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Abstract: Objective: To investigate the expression and function of osteogenic genes osterix (OSX) and runt-related 
transcription factor 2 (RUNX2) in the rat periodontal tissues under orthodontic force for the remodeling of the peri-
odontal tissues. Methods: 24 Wistar rats were randomly divided into 4 groups of orthodontic tooth movements for 
1, 3, and 7 days (experimental groups) and control group (without orthodontic force). The expression of RUNX2 and 
OSX in the periodontal tissues was analyzed using real time PCR for mRNA and Western blot analysis for protein. 
The data were also analyzed for involvement of the two genes in signal pathways using bioinformatics tools. Results: 
The mRNA levels of RUNX2 and OSX increased in the periodontal tissues after subjected to the orthodontic force for 
1 to 7 days, with the highest level occurring at day 7. The relative expression levels of RUNX2 and OSX mRNA were 
1.85±0.12, 304±0.06 and 4.16±0.068, and 1.52±0.09, 1.83±0.03 and 2.56±0.06 at day 1, 3 and 7, respectively. 
The results of Western blot analysis were consistent with the mRNA results. Conclusion: In orthodontic tooth move-
ment, the expression of RUNX2 and OSX was upregulated as a result of external stimulation, suggesting that the 
two genes is involved in periodontal tissue remodeling and plays an important role in periodontal tissue remodeling.
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Introduction

Orthodontic treatment applies orthodontic 
force to the tooth through a variety of applianc-
es to treat wrong jaw deformity and can improve 
occlusion to address the esthetic and function-
al problems. However, its longer treatment peri-
od has limited its clinical application. Therefore, 
effective control of tooth movement and short-
ening of the treatment cycle are important clini-
cal issues to be addressed for better treatment 
[1, 2].

Orthodontic tooth movement is a complex bio-
logical and mechanical process involving a vari-
ety of molecules. Orthodontic force exerted on 
the periodontal tissue can activate osteoblast 
and osteoclast, resulting in their resorption and 
deposition in the alveolar bone, and stimulate 
the growth of cells and regeneration of collagen 
[3]. More specifically, the cells can be induced 
by the mechanical force to degenerate collagen 
on the pressed side and enhance bone absorp-

tion. Under the force, cells in the extended peri-
cementum begin to proliferate and bone tissue 
begins to deposit, resulting in bone remodeling 
and tooth movement. Orthodontic tooth move-
ment depends on the rebuilding of alveolar 
bone. The formation of osteoclasts is the pre-
requisite of alveolar bone remodeling. Under 
pressure stimulation, osteoclast generates os- 
teoclastic reaction. It has been shown that the 
tooth movement can be effectively regulated by 
controlling the differentiation and function of 
osteoclast [4]. Therefore, a better understand-
ing of molecular mechanism underlying the 
growth and differentiation of osteoclast is 
important for elucidating the molecular mecha-
nism for orthodontic tooth movement.

Many studies have investigated how mechani-
cal stimuli are transformed into biochemical 
signals to activate signaling pathways to regu-
late the synthesis of relevant proteins [5, 6]. 
Early work shows that the function of cemento-
blast may be altered when stimulated by me- 
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chanical signal [7], and a number of growth fac-
tors have been shown to be involved in the orth-
odontic tooth movement, such as insulin-like 
growth factor, transforming growth factor, fibro-
blast growth factor, bone morphogenetic pro-
tein [8, 9]. Runt-related transcription factor-2 
(RUNX2) is a multifunctional transcriptional fac-
tor and expressed in the whole process of 
osteoblast cell differentiation [10]. Osterix 
(OSX) is zinc finger transcriptional factor and 
also indispensable regulator for the growth and 
differentiation of osteoblast and development 
of bone tissue [11]. However, little is known 
about their expression in periodontal tissues 
during orthodontic tooth movement.

In this study, we used animal models to investi-
gate the expression of the two genes in peri-
odontal tissues and analyzed their involve-
ments in signaling pathways to elucidate their 
possible functions in orthodontic tooth move- 
ment.

Materials and methods

Animal model and orthodontic treatment

Male Wistar rats (SPF, weighing 250±50 g), pur-
chased from Silaike Experimental Animal Co., 
Ltd. (Shanghai, China), were to use for the 
study. The rats were fed with standard pellet 
feed in animal cages (5 per cage) with free 
access to drinking water and feed during the 
experiments. After 7 days of adaptive feeding, 
the rats were randomly divided to establish 
orthodontic tooth movement model as de- 
scribed [12]. Rats were anesthetized by intra-
peritoneal injection of 10% chloral hydrate (3 
mL/kg), and shallow concaves of about 0.5-1.0 
mm deep were cut on the axial plane angle in 
the first molar of left upper jaw and on the side 
of labial surface of the incisors in left and right 
upper jaws using fine emery bur using a low 
speed dental turbine. The shallow concaves 

were used to fasten the orthodontic stainless 
steel ligature wire of 0.25 mm in diameter. One 
end of the wire was tied to the neck of the first 
molar and the other end was attached to nickel 
titanium orthodontic spring (IMD, Inc, Shanghai, 
China) to provide orthodontic force of 40 g. In 
experimental groups, the orthodontic force was 
maintained for 1, 3 and 7 days, while in control, 
the same orthodontic appliance was used with-
out orthodontic force. Six rats were used in 
each treatment. The experimental protocols 
were approved by the Ethics Committee on 
Laboratory Animal Use, Liaocheng People’s 
Hospital.

Periodontal tissue

Rats were sacrificed by cervical dislocation, 
and tissues surrounding the first molar were 
taken, washed in pre-chilled PBS buffer and 
snap-frozen in liquid nitrogen.

Real-time PCR

Total RNA was extracted from the frozen sam-
ples using a RNA extract kit (Qiagen, USA) 
according to the manufacturer’s instructions 
and reversely transcripted into cDNA using a 
reverse transcription kit (Applied Biosystems, 
USA) according to the manufacturer’s instruc-
tions and quantified using real-time PCR using 
gene-specific primers (Table 1) and the 2(-Delta 
Delta C(T)) method [13]. Glyceraldehyde phos-
phate dehydrogenase (GAPDH) gene was used 
as internal reference for the quantification. All 
determinations were repeated three times. The 
RT-PCR reaction contained 5 µL SsoAdvanced 
SYBR Green Super mix (Bio-Rad, USA), 0.3-
0.45 µL each of primers (300-450 nM), 100 ng 
cDNA template and nuclease-free water to fill 
up to a total reaction volume of 10 µL, and per-
formed according to the manufacturer’s proto-
cols (Invitrogen, USA).

Table 1. Primer used in this study
Gene GenBank Accession NO. Primer sequence (5’-3’) Length of expected product (bp)
OSX NM_130458.3 For: GGAAAGGAGGCACAAAGAAGC

Rev: CCCCTTAGGCACTAGGAGC
165

RUNX2 XM_008262992.1 For: GACTGTGGTTACCGTCATGGC
Rev: ACTTGGTTTTTCATAACAGCGGA

172

GAPDH NM002046 For: CCTCAAGATTGTCAGCAAT
Rev: ACCACAGTCCATGCCATCAC

141

OSX: Transcription factor Sp7; RUNX2: Runt-related transcription factor-2; GAPDH, glyceraldehyde phosphate dehydrogenase; 
For, forward; Rev, reverse.
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Western blot analysis

Total protein was extracted using a lysis buffer 
(50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% 
Triton X-100, 0.1% sodium dodecyl sulfate 
(SDS), 1 mM EDTA) supplemented with a prote-
ase inhibitor cocktail kit and a phosphatase 
inhibitor cocktail kit (Hoffman-La Roche Ltd., 
Basel, Switzerland). The protein extracts were 
loaded, size-fractionated by SDS-polyacrylami- 
de gel electrophoresis, and transferred to  
polyvinylidene difluoride membranes (Bio-Rad 
Laboratories Inc., Hercules, CA, USA). After 
blocking, the membranes were incubated with 
the primary monoclonal antibodies against 
RUNX2 and OSX (Santa Cruz Biotechnology 
Inc., Dallas, TX, USA) and rabbit anti-β-actin 
(Proteintech Group Inc., Chicago, IL, USA) at 
4°C overnight. Protein expression was deter-
mined using horseradish peroxidase-conjugat-
ed anti-mouse or anti-rabbit secondary anti-
bodies, followed by detection using enhanced 
chemiluminescence (EMD Millipore). Band in- 
tensity was visualized using a JS-1035 image 
analysis scanning system (Shanghai Peiqing 
Science & Technology, Co., Ltd., Shanghai, Ch- 
ina), and quantitatively analyzed using Quantity 
one v4.62.

Bioinformatics analysis

Online analysis tools STRING9.05 (http://string-
db.org) and KEGG pathway database (http://
www.genome.jp) were used to identify the sig-
naling pathways that Runx2 and OSX partici-
pate and proteins they interact with.

Statistical analysis

Experimental data were analyzed using SP- 
SS16.0 statistical software for statistical analy-
sis. The measurement data were expressed 
mean ± SD. Means between the two groups 
were compared using Student-t test and value 
was considered as significant or highly signifi-
cant if P < 0.05, or < 0.01.

Results

OSX and RUNX2 expression at mRNA level

Expression of the OSX and RUNX2 genes were 
measured using RT-PCR in the periodontal tis-
sues after different days of orthodontic move-
ment treatment. The results showed that com-
pared with rats applied no orthodontic force 
(control), the expression of the two genes were 
up-regulated at all sampling times (day 1, 3 and 
7) and increased with increasing treatment 
time with the highest levels occurring on day 7 
(Figure 1). One other hand, the expression of 
the two genes did not change in the control 
group over the experimental period (P > 0.05) 
(Figure 1). As a result, the difference in the 
expression levels between the experimental 
and control groups increased over the treat-
ment period (Figure 1). The relative quanti- 
ties of RUNX2 and OSX mRNA in the experi-
ment groups were 1.85±0.12, 3.04±0.06 and 
4.16±0.068, and 1.52±0.09, 1.83±0.03 and 
2.56±0.06, at day 1, 3 and 7 following the orth-
odontic treatment, respectively.

Figure 1. Relative mRNA levels of the RUNX2 (A) and OSX (B) genes determined by RT-PCR. Control, rats not applied 
with orthodontic force; treatment, rats applied with orthodontic force.
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OSX and RUNX2 expression at protein level

We then analyzed the expression of the two 
genes at protein level in the periodontal tissue 
using Western blot analysis. The blot and quan-
titative analysis results showed that the expres-
sion of the two genes at protein level increased 
with increasing treatment times and reached 

bone resorption and deposition, and causing 
the remodeling of periodontal tissues [1, 2, 14]. 
This process requires the participation of 
osteoclasts and cementoblast, the latter can 
not only participate in the repair of root through 
the synthesis of new cementum, but also regu-
late osteoclast differentiation and absorption 
by expressing regulatory proteins [3, 15-19].

Figure 2. Expression of RUNX2 and OSX at protein level. A. Western blot; B. Gray value analysis based on trace track-
ing using software Quantity one v4.62.

Figure 3. Interaction of RUNX2 and OSX with other proteins.

the highest levels at day 7 (Figure 
2A and 2B).

Bioinformatics analysis

Search with STRING9.05 was 
made for Runx2 and OSX. The 
results showed that a number of 
proteins are interacting with Ru- 
nx2 and OSX as network signal 
molecules, including WW domain 
containing transcription regulator 
1(Wwtr1); SRY box containing 
gene 9 (Sox9); Smad family mem-
ber 3 (Smad3); runt related tran-
scription factor 3 (RUNX3); homeo-
box msh-like 2 (Msx2) (Figure 3). 
Among them Sox9, Msx2 and 
Run3 are related to the formation 
of osteoblasts. KEGG Pathway 
database showed that RUNX2 and 
OSX are involved in a number of 
pathways that regulate the differ-
entiation of osteoblast.

Discussion

Mechanical force in orthodontic 
tooth movement has been shown 
to bring a number of bone cell bio-
logical activities through signal 
transduction, resulting in alveolar 
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Runx2 is osteoblast specific transcriptional fac-
tor that activates and initiates the differentia-
tion of bone marrow mesenchymal cells into 
osteoblasts and regulate the maturation of 
osteoblasts; it also regulates the expression 
osteoprotegerin [20, 21]. OSX is a zinc finger 
transcriptional factor and an important regula-
tory factor in the growth and differentiation of 
osteoblasts and the development of bone tis-
sue. In this study, we used orthodontic tooth 
movement (OTM) animal model [22] to study 
the expression of the two genes for their role in 
periodontal tissue rebuilding process.

The experimental results showed that the orth-
odontic force upregulated the expression of 
Runx2 and OSX at mRNA and protein level over 
the 7 day experiment period compared with the 
control group; and the upregulation increased 
with increase in experimental time and reached 
the highest at the end of study. On other hand, 
there was no change in RUNX2 and OSX expres-
sion in rats not subjected to the orthodontic 
force treatment. These findings suggest that 
RUNX2 and OSX may be involved in the early 
response of bone cells to mechanical signal.

Fibroblasts are the pluripotent cells in peri-
odontal tissue, and can differentiate into osteo-
blast like cells by expressing proteins that con-
fer osteoblast phenotype and functions under 
external mechanical forces. In this process, 
osteoblast specific transcriptional factor plays 
a central role [23]. Biologically, the upregula-
tion of RUNX2 and OSX expression by the 
mechanical stimulation may activate and initi-
ate the differentiation of the bone marrow mes-
enchymal stem cells into bone cells and regu-
late the maturation of bone cells. Furthermore, 
RUNX2 may regulate the expression of osteo-
calcin to promote the maturation of osteoblast. 
Thus, RUNX2 is likely playing key roles in the 
regulation of bone cell differentiation.

Analysis of interaction of RUNX2 with other pro-
teins in signaling pathways showed that they 
interact directly or indirectly with a number of 
molecules involved in bone remodeling, such 
as Run3, Sox9 and Msx2, forming a signaling 
network (Figure 3). In the osteoblast differenti-
ation and bone formation, RUNX2 as a marker 
for osteoblast and transcriptional factor with 
the runt domain can bind to the core regions in 
a number of enhancers and promoters. For 
example, RUNX2 is shown to interact with Sox9 

to play an important role in cartilage differenti-
ation [24]. Msx2 also plays regulatory role in 
the osteoblast differentiation. For example, 
Shirakabe et al showed that it acts directly with 
RUNX2 in an immunoprecipitation assay [25]. It 
would be our next topic to elucidate how RUNX2 
and OSX participate in the regulation of the 
complex networks.
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