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Abstract

The extent that biotic interactions and dispersal influence species ranges and diversity patterns 

across scales remains an open question. Answering this question requires framing an analysis on 

the frontier between species distribution modeling (SDM), which ignores biotic interactions and 

dispersal limitation, and community ecology, which provides specific predictions on community 

and meta-community structure and resulting diversity patterns such as species richness and 

functional diversity. Using both empirical and simulated datasets, we tested whether predicted 

occurrences from fine-resolution SDMs provide good estimates of community structure and 

diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250m) 

to that typical of a regional biodiversity study (5km). For both datasets, we show that the imprint 

of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, 

which demonstrates the value of SDMs for tracking the imprint of community assembly processes 

across scales.
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Introduction

Understanding the factors controlling the spatial distribution of species has long fascinated 

ecologists (e.g. de Candolle 1855; Chase & Leibold 2003). At the forefront of this research, 

species distribution models (SDMs) are the pivotal tools for predicting and understanding 

species distributions by relating species occurrence information to environmental data 

(Guisan & Thuiller 2005). SDMs have benefited from the development of statistical tools 

together with the ever-increasing availability of species occurrence and environmental data 

(Ahmed et al. 2015). The focus on the relationship between species distributions and the 

environment in SDMs has been justified by the long-held belief that the environmental niche 
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of species is the major driver of species’ distributions (Soberon & Nakamura 2009; Soberon 

2010). These models do not explicitly account for other potential processes such as dispersal 

limitation and biotic interactions (Thuiller et al. 2013), which are the main arguments 

against their use in ecology and, more importantly, against their use to predict species 

assemblages under novel conditions (e.g. Davis et al. 1998; Pearson & Dawson 2003). 

Recently joint species distribution modeling has been proposed as a means of inferring 

residual correlation between species (Pollock et al. 2014) and improving estimates of 

species distributions by accounting for other species (Clark et al. 2014; Pollock et al. 2014). 

Although some biotic interactions are accounted for in joint species distribution models, 

they are difficult to isolate from all the other reasons species presences might be correlated 

(e.g. missing predictor variables). We also do not have a solid understanding of when such 

complex models are warranted.

In general, not including biotic interactions, for example, could lead to obvious caveats in 

the estimation of a species’ niche when a better competitor excludes it from an otherwise 

suitable environmental zone (Araújo & Peterson 2012). The underlying, and largely 

unanswered question, being to what extent dispersal limitation and biotic interactions 

prevent a correct estimation of species niches and prevent the use of SDM to correctly infer 

community structure and species assemblages (Figure S1, Pottier et al. 2013).

Interestingly, this latter question is intimately linked to community ecology, in which 

communities are thought to assemble through a series of environmental, dispersal and biotic 

interaction filters (Lortie et al. 2004). These filtering processes select the species from the 

regional pool that have the suitable physiological traits to maintain viable populations in the 

local environment, that have the dispersal traits to reach the suitable sites, and the fitness and 

competitive traits to handle biotic interactions (Figure S1). These processes are thought to be 

important at different spatial scales ranging from biotic interactions (e.g. competition) acting 

at a more local scale, dispersal acting at an intermediate scale, to environment and historical 

processes (e.g. speciation) acting at a regional scale (Weiher & Keddy 1999). In theory, the 

same hierarchical filters that control community assembly are likely to be the driving forces 

of the distribution of species’ populations and of the spatial variation in species abundances 

(Soberon 2010; Boulangeat et al. 2012). For instance, using a comprehensive framework for 

investigating mechanisms underlying species distributions and their abundances, Boulangeat 

et al. (2012) concluded that community-scale effects of biotic interactions and local 

dispersal on plant species distribution in the French Alps were strong predictors of species 

abundances, while environmental factors and long distance dispersal more likely explained 

presence-absence distribution of species. Dispersal was deemed important for explaining 

species’ occurrence since plants are generally dispersal-limited in those systems. 

Additionally, with a simple Lotka-Voltera model with two species, Godsoe et al. (2015) 

recently argued that large-scale phenomena such as priority effects promoted regional 

coexistence and hence reduced the influence of biotic interactions on species distributions at 

large spatial scales.

Combining the bottom-up approach from community ecology with its focus on community 

assembly and the top-down approach from species distribution modeling with its focus on 

species’ ranges might, thus, help us to better understand the scale dependency of the 
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different processes and the resulting diversity patterns (Guisan & Rahbek 2011). At the 

meta-community scale, a widely accepted idea is that temporal and spatial storage effects 

allow regional co-existence of species that ‘should’, in theory, exclude each other in 

homogeneous environments (Chesson 2000). If this holds true, a given species might still 

occupy a large part of its suitable environmental space even if dispersal limitations prevent it 

from occupying all of it. In other words, a species distribution model (SDM) built with both 

local occurrence data and fine resolution environmental layers at regional scale, should be 

able to give a sensible estimation of the niche of the species (Soberon 2010). At low 

resolution, the match between this estimated niche and the observed distribution of species 

should match well while, at increasingly finer resolution, more and more gaps in this match 

will emerge because biotic interactions lead either to local competitive exclusion or to 

reduced abundances and thus reduced detectability of the species. The resolution at which 

this switch from a good to a bad match should be expected depends on the mechanisms 

supporting regional coexistence (Godsoe et al. 2015). For example, under a spatial storage 

effect this depends on the spatial distribution of the environmental variables driving 

differential responses of species and on species dispersal capacities (Amarasekare 2003).

If SDMs are built for all species of the region and overlaid (i.e. stacked-SDMs), they should 

be able to give some insights on the meta-community structure and predict diversity (e.g. 

species richness, Parviainen et al. 2009; Pottier et al. 2013). At a local scale, fine spatial 

resolution, stacked-SDMs should over-predict species richness if biotic interactions and 

dispersal limitations are important since stacked-SDMs will predict the potential species 

richness from environmental suitability and will not be able to disentangle which species is 

locally excluded or not, or which did not manage to invade the assemblage (D’Amen et al. 

2015). The departure of the modeled species richness from the truth could be seen as an 

indication that underlying mechanisms vary along environmental gradients and/or in space 

(Götzenberger et al. 2012; Pottier et al. 2013). However, when model predictions are 

aggregated sequentially to coarser resolution, they should get closer to the true distribution 

of a species since dynamics are averaged over several populations. Taking this reasoning 

further, we argue that estimated species richness from stacked-SDMs should become 

increasingly better at aggregated spatial resolution. The sharper the improvement with the 

aggregation scheme, the less pervasive the effects of biotic interactions and dispersal 

limitations on diversity patterns and meta-community structure are likely to be at scales 

typically used in biodiversity studies.

Under this reasoning, not only species richness, but also other facets of diversity should 

respond to spatial aggregation. Indeed, local exclusion between competing species can be 

analyzed through the prism of limiting similarity in terms of resource acquisition 

(HilleRisLambers et al. 2012). Two species with the same environmental niche and the same 

traits are not supposed to co-exist, only one should persist in a given site. In other words, 

species identity might be more difficult to predict than traits. If our stacked-SDMs are not 

able to correctly predict species richness because of local exclusion, they might better 

predict the correct trait diversity. With aggregation, we might expect that trait diversity is 

correctly predicted faster than species richness. The same holds for phylogenetic diversity if 

we assume that phylogeny can be informative about niche differences (Mouquet et al. 2012). 
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However, since phylogenetic diversity does not necessarily reflect traits linked to 

competition or dispersal, stacked-SDMs might predict phylogenetic diversity less well than 

trait diversity, but better than species richness if phylogeny is somewhat of a surrogate for 

traits (Münkemüller et al. 2015).

More importantly, the resolution at which stacked-SDMs are able to retrieve diversity 

patterns should give us important insights on the pervasiveness of biotic interactions and 

dispersal limitations (and other underlying processes) compared to the environmental and 

habitat effects, and guidance on which spatial scale we can safely use SDMs to predict 

different types of diversity.

When testing this overall hypothetical thinking with empirical data we are facing two related 

challenges: (1) Local measurement errors in either occurrence data or environmental 

variables may lead to erroneous local SDM predictions, while, with spatial aggregation, 

several data are aggregated and chances are that data errors average out; (2) the aggregation 

of communities into larger units leads to homogenization, fewer outliers and lower variance. 

Thus, an observed fit between measured and predicted diversity patterns with increasing 

aggregation cannot unequivocally be attributed to dispersal and biotic interaction effects. 

One way to meet these challenges is to accompany data from field observations with those 

simulated with process-based models where observation errors can be ruled out and 

potential homogenization effects can be estimated with data from randomly assembled 

communities.

In this paper, we tested our hypothetical reasoning using both empirical and simulated data. 

We asked 1) to what extent stacked-SDMs built at fine resolution are able to predict 

community structure and diversity patterns; 2) and, if they do, at which spatial scale the 

imprints of dynamics processes (e.g. biotic interactions and dispersal) disappear; 3) whether 

functional diversity is more easily predicted than phylogenetic diversity and species richness 

at increasing spatial scale; and 4) whether stacked-SDMs are able to give insights about the 

pervasiveness of biotic interactions and dispersal across scales.

Both the empirical and simulated data confirmed our hypotheses by showing that stacked-

SDMs can reveal the scale-dependency of co-existence mechanisms and that the imprints of 

biotic interactions and dispersal vanish relatively rapidly when defining communities at 

incremental resolution. This result has important consequences not only for the use of SDMs 

to derive biodiversity patterns, but also on their specific use for testing co-existence 

mechanisms.

Materials and Methods

Empirical datasets

To test whether the distribution of species within a region can help reveal the scale-

dependency of processes that generate biodiversity patterns, we selected a published dataset 

for which all species within a region were modeled using fine resolution biotic and abiotic 

data (Figure 1). This dataset published in Thuiller et al. (2014), consisted of an ensemble of 

species distribution models built for each of the 2,755 plant species that occur in the French 
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Alps. Models were calibrated at 250m resolution using precisely located presence and 

absence data (~250m precision) together with fine resolution climatic, land cover and soil 

data. Models were found to be very accurate using a combination of evaluation metrics 

estimated on held-out datasets (Thuiller et al. 2014). Predicted probabilities of occurrence at 

250m resolutions were converted into binary presence-absence information using a 

threshold that maximized the True Skill Statistics (Thuiller et al. 2014).

Trait information was chosen to represent the components of the leaf-height-seed (LHS) 

syndrome of plant traits (Westoby 1998): seed mass relates to dispersal distance and 

establishment success, height is considered as a surrogate of species’ ability to intercept 

light, while SLA strongly relates to species relative growth rate (Westoby 1998). In addition, 

life form was added to reflect survival strategies and longevity. Phylogenetic information 

was available as a genus-level phylogeny resolved randomly at the species level by applying 

a birth-death (Yule) bifurcation process within each genus (for more information on the 

phylogenetic inference, see Thuiller et al. 2014).

Presence-absence predictions from the ensemble model were available for each of the 

species at a 250m resolution. We then aggregated those presence-absence data obtained 

from the ensemble models at 500, 1000, 1750, 2500, and 5000m resolution (from two to 

twenty fold aggregation). Then, for each aggregated spatial resolution that defined a given 

community, we stacked the predictions to derive a set of diversity indices at the pixel level.

Simulation experiment

The SDM-based datasets allowed us to support our hypotheses based on diversity estimates 

across an entire region. However, the true mechanisms driving the distribution of species 

and community structure were unknown, and results only provided evidence for potential 

causal links. Thus, we paired the empirical dataset with virtual data for which the 

mechanisms of assembly rules and species niches were explicitly modeled and the resulting 

distribution of species emerges from these defined processes (Figure 1). These simulations 

also allowed us to test the effects of observation errors and homogenization on our results 

and helped interpreting the results of the case study.

The simulation model used to generate these virtual data is a cellular automaton that 

simulates stochastic demographic dynamics of individuals dying, reproducing, dispersing 

and competing for space on a landscape grid of 300×300 grid cells with one sessile 

individual per cell (see, Muünkemuüller et al. 2012). Across this grid, environmental 

conditions were spatially auto-correlated to create realistic contrasted landscapes. Each 

species of the species pool was assigned a trait value that represents species’ environmental 

preferences (species differ in their niche optimum but have equal niche width, maximal 

relative performance and fecundity). Successful colonization depended on this trait. For 

example, a colonizing species had a greater chance of displacing a resident species when 

many individuals reached that cell and the species’ environmental preference closely 

matches environmental conditions of the cell. We chose a species pool consisting of 50 

species with equal abilities to disperse, but environmental preferences that varied between 

species. Species’ environmental preferences were distributed equally across the 

environmental niche space. For initialization, species were randomly distributed in the 
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landscape, then demographic dynamics drove changes in species’ distribution. After 5000 

time-steps, we sampled our virtual data from the grids of simulated species distributions. We 

uniformly placed 1764 ‘sampling sites’ of 5×5 grid cells on each grid with a 2-grid cell 

buffer separating ‘sample sites’, and recorded species presence and absence and averaged 

environmental conditions within these sampling sites. The whole simulation was repeated 10 

times yielding a dataset structurally equivalent to the empirical dataset. As a proof of 

concept and for testing for potential effects of homogenization through aggregation, we 

generated a second simulated dataset in which species assembly was completely random.

We analyzed the two sets of virtual data (species sorting and random assembly) in the exact 

same way as the empirical data from the Alpine plant case study. First, we modeled the 

distributions of each of the simulated species using a simple logistic model against the 

environmental gradient. Second, the built SDMs were then used to predict the probability of 

presence of each species within the sampling sites. Probabilities of presence were then 

converted into presence and absence data using a threshold that maximized the True Skill 

Statistics. Like in the empirical dataset, we obtained a matrix of predicted presence-absence 

data for all sampling sites. Finally, we aggregated these predicted presence-absence data 

with spatial aggregation coefficients (2 to 20-fold) equivalent to those used for the case 

study and derived a set of diversity indices at each spatial resolution (α-diversities).

Diversity decomposition

To compute diversity metrics incorporating species differences (such as phylogenetic 

divergence of functional dissimilarity) we used the same metric used in Thuiller et al. (2014) 

that relied on Leinster and Cobbold’s (2012) framework that builds on a generalization of 

Hill’s numbers (Hill 1973). We applied this framework to estimate α-diversity for 

taxonomic, phylogenetic and functional diversity. α-diversity was estimated as the local 

diversity within each pixel for each diversity metric (following eqn. 1). The general formula 

calculates the diversity D for a relative abundance vector p= {pi} of the S species present in 

the pixel, and a matrix Z containing the similarities Zij between species i and j:

(1)

The α-diversity of each pixel was calculated from the vector of species presence-absence per 

pixel. Z, the similarity matrix, was calculated as one minus the cophenetic distance between 

species for phylogenetic diversity and the Gower distance for the four selected traits (SLA, 

height, seed mass and life form) for trait diversity, divided by the maximum respective 

distance to have Z bounded by 0 and 1.

α-diversity was estimated for both the simulation experiments and the case study and for all 

different grain sizes, and for taxonomic, functional and phylogenetic diversity.

Analyses

For both the empirical (Alpine plants) and simulated datasets (species sorting and random 

assembly), we first tested the ability of stacked SDMs to retrieve the structure of the 
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communities at different spatial resolution. For that, we built on the True Skill Statistic 

(TSS, Allouche et al. 2006) that is usually calculated for each species by comparing 

observed and predicted ranges. Here, we used it differently. For a given pixel at a given 

resolution, we calculated an overall TSS for all species together. The misclassification 

matrix was calculated for each pixel, and filled with the number of species correctly 

predicted (as a presence or absence) and incorrectly predicted. We calculated the TSS metric 

for the empirical dataset by comparing the predicted dataset to the observed, while for the 

simulated dataset, we compared the simulated data to the predicted one. This analysis was 

carried out for each of the spatial resolution.

Second, for the empirical dataset, we also investigated whether the TSS between observed 

community structure and that predicted from stacked-SDMs changed with elevation at the 

different spatial resolutions. This latter analysis was carried out to test the hypothesis that in 

stressful and harsh conditions (high elevation), species distribution and community structure 

are strongly driven by abiotic components rather than biotic interactions (Mitchell et al. 

2009). In this case, stacked-SDMs are expected to predict biodiversity patterns perform 

relatively well, compared to low elevation and more productive sites where competitive 

exclusion might lead to erroneous predictions from stacked-SDMs (Pottier et al. 2013). .

Finally, for both the empirical and simulated datasets, we compared the predictions of 

community patterns from stacked-SDMs to the observed/simulated community ones at the 

different spatial resolution using spearman rank correlation for the three diversity facets 

(taxonomic, functional and phylogenetic).

Results

Empirical dataset

The true skill statistic (TSS) that represents the adequacy of the stacked SDMs to correctly 

represent species presence and absence per pixel was, on average, very good at all 

resolutions. However, the average TSS decreased slightly with aggregation contrary to our 

expectation that TSS would increase (Figure 2). However, the range of variation of TSS 

between pixels was remarkably wide at the finest resolution with TSS values up to −0.6, 

which means that it was possible to almost predict the opposite communities than observed. 

Conversely, although the mean TSS was slightly lower at the lowest resolution (20-fold 

aggregation), the range of variation of TSS was quite low (Figure 2). In other words, the 

species structure was generally well predicted (min TSS greater than 0.5). When analyzing 

how TSS behaved with elevation (Figure S2), the match between observed and predicted 

community structure generally increased with the mean elevation of the pixel, which was the 

case for all resolutions considered (i.e. the definition of a community). The range of 

variation of TSS was also generally wider at low elevation than at high elevation. At high 

elevation, in stressful conditions, the community structure was, thus, better predicted than at 

low elevation.

In general, the different facets of diversity were relatively well-predicted by the stacked-

SDMs, and the quality of the prediction increased markedly with aggregation, and, thus, the 

larger communities (Figure 3, left column). The shape of the improvement was, however, 
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different between the three facets. While the correlation between observed and predicted 

species richness at the original fine resolution was close to 0.55, it was at 0.9 for functional 

α-diversity, and in between for phylogenetic diversity (rho=0.75). This correlation reached a 

plateau close to 1 at 4-fold aggregation level (1000m resolution), while species richness only 

reached a plateau at 10-fold aggregation level (2500m resolution).

Simulation experiments

As expected, SDMs from the simulated experiment were much better at predicting species 

distributions (and diversity measures) generated by a species-sorting than by a random 

assembly process. Under a process of species sorting, both functional and phylogenetic α-

diversity were initially relatively well-predicted at the finest resolution (rho=0.79 and 0.64 

for functional and phylogenetic diversity, respectively), and the correlation was nearly 1 for 

functional diversity after a 4-fold aggregation (Figure 3). Species richness was predicted 

moderately well at the original fine resolution (rho=0.6) and increased more sharply than the 

other two diversity facets with aggregation. For random assembly, species richness was only 

retrieved after a 10- to 20-fold aggregation, mostly from sampling effects. Functional and 

phylogenetic diversity were never correctly predicted at any spatial resolution. Overall, 

results from the empirical dataset closely matched the simulated data under a species-sorting 

assembly process and an auto-correlated environmental gradient, but differed markedly with 

the simulations under random assembly.

Discussion

In this paper, we tackled the challenge of testing whether modeled ecological niches at fine 

resolution are able to correctly predict community structure and diversity patterns. We 

analyzed this at incremental scales and by using different biodiversity facets that are 

supposed to provide complementary aspects of the structure of assemblages and community 

assembly rules (Mouquet et al. 2012; Cadotte et al. 2013; Chalmandrier et al. 2015). The 

key results from our study are that, indeed, fine resolution stacked-SDMs predict community 

structure and community diversity patterns very well, that the fit between observed and 

predicted biodiversity patterns increases sharply with aggregated resolution and that, in 

concordance with theoretical expectations, this increase depends on the facet of diversity 

considered. These results suggest that the imprint of competitive exclusion and dispersal 

quickly vanishes from diversity patterns and community structure at broader resolution. 

Finally, although they only focused on pairwise interactions and climate, we corroborate 

findings by Araújo & Rozenfeld (2014), from which they conclude that the spatial signature 

of competition is unlikely to be pervasive beyond local and regional scales. We confirm 

these results from the French Alps case study with those from the simulation case study 

using an auto-correlated landscape. Specifically, these simulations suggest that neither 

observation errors nor homogenization effects were driving our results because there was no 

observation error and results could not be produced for data that were simulated without 

competition (i.e. there was a much shallower increase of the fit between observed and 

predicted biodiversity patterns with aggregated resolution under random assembly). Results 

from simulations with a continuous gradient remain similar, although community structure 

was retrieved more slowly with decreasing spatial resolution (Figure S3). This is in 
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accordance with our expectation since the French Alps are highly heterogeneous with 

contrasted auto-correlated gradients. Thus, the combined analysis of field and simulated data 

strongly suggests an overall dominant environmental filter in combination with spatial and 

temporal storage effects are the most likely candidates driving metacommunity assembly. 

An alternative explanation for such a result might also be that the environmental factors co-

vary with biotic processes. If such covariance exists, then it may be captured by SDM 

models and will ultimately mask the effects of biotic interactions at all scales. Although such 

covariance might indeed exit in nature in very simplistic systems, this is however unlikely to 

be the case in highly heterogeneous landscapes such like the French Alps when considering 

that our thousands of plant species might interact for various aspects such like light, soil 

resources or mycorrhiza that are not necessarily related to environmental drivers.

Interestingly, for both case studies, functional diversity is the best-predicted diversity pattern 

from stacked SDMs, even at the finest resolution where the effects of local interactions are 

expected to be the strongest. Functional diversity is directly linked to the response of species 

to the environment. The four plant functional traits used here, especially height and specific 

leaf area, are traits known to be tightly-linked to temperature and humidity (Westoby 1998; 

de Bello et al. 2013). This is especially true in harsh environment such like the French Alps 

at both the intra- and inter-specific level (Albert et al. 2010). The decrease of plant height 

with increasing elevation is a well-known physiological response of plant to frost damage 

and extreme wind (Körner 1999). The same applies to specific leaf area (SLA) known to 

decrease with elevation (i.e. temperature), associated with stress tolerance and an efficient 

strategy for nutrient conservation (low specific leaf area and high leaf dry matter content, 

Choler 2005). In other words, functional diversity is usually better predicted than taxonomic 

diversity. This is because the environment first stratifies the species with the correct traits, 

something that we could call functional trait sorting (de Bello et al. 2012), before species 

interactions result in the exclusion of some of these species. The correct distribution of traits 

is relatively easily predicted by stacked SDMs and becomes very well predicted already at 

relatively small grain sizes, while the number of species fulfilling these trait requirements 

and being able to co-exist is more difficult to predict. The same holds for the simulated data 

since the trait is directly linked to the response of species to the environment. Competition 

for space, limiting similarity, and founder effects are likely to act locally, and explain the 

poor prediction of species richness at fine resolution. Interestingly, species richness requires 

more than a 4-fold aggregation (1000-1750m resolution) to achieve the same predictive 

accuracy as functional diversity at a 250m resolution (confirmed by the TSS analyses). This 

likely means that local competition, dispersal limitation, and stochastic events allow co-

existence of ecologically suitable and similar niches at intermediate scales.

The most striking result is that the simulation experiments under a species-sorting process 

yielded a nearly identical pattern with even the same scaling factor. We can obviously not 

conclude that there is a universal scaling law to retrieve biodiversity patterns from modeled 

ecological niches at fine resolution, but this is a noticeable result that asks to be confirmed 

or tested in other studies. Moreover, simulation experiments under random assembly give 

very different results. As aggregation of random communities leads to very strong 

homogenization (i.e. neighboring communities are dissimilar), this strongly suggests that the 
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observed sharp increase of the fit between observed and predicted biodiversity patterns is 

due to ecological processes and not due to homogenization effects or measurement errors.

Results are very similar when it comes to phylogenetic diversity. Interestingly, phylogenetic 

diversity is better predicted than species richness across scale but always lags behind 

functional diversity for both the empirical and simulated datasets. This means that although 

the distribution of ecological niches of the entire region represents the functional adaptation 

of species to environment well (i.e. functional diversity is well predicted even at fine 

resolution), this is slightly less true for phylogenetic diversity. In other words, phylogenetic 

diversity probably represents some, but not all functional aspects. A similar result was 

recently found for plant grasslands in an Alpine watershed, where it was shown that 

different environments along gradients filtered different species according to their functional 

traits, while the same competitive lineages dominated communities across the gradients 

(Chalmandrier et al. 2015).

Our results corroborate recent findings by Pottier et al. (2013). They showed that species 

richness (in absolute values) was more strongly over-predicted at low elevation than at high 

elevation where it was slightly under-estimated. They argued that important environmental 

filters were missing to regulate predicted species richness at high elevation from stacked-

SDMs, while non-equilibrium situations with climate (i.e. local exclusion) might explain the 

under-prediction at low elevation. Our empirical case study with a larger extent and our 

simulated data allow us to go a step further. The fact that functional and phylogenetic 

diversity are always better predicted than species richness along elevation (Figure S4) 

supports the idea that competitive exclusion is much stronger at low elevation—the right 

traits are predicted, the right lineages, but not the right number of species. Competitive 

exclusion thus removes species with similar traits but with lower fitness differences at low 

elevation (Kraft & Ackerly 2010). At high elevation, when conditions get more extreme, the 

pool of species having suitable traits and environmental tolerances is much lower, which, 

limits species exclusion and produces better predictions from stacked-SDMs.

Conclusion

In this paper, we asked whether modeled distribution of species and their aggregation at 

different spatial resolutions could help reveal when community assembly processes might 

impact biodiversity patterns. The answer is yes. This is especially true when empirical 

results are compared to simulated datasets, and when ecological niche modeling is carried 

out at a very fine resolution using high-quality biotic and abiotic data. More importantly, the 

joint analysis of taxonomic, functional and phylogenetic diversity at incremental spatial 

resolutions provides a unique perspective on these potential community assembly processes. 

We suggest that the imprint of biotic interactions and dispersal on biodiversity distribution is 

relatively limited in scale, diminishes relatively rapidly, and has nearly vanished at 

resolutions typical of biodiversity analyses. Although this result might only hold for 

spatially heterogeneous systems that are not dominated by a single superior competitor, it 

confirms that adequate and well-designed species distribution models (SDMs), calibrated at 

fine resolution, are able to make inference and predictions on other facets of diversity such 

as functional and phylogenetic diversities.
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Figure 1. 
Workflow of the analyses.
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Figure 2. 
The true skill statistics (TSS) as a function of the aggregated resolution for modeled and 

observed distributions in the case study. TSS was calculated for each pixel by comparing 

correctly and incorrectly predicted species. To be able to compute the TSS, all four values of 

the misclassification table were needed, which means it could not be calculated for pixels in 

which we only had occurrence data and thus no values for false positive and true negative 

components. Percentages of pixels with TSS values are given for each aggregated 

resolution, and mean values are in red.
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Figure 3. 
Spearman rank correlation (rho) between observed and predicted diversity metrics estimated 

from stacked-SDM for the empirical datasets (first column) and the simulated datasets 

through an auto-correlated gradient under species-sorting assembly (second column) and 

under random assembly (last column) for the different aggregated spatial resolution.
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