3D sheep atrialmodel. Below,we investigate the
effects of different optimization strategies on the GPU code
performances.

5.2. Effects of Variant Optimization Strategies on GPU Perfor-
mance. For large-scale cardiac tissue models (about dozens
of millions of nodes, each with hundreds parameters/state-
variables), optimizing the performance of memory access
plays a key role for improving the whole performance.
Meanwhile, as the arrangement of the threads affects the
occupancy rate of resources, it also plays an important role in
the improvement of GPU performance. To demonstrate this,
we compared the performance of three different optimization
methods, including

GPU 1: a direct program transferred from CPU to
GPU (GPU 1, continuous access for cell class);
GPU 2: adaptation of the cell data structure (GPU 2,
continuous access for variables);
GPU 3: the overall optimization (GPU 3, variant
strategies including variable decrease, data storage,
and sparse of data).
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To investigate the efficiency of the GPU s1, 2, and 3
implementation schemes, the execution time was measured
for simulating 600ms atrial electrical excitation waves by
using the 3D atrialmodel and the number of threadswas fixed
to 256. The speedup of GPUs 1–3 schemes was calculated in
relation to the execution time of CPU. Results were shown
in Figure 3, and 𝑥-axis is variant optimization strategies
on the GPU; 𝑦-axis represented speedup ratio of execution
time between GPU and CPU. It was shown that a direct
program transfer from CPU to GPU was not efficient due
to the different architectures between the two. Considering
GPU architectures characteristic for continuous access of
variable as discussed in Section 4.1, the GPU performance
was improved dramatically as shown in the case of GPU
2. By further optimization, by considering more strategies
in Section 3.1, a more than 200-fold speedup was obtained,
which reduced the execution time from 360000 seconds in
CPU to 1687 seconds in the GPU 3 case. Furthermore, it was
shown that the speedup fromGPU 1 toGPU2was significant.
Therefore, for our application, as a massive data required to
be read and written at each time step, the efficiency of data
access played a key role in the speedup of the algorithm.

5.3. Effects of Different Data Size on GPU Performance. We
also considered the effect of data volume on the GPU perfor-
mance. In the whole 3D sheep atrial model, the anatomical
structure consists of 109 slices in the 𝑍 axis. By varying the
size of the geometry (i.e., the number of slices) in simulation,
the execution time was measured for the PDE and ODE
computations and the total of the two. Results were shown
in Figure 4, and the 𝑥-axis represented the number of slices
of 3Dmodel and 𝑦-axis the execution time. It was shown that
with the increase of data volume, the increase in themeasured
execution time flattens, indicating that the parallelization
efficiency was better with an increased data volume. This
was possibly due to the fact that when data size became
greater, the occupancy of resource was increased, leading to
an increased hit ratio of the cache.

5.4. Effects of Arrangement of Thread and Block on GPU
Performance. We investigated the effects of arrangement of
thread and block on GPU performances. The results were
shown in Figure 5, in which the execution time (𝑦-axis) was
shown against the number of threads (𝑥-axis). It was shown
that the number of threads (𝑥-axis) had obvious effects on
the execution time. In testing, the number of blocks used
was adaptively changed with different thread arrangement as
follows:

bn = INT(cn + tn − 1
tn

) , (10)

where cn is the total number of cells in the model, tn is the
number of threads in a block, bn is the number of blocks, and
INT() is a functionwhich evaluates a numeric expression and
returns the integer portion of the expression.

With a bigger number of blocks, the waste of resource
became more pronounced. And vice versa with a smaller
size of block the waste of resource was reduced, but this
led to a reduced efficiency of memory reading. As one
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Figure 3: Performance of speedup for variant GPU optimization
strategies.
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Figure 4: Effects of data size on the execution time of PDE, ODE
solvers, and the total computing.

reading operation gets 128 bytes data, if the block size is less
than 128, the efficiency of data access cannot reach the best
optimization. From Figure 5, it is shown that with 64 threads
each block was the best for the PDE solver, and with 256
threads each block was the best for ODE solver. If the same
threads were set for both the PDE solver and the ODE solver,
then with 256 threads each block was the best for the whole
simulation.

Effects of the number of processors on GPU performance
were also investigated. Results were shown in Figure 6, in
which the𝑥-axis represented the number of blocks and𝑦-axis
the execution time. As it was not possible to directly control
the active number of processors, the test was done indirectly
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Figure 6: Effects of block number on the execution time of the GPU
algorithm.

by controlling the block configuration. In this test, the block
size was fixed with a block consisting of 256 threads, and
the number of blocks increased from one to 960. Our results
suggested an exponential decrease of execution time with the
increase of the block number.

Figure 6 showed a biphasic linear speedup of the GPU
performance with the increase of block number. In the first
phase, the block number was less than 15. In this case, due
to equal allocation of blocks to streammultiprocessors, there
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Figure 7: Effects of block number on the execution time for block
number more than 15.

was just one block running in each stream multiprocessor.
The performance improvement was obvious due to the
increased number of stream multiprocessors.

When the number of blocks was more than 15 and
continued to increase, the number of processors remained the
same, but the performance was still improved dramatically as
shown in Figure 7. The reason was due to the fact that more
thread allocation to a stream processor could be beneficiary
for performance improvement as less threads in a blockmight
cause resource waiting or even thread being blocked. For the
Nvidia K40, the maximum of threads used could be up to
2048, but only 192 processors could be considered in one
stream multiprocessor.

Therefore, one should make the number of threads in
stream multiprocessor to attain the maximal performance of
the algorithm by reasonable arrangement of configuration of
thread and block. Reasonable programming of multithread is
required to increase the number of active threads, which is
proportional to speed performance. However, such speedup
is not simply linearly related to the number of active threads.
Besides, the efficiency ofmemory access is another important
factor for speed performance, which even becomes the bottle-
neck of the technique for some applications with frequently
memory access.

6. Conclusion

It is still a challenge to develop an efficient and economical
parallel computing algorithm for cardiac simulation given
the fact that the models are becoming more and more
sophisticated with detailed electrophysiology and anatomical
structures. In particular, for the aim of patient-specific
personalized cardiac modeling, fast simulation speed as real-
or near real-time simulations is expected. In this study,
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we developed an efficient GPU CUDA algorithm based
on several proposed optimization strategies regarding the
optimal use of data access, data structure, and balanced
allocation of thread. With such optimization strategies, up
to 200-fold speedup was achieved as compared to CPU
implementation. This speedup is dramatically better than
the previous reported speedup of about 70-fold [11, 12]
by using a single GPU. Though an up to 400-fold GPU
speedup was achieved in a previous study [13], that was
using multiple GPUs. Effects of such optimization strategies
on improving multiple GPU algorithm performance warrant
further studies in soon future. In conclusion, we have devel-
oped optimization strategies to improve the performance of
GPU algorithms, which provides a powerful and economical
platform for large-scale cardiac modeling.
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