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Characterization of tumors at the molecular level has im-
proved our knowledge of cancer causation and progres-
sion. Proteomic analysis of their signaling pathways
promises to enhance our understanding of cancer aber-
rations at the functional level, but this requires accurate
and robust tools. Here, we develop a state of the art
quantitative mass spectrometric pipeline to characterize
formalin-fixed paraffin-embedded tissues of patients with
closely related subtypes of diffuse large B-cell ymphoma.
We combined a super-SILAC approach with label-free
quantification (hybrid LFQ) to address situations where
the protein is absent in the super-SILAC standard but
present in the patient samples. Shotgun proteomic anal-
ysis on a quadrupole Orbitrap quantified almost 9,000
tumor proteins in 20 patients. The quantitative accuracy of
our approach allowed the segregation of diffuse large
B-cell lymphoma patients according to their cell of origin
using both their global protein expression patterns and
the 55-protein signature obtained previously from patient-
derived cell lines (Deeb, S. J., D’Souza, R. C., Cox, J.,
Schmidt-Supprian, M., and Mann, M. (2012) Mol. Cell. Pro-
teomics 11, 77-89). Expression levels of individual segre-
gation-driving proteins as well as categories such as ex-
tracellular matrix proteins behaved consistently with
known trends between the subtypes. We used machine
learning (support vector machines) to extract candidate
proteins with the highest segregating power. A panel of
four proteins (PALD1, MME, TNFAIP8, and TBC1D4) is
predicted to classify patients with low error rates. Highly
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ranked proteins from the support vector analysis revealed
differential expression of core signaling molecules be-
tween the subtypes, elucidating aspects of their
pathobiology. Molecular & Cellular Proteomics 14:
10.1074/mcp.M115.050245, 2947-2960, 2015.

Clinical differences between human cancer subtypes have
long been recognized by oncologists. However, comprehen-
sive analyses of the underlying molecular differences have
only become possible with the recent advent of powerful
oligonucleotide-based technologies that allow global profiling
of individual tumors (1). The potential benefits of improved
molecular characterization are enormous (2). In fact, the mo-
lecular understanding of tumorigenesis and cancer progres-
sion is promising to enable a shift from nonspecific cytotoxic
drugs to drugs that are much more targeted toward cancer
cells. An important step to achieve targeted therapies is to
reliably identify the group of patients that are likely to benefit
from a specific drug or treatment strategy. This ability to
group cancer patients into clinically meaningful subtypes is a
challenging task that requires well designed and robust
approaches.

More than a decade ago, gene expression profiling discov-
ered two subtypes of diffuse large B-cell lymphoma (DLBCL)"
that are morphologically indistinguishable (3). The subtyping
was based on gene expression signatures that correspond to
stages of B-cell development from which the tumor is derived.
The germinal center B-cell-like DLBCL (GCB-DLBCL) tran-
scriptome was dominated by genes characteristic of germinal
center B-cells, whereas the transcriptome of activated B-cell-
like DLBCL (ABC-DLBCL) more closely resembled activated
B-cells in vitro (3). Importantly, the discovered subtypes de-
fined prognostic categories (3, 4), opening up the possibility of

" The abbreviations used are: DLBCL, diffuse large B-cell lym-
phoma; ABC, activated B-cell-like; CLL, chronic lymphocytic leuke-
mia; COO, cell-of-origin; FFPE, formalin-fixed paraffin-embedded;
GCB, germinal center B-cell-like; PCA, principal component analysis;
SILAC, stable isotope labeling with amino acids in cell culture; SVM,
support vector machine; LFQ, label-free quantification; FASP, filter-
aided sample preparation; CM, cancer module; FDR, false discovery
rate; ECM, extracellular matrix; SDS, sodium dodecyl sulfate.
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differential treatment (5). Nonetheless, this cell-of-origin
(COO) classification did not fully reflect the differences in
overall survival after chemotherapy among patients. Fol-
low-up studies (also using gene expression profiling) showed
that a multivariate model constructed from three gene expres-
sion signatures (germinal center B-cell, stromal-1, and stro-
mal-2) was a better predictor of survival (6). Stromal-1 re-
flected extracellular matrix deposition, and stromal-2, which
had an unfavorable prognosis, reflected tumor blood vessel
density.

In addition to DLBCLs, gene expression profiling also suc-
cessfully subclassified several other cancer types such as
breast cancer (7). However, in colorectal adenocarcinoma,
there was no correlation between the subtypes derived from
gene expression profiling and clinical phenotypes like patient
survival and response to treatment (8). As RNA is a fragile
molecule, one of the challenges of mMRNA-based global ex-
pression studies is the required quality of the RNA sample (9).
The problem is exacerbated when working with formalin-fixed
paraffin-embedded (FFPE) tissues, which are frequently the
only biopsy material available. The extraction of RNA from
FFPE tissues is still a difficult task, and snap frozen tissues are
preferred for microarray-based genome-wide gene expres-
sion profiling (10). For that reason and because proteins are
established markers in immunohistopathology, in the last
decade, many approaches were developed to classify DLBCL
patients on the basis of immunohistochemistry of FFPE tis-
sues. They attempted to simulate gene expression profiling in
predicting the COO of tumors. However, gene expression
profiling rather than immunohistochemistry-based algorithms
still best predicted prognosis in DLBCL patients treated with
immunochemotherapy (11). Most recently, a targeted RNA
(NanoString)-based test of 20 genes accurately assigned
COO subtypes to DLBCL patients using FFPE tissue (12) and
has now been adopted as a diagnostic tool in a clinical trial to
support the development of lenalidomide (Revlimid) as treat-
ment for patients with DLBCL.

Proteins are the molecules that carry out essentially all
biological functions in a cell. Thus, proteomics has the poten-
tial to directly assess deregulated cellular processes and sig-
naling pathways. In the last decade, MS-based proteomics
has developed tremendously in terms of sample preparation
techniques, mass spectrometric instrumentation, and data
analysis. Enhanced sensitivity, accuracy, and peptide se-
quencing speed of contemporary mass spectrometers allow
the identification of thousands of proteins in a single experi-
ment. This has already resulted in almost the complete cov-
erage of complex biological samples such as human cancer
cells (13, 14). We have shown that very large depth of com-
plex proteomes can even be attained without prefractionation
(single shot measurements) (15, 16). In addition, proteins and
their post-translational modifications can be efficiently ex-
tracted from FFPE tissues (17). There have been complemen-
tary, enormous advances in data analysis and data manage-

ment tools, facilitating the wide adoption of MS-based
proteomics. In particular, these developments mean that
characterizing small cohorts of human cancer patients in a
reasonable amount of time is finally becoming feasible.
Previously, we have successfully subtyped DLBCL cell lines
on the basis of their total protein expression patterns (18) and
on their N-glycosylated peptide patterns (19). In this study, we
decided to explore the applicability of our high resolution
MS-based platform to the problem of cancer subtyping from
macrodissected slices of FFPE tissue from patient samples.
For quantification, we took advantage of the high accuracy of
the super-SILAC approach (20) and combined it with label-
free quantification of the proteins not present in the spiked-in
standard. In addition to segregating cancer subtypes by our
previously derived 55-protein signature and by the total pro-
tein expression patterns, we derived a novel combination of
statistical feature selection and machine learning to define a
small signature of differentiating proteins with the highest
segregating power. This analysis also allowed us to dissect
important molecular differences between the subtypes.

EXPERIMENTAL PROCEDURES

Generation of the Lymphoma super-SILAC Mix—The super-SILAC
mix was generated by combining equal amounts of heavy lysates
from six lymphoma cell lines (Ramos, Mutu, BL-41, U2932, L428, and
DB) as described (18). Stocks of this mix were prepared and used as
standards that were spiked in each of the cell lines we previously
studied and the 20 patient samples we analyzed in this study.

FFPE Human Tissues—FFPE samples of DLBCL were obtained
from the Institute of Pathology, Charité-Universitdtsmedizin Berlin.
Analysis of the samples was approved by the local ethics committee
(registration number EA4/085/07).

Protein Extraction from FFPE DLBCL Tissues—For each patient
sample, two FFPE slices of macrodissected tissue were collected
(10-um thickness). They were processed for mass spectrometry-
based proteome analysis by extraction and digestion according to the
filter-aided sample preparation (FASP) protocol (FFPE-FASP) (17, 21).
In short, FFPE tissue slices were incubated in 1 ml of xylene (two
times) with gentle agitation for 5 min at room temperature. After
removing the paraffin, the samples were dried by incubating them in
1 ml of absolute ethanol (two times). The dried samples were then
lysed in a buffer consisting of 0.1 m Tris-HCI (pH 8.0), 0.1 m DTT, and
4% sodium dodecyl sulfate (SDS). After sonification, the samples
were boiled at 99 °C using a heating block with agitation (600 rpm) for
60 min. The samples were then cleared by centrifugation.

Protein Digestion and Peptide Fractionation—On a 30-kDa filter
(Millipore, Billerica, MA), 100 ug of each of the patient samples and
the super-SILAC mix were mixed. The samples were further pro-
cessed by the FASP method in which the SDS buffer is exchanged
with a urea buffer (21). This was followed by alkylation with iodoac-
etamide and overnight digestion by trypsin at 37 °C in 50 mm ammo-
nium bicarbonate. The tryptic peptides were collected by centrifuga-
tion and elution with water (two times).

Strong anion exchange chromatography was used to fractionate
40 ng of peptides from each patient sample (22). It was performed in
tip-based columns from 200-ul micropipette tips stacked with six
layers of a 3M Empore anion exchange disk (1214-5012; Varian, Palo
Alto, CA). For the fractionation, a Britton and Robinson universal
buffer (20 mm acetic acid, 20 mm phosphoric acid, and 20 mm boric
acid) was used and titrated using NaOH to six buffers with the desired
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pH values (pH 11, 8, 6, 5, 4, and 3). Subsequently, six fractions from
each sample were collected followed by desalting the eluted fractions
on reversed phase C,3 Empore disc StageTips (23). The peptides
were eluted from the StageTips using 20 ul of buffer B composed of
80% ACN in 0.5% acetic acid (two times). A SpeedVac concentrator
was used to prepare the samples for MS analysis by removing the
organic solvents.

LC-MS/MS Analysis— Peptides were separated by nanoflow HPLC
(Thermo Fisher Scientific) coupled on line to a quadrupole Orbitrap
mass spectrometer (Q Exactive, Thermo Fisher Scientific) with a
nanoelectrospray ion source. The peptides were eluted at a flow rate
of 200 nl min~" on an in house-made C, reversed phase column that
was 50 cm long with a 75-um inner diameter and packed with
ReproSil-Pur C,5-AQ 1.8-um resin (Dr. Maisch GmbH, Ammerbuch-
Entringen, Germany) in buffer A (0.5% acetic acid). For optimal sep-
aration based on average peptide hydrophobicity, four different linear
gradients over a period of 205 min were applied. For pH 11 fraction,
a gradient of 2-25% buffer B was used; for pH 8 fraction, a gradient
of 7-25% buffer B was used; for pH 6 and 5 fractions, a gradient of
7-30% buffer B was used; and for pH 4 and 3 fractions, a gradient of
7-37% buffer B was used. Each gradient was followed by column
washing reaching 95% B and then re-equilibration with buffer A.

A data-dependent “top 10” method in which the 10 most abundant
precursor ions were selected for fragmentation was used to acquire
the data. For survey scans (mass range, 300-1,750 Th), the target
value was 3,000,000 with a maximum injection time of 20 ms and a
resolution of 70,000 at m/z 400. An isolation window of 1.6 Th was
used for higher energy collisional dissociation with normalized colli-
sion energies of 25. For MS/MS scans, the target ion value was set to
1,000,000 with a maximum injection time of 60 ms, a resolution of
17,500 at m/z 400, and dynamic exclusion of 25 s. This led to a
constant injection time of 60 ms, which is fully in parallel with transient
acquisition of the previous scan, ensuring fast cycle times.

The patient samples were received in two batches of 10 each that
were acquired with the same MS methods. For MS/MS in the second
batch, a data-dependent “top 5” method was used where the five
most intense ions from the survey scan were selected with an isola-
tion window of 2.2 Th and dynamic exclusion of 45 s. The target ion
value was set to 100,000 with a maximum injection time of 120 ms
and a resolution of 17,500 at m/z 400.

Data Analysis—We used the MaxQuant software environment (ver-
sion 1.4.3.9) to analyze MS raw data. The MS/MS spectra were
searched against the UniProt database (81,213 entries; release, 2012)
using the Andromeda search engine incorporated in the MaxQuant
framework (24, 25). Cysteine carbamidomethylation was set as a fixed
modification, and N-terminal acetylation and methionine oxidation
were set as variable modifications. The maximum false discovery rate
for both peptide and protein identifications was set to 0.01. Strict
specificity for trypsin cleavage was required allowing N-terminal
cleavage to proline. The minimum required peptide length was seven
amino acids with a maximum of two miscleavages allowed. The initial
precursor mass tolerance was 4.5 ppm, and for the fragment masses,
it was up to 20 ppm. The time-dependent recalibration algorithm of
MaxQuant was used to improve the mass accuracy of precursor ions.
The “match between runs” option was enabled, allowing the match-
ing of identifications across measurements. Relative quantification of
the peptides against their SILAC-labeled counterparts was performed
with MaxQuant using a minimum ratio count of 1. We combine SILAC
with label-free analysis (“hybrid algorithm”) using a minimum count of
1 (see “Results and Discussion”). The bioinformatics analysis was
entirely performed using our in house-developed and freely available
software Perseus. The data were first filtered to 75% valid values (15
of 20). Missing values were supplied by “data imputation” (width =
0.3, downshift = 1) to simulate signals of low abundance proteins

under the assumption that they are biased toward the detection limit
of the MS measurement (18). Finally, the data were normalized using
width adjustment, which subtracts the median and scales all values in
a sample to have equal interquartile range.

Principal Component Analysis—Principal component analysis
(PCA) was performed on the processed data. In PCA, relying on
singular value decomposition, the original feature (protein) space is
orthogonally transformed into a set of linearly uncorrelated variables
(principal components) that account for different types of variability in
the data. In our data set, the source of variability, depicted in com-
ponents 1 and 4, reflects the molecular difference between the two
lymphoma subtypes as measured by the protein profiles.

Enrichment Analysis—The enrichment analysis of cancer module
categories (26) in the PCA components is based on standard Fisher
exact tests (computing the probability of observing exactly this dis-
tribution of proteins associated with a particular cancer module (CM)
between component 1 and all other components). We apply a multiple
hypothesis testing correction using the Benjamini-Hochberg proce-
dure. The significance cutoff was 0.05.

The 2D annotation enrichment procedure is described in detail in
Cox and Mann (27). Briefly, a category of proteins (e.g. proteins
associated with a particular cancer module) is tested for specific
expression preferences as compared with the entire distribution of
protein expression values. The analysis uses the non-parametric Wil-
coxon-Mann-Whitney test that uses rank sums and is further gener-
alized to the analysis of multiple dimensions. An enrichment-specific
score is computed that indicates whether the category is enriched for
high expression (the score is close to 1) or for low expression (the
score is close to —1) values. Comparison of two dimensions simul-
taneously highlights categories that are similar or different between
the lymphoma subtypes.

Supervised Learning—In supervised learning, a set of training ex-
amples with known labels (in the current data set the samples with
known lymphoma subtypes) is used to extract rules from the data
based on which two groups can be distinguished. We use support
vector machines (SVMs), a technique based on the concept of deci-
sion planes that define the boundaries between two groups. The
decision planes are determined by the so-called support vectors,
which correspond to the samples that are most difficult to distinguish
between the subtypes and lie on the margins of the separation plane.
In this study, a predictor is trained on the protein expression profiles
of patient samples to distinguish between the two lymphoma sub-
types. The identification of subtype-characteristic proteins is based
on a feature selection technique that requires the proteins to be
ranked according to their discriminative power. In particular, we rank
the proteins according to the p values computed from the modified
test statistic (28). The SO parameter introduces a background correc-
tion to improve the signal to noise ratio especially in the case of
proteins of low abundance. This approach assigns better ranks to
proteins with larger mean-fold changes between the subtypes. To
ensure the widest applicability of the results, both the predictor train-
ing and the feature selection are done in a cross-validation procedure.
This means that the data set is split into training and test subsets
multiple times with feature selection and predictor training performed
only on the training set. The cross-validation was performed using
random sampling with 90% of the data for training and 1,000
repetitions.

RESULTS AND DISCUSSION

Workflow for Quantitative Proteome Measurements of
DLBCL FFPE Patient Samples—One of the most commonly
used methods for tissue preservation involves fixing the sam-
ple in neutral buffered formalin followed by embedding it in
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paraffin, termed FFPE tissues. It is routinely used in tissue
banks because of its compatibility with immunohistochemis-
try assays and its long term preservation benefits in an eco-
nomical format. However, FFPE cohorts have been challeng-
ing to use in gene expression studies due to the difficulty to
isolate nucleic acids (29). Despite attempts to improve the
quality of extracted RNA samples from FFPE tissues and to
provide standardized protocols, currently snap frozen tissues
are greatly preferred in that workflow (10, 29). In clinical prac-
tice, tissue banks of frozen specimens are used for initial
discovery studies, but by far the largest sample numbers and
almost all tumor specimens are fixed in formalin. Taking ad-
vantage of the stability and ease of handling of proteins, we
and others have recently shown that protein extraction from
FFPE material is possible in a robust manner (17, 30, 31). We
did not observe quantitative or qualitative differences be-
tween FFPE and frozen tissues at the level of proteins or
post-translational modifications (17). Our approach combined
boiling in SDS with the FASP method (21). The boiling step
presumably reverses the cross-links induced upon fixation,
whereas the FASP method allows MS analysis of proteomic
samples solubilized in high concentrations of SDS, which is
advantageous for FFPE samples (30).

Here we macrodissected two slices from each of 20 FFPE
tumor samples from DLBCL patients (Fig. 1A). Peptides re-
sulting from FASP preparation were subjected to six-step
fractionation using a strong anion exchange chromatography
protocol followed by LC-MS analysis of each fraction (see
“Experimental Procedures”).

Accurate quantification is a requirement for the comparison
of the protein expression profiles of the patient samples. For
the 20 patient samples, we used our published heavy labeled
super-SILAC mix of six lymphoma cell lines optimized to
cover a maximal number of “lymphoma-related” proteins (18).
Heavy lysates from each of the six cell lines were pooled and
spiked in a 1:1 ratio into each of the patient samples. To also
quantify SILAC singlets for which the peptide is not found in
the reference proteome but is seen in the samples, we intro-
duce a new quantification algorithm in MaxQuant. This so-
called hybrid quantification algorithm is a generalization of the
MaxLFQ algorithm for the accurate relative quantification of
label-free data (32). The essence of the relative quantification
step in MaxLFQ is that for each protein and for each sample
pair the ratio is calculated for those peptide features that were
determined in both samples. In the hybrid quantification al-
gorithm, one distinguishes the case in which a SILAC ratio to
the reference is calculated in both samples for a given peptide
feature from the case in which one or both ratios cannot be
calculated. If both ratios are available, the ratio of ratios is
used as input for the MaxLFQ quantification algorithm. In the
other case and given that intensities are calculated in both
samples for the light SILAC state, the ratio of these light
intensities is taken. If one or both light intensities are absent,
the peptide feature does not take part in the quantification. All

other steps of the MaxLFQ algorithm are applied in exactly the
same way in the hybrid LFQ algorithm as well. The result of
the hybrid algorithm is an intensity profile for each protein
group over all samples, similar to the output of the conven-
tional MaxLFQ algorithm. The whole intensity profile for a
protein group can be multiplied with an arbitrary factor be-
cause only the relative intensity information is defined by the
algorithm.

Combined analysis of the raw MS data by MaxQuant re-
sulted in the identification of 9,012 protein groups across the
20 patient samples (supplemental Table S1). We obtained
quantitative results for 8,701 protein groups after using the
hybrid LFQ algorithm with an average of 6,278 protein groups
in each of the 20 DLBCL patient samples. The average gain
from the hybrid LFQ is 353 additional quantifications per
sample compared with using SILAC ratios alone (supple-
mental Fig. S1). This relatively small percentage indicates
that the vast majority of proteins were adequately quantifi-
able against the super-SILAC standard. To investigate the
nature of the proteins that we gained from the hybrid LFQ,
we performed enrichment analysis based on UniProt key-
words on these proteins. Taking sample TRR003 as an
example, the two categories with highest significance and
an enrichment factor greater than 5 are secreted proteins
(FDR = 9.4E—91, enrichment factor = 6.4) and extracellular
matrix proteins (FDR = 6.6E—35, enrichment factor = 8.6).
Proteins involved in the 3D architecture of tissues in the
patient samples and absent in cell lines, readily explain this
finding.

General Characteristics of the Proteome of 20 DLBCL FFPE
Patient Samples—The achieved depth of the proteome re-
sulted in good quantitative coverage of many signaling path-
ways and cellular processes that play a role in the develop-
ment and progression of various cancers (Fig. 1B). These
include processes such as DNA replication (94% coverage of
annotated members) and apoptosis (77 %). Importantly, there
is almost complete coverage (91%) of the B-cell receptor
signaling pathway, which can play a major role in lymphom-
agenesis, and high coverage of other blood cancer-associ-
ated proteins such as acute myeloid leukemia (83%) and
chronic myeloid leukemia (83%).

Pairwise comparisons of all the samples against each other
resulted in high Pearson coefficients between the samples
(average r = 0.92), indicating both high quantitative accuracy
between tumor measurements and high similarity in the global
proteomes (see Fig. 2A for an example). The dynamic range of
MS signals for proteins from the patient sample proteomes
spanned 7 orders of magnitude with 94% of the proteins
concentrated in 4 orders of magnitude (Fig. 2B). Overlaying
172 proteins that are annotated in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database as belonging to path-
ways in cancer showed that cancer-related proteins spanned
the entire dynamic range. This suggests that both highly and
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Fic. 1. Proteomic workflow and coverage of 20 FFPE tissue samples from DLBCL patients. A, two slices of macrodissected patient
FFPE tissues were processed according to the FASP-FFPE protocol. The super-SILAC approach was used for quantitative measurements
using a quadrupole Orbitrap mass spectrometer (Q Exactive). Quantification was based on SILAC ratios combined with label-free quantifica-
tions in cases where no SILAC pairs were detected. The data were analyzed using MaxQuant software, resulting in the identification of more
than 9,000 proteins. B, percent coverage of signaling pathways and cellular processes in the quantified proteomes of DLBCL patients. RP,
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lowly abundant proteins can be important players in DLBCL
(Fig. 2B).

Compared with the cell line system we analyzed previously,
we detected 2,031 additional protein groups in the present
analysis (Fig. 3A). We attribute this to technical factors, mainly
the very fast and sensitive quadrupole Orbitrap used in this
study (33), in combination with the larger complexity of the
patient samples. This interpretation is supported by the abun-
dance distribution of the extra 2,031 protein groups, which

was at the lower end of the total distribution (Fig. 3B). Fur-
thermore, a Fisher exact test for this set of proteins showed
the most significant enrichment for proteins located in the
extracellular region part (FDR = 1.06E—71). This is especially
interesting as stromal signatures have already been shown to
be important in lymphoma classification (6).

The 55-protein Cell Line-derived Signature Correctly Clas-
sifies Patients—We previously derived a signature of 55 pro-
teins that robustly segregated ABC-DLBCL and GCB-DLBCL
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cell lines (18). In addition to proteins that correlated to under-
lying known biological differences between the subtypes, the
cell line signature also included new interesting candidates.
To explore the potential of applying this signature to patients,
we used the COO subtypes previously established by gene
expression profiles on these samples (34). Matching the sig-
nature to the patient proteomes after filtering for 75% valid
values resulted in quantitative values of 49 proteins in all of
the patients. Remarkably, a PCA of these matches clearly
segregated the two subtypes (Fig. 3C). Thus, our previous
proteomic signature can directly be translated to patient sam-
ples and classify them correctly although it was derived en-
tirely from a cell line-based system. The loadings of compo-
nent 1, which accounts for 25.7% of the variability in this small
subset of proteins, drive the correct segregation. However,
this does not necessarily mean that the cell line signature is
optimal to segregate the subtypes with the best possible
accuracy. With the increased depth and faithfulness of the
patient samples, a signature extracted from the patient pro-
teomes themselves is worth investigating and evaluating as
addressed below.

Unsupervised Segregation of Patient Samples Based on
Their Global Protein Expression Profiles—To explore whether
the global protein expression profiles of the patient samples
would reveal intrinsic biological differences between the sub-
types such as their different COO, we performed a principal
component analysis based on the entire protein expression
profile of each patient. As performed previously, we filtered for
75% valid values resulting in 5,480 protein groups quantified
across the 20 patients. Components 1 versus 4 in the PCA

provided a diagonal segregation of the patient samples ac-
cording to their COO classification (Fig. 4A). The loadings of
such a PCA reveal the drivers causing the segregation (Fig.
4B). Among the proteins that are relatively up-regulated in
ABC-DLBCL are PTPN1 (PTP1B), IRF4, CCDC50 (Ymer),
MNDA, SP140, IL16, RAB7L1, HCK, TNFAIP8, TNFAIP2, and
HELLS. Reassuringly, many of these candidates reflect known
biological differences between the subtypes. Strong drivers of
segregation such as PTPN1, IRF4, and CCDC50 as well as
metabolic enzymes such as ARHGAP17 and CYB5R2 were
already present in our previously derived cell line signature.
This explains the applicability of the cell line-derived signature
to segregate patient tissue proteomes and independently
confirms the importance of these markers because they were
picked up in two independent studies. For instance, IRF4, one
of the strong drivers that we previously highlighted, is a tran-
scription factor that drives plasmacytic differentiation, and its
expression is directly regulated by NF-«B signaling, a patho-
genic hallmark of ABC-DLBCL (35). A new drug (lenalido-
mide), which inhibits IRF4, selectively kills ABC-DLBCL cells
and is currently in clinical trials (36).

The strongest drivers also include some interesting new
candidates. One that is up-regulated in ABC-DLBCL is
SP140, an interferon-inducible, nuclear lymphocyte-specific
protein of unknown function. It is expressed in all human
mature B-cells and plasma cell lines as well as in some T-cells
(37, 38). It possesses several chromatin-related modules,
which suggests a role of SP140 in chromatin-mediated regu-
lation of gene expression (39). A genome-wide association
study of single nucleotide polymorphisms for chronic lympho-
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cytic leukemia (CLL) showed that SP140 is a CLL risk locus.
Interestingly, that study also identified IRF4 as another risk
locus of six loci in total (40). Myeloid cell nuclear differentiation
antigen (MNDA) is another strong driver that emerged from
the patient data. As the name indicates, MNDA is expressed
constitutively in cells of the myeloid lineage, but it can also be
expressed by normal and neoplastic B-lymphocytes (41, 42).
In a recent study that identified MNDA as a marker for nodal
marginal zone lymphoma, the authors also analyzed the ex-
pression of MNDA in a cohort of 75 DLBCL cases. Interest-
ingly, of 34 cases in which it was highly expressed, 25 were of
the ABC subtype (43). A highly interesting and novel segre-
gator is IL16, a cytokine that is typically characterized as a
chemoattractant of CD4™ cells to sites of inflammation. Re-
cent studies have suggested an important role of both the
promolecule and the secreted form of IL16 in the regulation of
lymphocytic cancer cell proliferation (44). In fact, targeting
IL16 may be a novel therapeutic approach for cutaneous
T-cell ymphoma and multiple myeloma. In multiple myeloma,

inhibition of IL16 production by siRNA or IL16 bioactivity by
neutralizing antibodies reduces cell proliferation by more than
80% (44).

On the other side of the diagonal segregation are drivers
with higher protein levels in the GCB-DLBCL subtype. These
include ABCC4, TBC1D4, LCK, CAV1, C3orf37 (HMCES),
IGF2BP1, and TP53. TBC1D4 is a Rab GTPase-activating
protein that promotes insulin-induced glucose transporter
GLUT4 translocation to the plasma membrane, thus increas-
ing glucose uptake (45). TBC1D4 has not yet been associated
with lymphoma classification but may be related to increased
glucose uptake as observed in many cancer types and may
indicate a difference between the cancer types in this respect
(46). LCK is a lymphocyte cell-specific protein-tyrosine kinase
studied extensively in the context of T-cells where it plays an
important role in signal transduction after antigen binding.
Dysregulation of LCK expression or LCK kinase activity has
been implicated in human and murine T-cell leukemia (47).
LCK expression has also been reported in normal B-1 cells
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and in CLL B-cells (48). It plays an important role in B-cell
receptor signaling in CLL, and specific LCK inhibitors have
been suggested in the treatment of progressive CLL (49).
Reassuringly, LCK has been shown to be present at high
levels in normal germinal center cells (50). In addition, it was
shown to be expressed in most lymphomas of germinal center
origin (e.g. follicular ymphoma) and many mantle cell lympho-
mas, CLL, and most T-cell neoplasms (50).

The diagonal segregation of the subtypes suggested that
other biological factors compromised a more clear-cut COO
segregation of the patients in the PCA. Enrichment analysis of
protein categories showed that extracellular matrix region part
is one of the strongest gene ontology cellular component
(GOCC) categories significantly enriched in component 1 of
the PCA (FDR = 1.89E—33). Cancer module (CM) categories
correspond to gene sets that are significantly changed in a
variety of cancer conditions after mining a large compendium
of cancer-related microarray data (26). The most significantly
enriched CM in component 1 was MODULE_47 (FDR
6.55E—20) (Fig. 4C). This category included proteins such as
ACTN1, BGN, COL1A1, COL1A2, COL6A1, COL6A2,
COLBA3, COL6A4, FN1, LUM, POSTN, and SERPINH1 (Fig.
4C). There is a large overlap between these drivers and the
reported prognostically favorable stromal-1 signature, reflect-
ing extracellular matrix deposition (6). In fact, the stromal
signature study showed that a multivariate model created
from three gene expression signatures, germinal center B-cell

(COO0), stromal-1 (extracellular matrix deposition), and stro-
mal-2 (tumor blood vessel density), was a better predictor of
survival than the COO classification alone. Hence, survival of
DLBCL patients after treatment is influenced by several bio-
logical attributes including the COO and the tumor microen-
vironment (6). In addition, expression levels of the ECM sig-
nature proteins we depicted in component 1 are on average
higher in the GCB subtype. These findings confirm what has
been reported previously (51) and show that our proteomic
analysis captured the COO classification as well as other
intrinsic biological differences between the subtypes.
Cancer-associated Characteristics of ABC-DLBCL Com-
pared with GCB-DLBCL Subtypes— After assigning a subtype
to each patient sample based on gene expression profiling
classification, we treated the samples as biological replicates
of the same disease entity. We grouped patients belonging to
the same subtype together and calculated the median expres-
sion value for each protein group. The proteomes of GCB-
DLBCL versus ABC-DLBCL had very high correlation (Pear-
son r = 0.98). Against this background of very high overall
similarity, investigation of outliers from this tight cloud re-
vealed markers that our unsupervised PCA had already indi-
cated as well as novel candidate markers, which are con-
nected to the known biology of the disease (Fig. 5A). This
included TCL1A, FOXP1, and TLR9, which are up-regulated in
the ABC subtype. In fact, both TCL1A and FOXP1 are immu-
nohistochemical markers of adverse outcome in DLBCL (52,
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53). FOXP1 was also reported to occur in a subgroup of
non-GCB-DLBCLs (54), and TCL1A has been suggested as a
tumor-associated antigen for immunotherapeutic strategies in
common B-cell ymphomas (55). TLR9, another ABC-DLBCL-
specific subtype candidate, is a toll-like receptor that senses
microbial DNA containing unmethylated CpG sequences. It
has recently been shown that lymphoma-associated muta-
tions in MYD88 amplify the effects of upstream TLR9 activa-
tion rather than conferring autonomous NF-«B activation (56).
This raises the possibility that nucleic acids in the tumor
microenvironment drive the proliferation of these lymphomas
(57).

Next, we performed a two-dimensional annotation enrich-
ment analysis (27), which detects annotation terms whose
members show consistent behavior in one or both of the data
dimensions, in this case the ABC-DLBCL versus the GCB-
DLBCL proteome. Here, we used CMs for deriving differential
cancer-associated gene sets between these two closely re-
lated entities of DLBCL. As expected from the high proteome
correlation, the subtypes are very similar in almost every
cancer module annotated such as RNA splicing, protein bio-
synthesis, and DNA replication. However, MODULE_456,
which corresponds to “B lymphoma expression clusters,” and
MODULE_210, which corresponds to “metallopeptidase ac-
tivity,” showed lower expression in the ABC subtype.
MODULE_456 consists of 115 genes and is annotated to be
significantly induced in B-cell lymphomas (p = 2.7E—05) and
specifically in GCB-DLBCL (p = 3.0E—05). This confirms what
we observed in our analysis (Fig. 5B). The metallopeptidase
and metalloendopeptidase gene sets comprising MOD-
ULE_210 consist of 28 genes and were significantly induced
in microarrays of DLBCL (p = 1.5E—06) and GCB-DLBCL
(p = 5.1E—05) specifically (26). The proteins that we found in
this gene set are particularly interesting given the role of
matrix metalloproteinases (MMPs) in mediating tumor inva-
sion.

The candidate differentially expressed proteins and catego-
ries clearly reflected relevant biological differences between
ABC-DLBCL and GCB-DLBCL. However, these candidates
cannot necessarily be used as markers of classification. For
instance, the expression profiles of biologically interesting
candidates like TCL1A and FOXP1 show a high degree of
variability within each subtype (supplemental Fig. S2). More
sophisticated statistical tools are required to achieve a panel
of candidate proteins that can be used for diagnostic pur-
poses as discussed in the next section.

Support Vector Machines Combined with Feature Selec-
tion—In clinical studies, tumor and host variability combined
with the large feature space of the data set (thousands of
proteins compared with a relatively small number of patients)
makes it difficult to identify disease-relevant proteins. We
addressed these challenges with a supervised learning
method, SVMs, in combination with a test statistic-based
feature selection strategy. SVMs are a well established ma-

chine learning technique that trains a predictor that best dis-
tinguishes between the known classes of the samples (in our
case GCB and ABC lymphoma subtypes). The principle of an
SVM predictor is the definition of a so-called separation hy-
perplane that segregates the subtypes as clearly as possible
in a training data set, which can be a subset of the measured
samples. Using this “machine-learned” hyperplane, new sam-
ples of unknown subtype can be classified as GCB or ABC
depending on the side of the separation hyperplane on which
each of these samples falls. The strength of SVMs lies in their
ability to perform well in high dimensional data.

We combined the SVM-based prediction with feature se-
lection to optimize the performance of the classifier and to
identify strongly discriminative features or proteins. The fea-
ture selection method used p values from standard analysis of
variance tests. As disease-relevant features that show large
quantitative differences between the two subtypes are more
easily detectable and thus are potentially clinically more rel-
evant, we performed the ranking of the proteins such that it
depended not only on the statistical significance of their dif-
ferential expression between the different subtypes but also
on the actual size of this difference. The advantage of this
method is that proteins with low p values and high -fold
change receive higher ranks than those with low p values and
small -fold change.

Feature selection was embedded in a cross-validation pro-
cedure to avoid the problem of overfitting and wrong estima-
tion of the performance of the classifier. In each iteration
(total, 1,000) of a random sampling cross-validation, we used
90% of the data for training and feature ranking and the rest
for testing and optimization of the number of features. The
analysis resulted in a set of four ranked features that perform
almost perfectly in the classification of the subtypes (1.4%
error rate) (Fig. 6A). These top four candidates are TBC1D4,
PALD1, TNFAIP8, and MME (CD10). The protein expression
level of the four candidates is relatively stable across patient
samples from the same subtype (supplemental Fig. S3). MME
is part of previous immunohistochemistry-based classifica-
tion algorithms (11, 58), and it was retrieved as a candidate in
our N-glycoproteome cell line-based study (19). TBC1D4
plays a role in glucose uptake, TNFAIP8 is NF-«B regulated
and involved in blocking apoptosis, and PALD1 is a newly
studied protein that may play a role in tumor invasiveness and
metastasis.

Next, we were interested in comparing ranked features with
the digital gene expression (NanoString)-based test of 20
genes that has been recently published and put into use in a
clinical trial (12). The model is composed of eight genes
(TNFRSF13B, LIMD1, IRF4, CREB3L2, PIM2, CYB5R2,
RAB7L1, and CCDC50) overexpressed in ABC-DLBCL, five
housekeeping genes, and seven genes (MME, SERPINA9,
ASB13, MAML3, ITPKB, MYBL1, and SIPR2) overexpressed
in GCB-DLBCL. Different gene signatures of a disease often
have little overlap in their constituent genes even when they
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are derived by the same technology. In light of this, it was
reassuring that 30% of the differentiating genes in the RNA-
based test (IRF4, CYB5R2, RAB7L1, CCDC50, and MME)
were among the 17 top SVM-ranked features of our analysis
(supplemental Table S2).

For a broader selection of differential features, we used as
an error rate cutoff, the point beyond which the correct un-
supervised hierarchical clustering of the subtypes was lost.
This resulted in 343 features (Fig. 6B). Interestingly, upon
filtering for ECM, nuclear, and plasma membrane proteins
from these top 343 features, the last two categories main-
tained correct segregation on their own, reflecting the cell-of-
origin classification (Fig. 6C).

Encouragingly, the top 343 features overlapped with 17
protein groups previously depicted by the 55-protein cell line
signature with segregating power (supplemental Table S2). In
addition, the set of 343 protein groups included 33 transcrip-
tion factors, 14 protein kinases, and 12 oncogenes (supple-
mental Table S3, A and B). Upon dividing the 343 protein
groups into their two main clusters (one relatively up-regu-
lated in ABC-DLBCL and the other relatively up-regulated in
GCB-DLBCL), we performed network analysis to investigate
possible connections between them. Genes up-regulated in
the ABC-DLBCL subtype highlighted the CARD11-PKCB
signaling core (supplemental Fig. S4A) that drives NF-«B sig-
naling upon B-cell receptor signaling (59). The GCB-DLBCL
subtype showed an LCK-PAG-P2K signaling module (supple-
mental Fig. S4B), which has been shown to be oncogenic in
other lymphomas (60). In addition to an ECM core that we
previously depicted to be up-regulated on average in the GCB
subtype, we also observe an MHC Il network that has been
previously reported to be on average higher in GCB (51).

Conclusions and Outlook—Previously, we had shown un-
ambiguous segregation of patient-derived DLBCL cell lines
into their COO subtypes based on their global protein expres-
sion profiles as well as an enriched set of membrane proteins
(18, 19). In this study, we have analyzed 20 FFPE DLBCL
patient samples, attaining a quantitative depth of more than
9,000 proteins, which to our knowledge is the largest lym-
phoma proteome available. Correct segregation of the sub-
types based on their protein expression profiles was possible
after applying a cell line-derived signature from our previous
studies or by using the whole set of proteins quantified in at
least 75% of the samples. When global protein expression
profiles were used, the COO classification was not as clear-
cut as in the cell lines. This is most likely due to increased
complexity of this system in which several important bio-
logical signatures (extracellular matrix and MHC II) also
influence segregation. In fact, these signatures are known to
be very valuable in the overall prediction of survival in
DLBCL patients (51). Our results clearly show that global
expression proteomics can segregate cancer types based
on tumor samples from patients. Importantly, for practical
applications, our measurements only require small amounts

of FFPE material, which is readily available in tissue banks
or informal sample collections.

The high number of biologically relevant potential markers
retrieved here underscores the potential of future applications
of proteomics to clinical questions such as tumor segregation.
Our analysis highlighted both the COO signature and the ECM
signature in line with the “gold standard” predictor of survival,
which includes the COO classification as well as stromal
signatures (6, 34). Nuclear and membrane proteins reflect the
COO, but the ECM signature is more likely reflecting mecha-
nisms through which lymphoma cells interact with their envi-
ronment. Hence, they are at least partly independent signa-
tures, and patient survival depends on both.

In a classical view of biomarker development, global MS-
based proteomics plays a role primarily in the discovery
phase (61). In postdiscovery studies, MS-based or ELISA-
based targeted approaches would then be used on specific
signature proteins. However, it is interesting to speculate that
an untargeted approach could also be used in this phase,
which would have the advantage of not discarding valuable
information contained in the patient samples. Considering the
rate of MS developments, measuring a proteome of complex
biological samples such as patient tissues comprehensive
and accurate enough for tumor classification in a high
throughput manner should be achievable in the near future. In
addition, further improvements of sample preparation meth-
ods will allow easier sample handling and higher reproduc-
ibility (62). In conclusion, continuous MS-based technological
advances hold great promise for future characterization and
diagnosis of subtypes not only of B-cell lymphomas but any
closely related tumor subtypes.
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