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Abstract

To maximize the potential of genome-wide association studies, many researchers are performing 

secondary analyses to identify sets of genes jointly associated with the trait of interest. Although 

methods for gene-set analyses (GSA), also called pathway analyses, have been around for more 

than a decade, the field is still evolving. There are numerous algorithms available for testing the 

cumulative effect of multiple SNPs, yet no real consensus in the field about the best way to 

perform a GSA. This paper provides an overview of the factors that can affect the results of a 

GSA, the lessons learned from past studies, and suggestions for how to make analysis choices that 

are most appropriate for different types of data.
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INTRODUCTION

With the success of genome-wide association studies (GWAS), a gap has emerged between 

researchers’ ability to identify genetic variants associated with complex traits and the ability 

to interpret the biological significance of those variants. GWAS have provided two 

important pieces of the puzzle of complex disease genetics. First, these studies have 

identified a large number of genetic variants significantly associated with human disease. 

These disease-associated variants have provided candidate genes for further study and 

hypotheses about disease mechanisms. Second, GWAS have been able to confirm the 

polygenic nature of complex diseases, particularly for psychiatric disorders. For instance, 

studies have found that the cumulative effect of a large number of weakly associated SNPs, 

most of which are not statistically significant on their own, can predict disease status or 

symptoms [Wray et al., 2014]. This cumulative effect, referred to as a polygenic risk score, 

indicates that even very small genetic effects can contribute to disease risk when taken 

together.
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Despite these successes, insights about specific biological mechanisms responsible for 

disease risk have been elusive. Individual genetic associations explain only a very small 

fraction of disease risk. And while polygenic risk scores may explain a greater portion of 

disease risk, they are not easily interpreted in terms of biological mechanisms. The need for 

methods that can provide biological context for genetic associations has led to a surge of 

interest in gene set analyses, which test for association between biologically meaningful sets 

of genes and a phenotype.

A wide variety of methods are available for testing gene set associations. As a result, a 

number of important decisions must be made when planning a gene set analysis (Fig. 1).

WHY GENE SET ANALYSIS?

Gene set analyses have the potential to provide a number of benefits when used as a tool for 

secondary analysis of a GWAS data set. First, because of the polygenic nature of complex 

diseases, testing for association with sets of functionally related variants can provide 

biological context for multiple genetic risk factors and can provide insights into disease 

mechanisms and possible treatment targets. Second, given the small effect sizes of most 

reported associations with common variants, examining the cumulative effect of multiple 

variants can improve the power to detect genetic risk factors for complex diseases. And 

third, testing for associations at the pathway level may also account for the genetic 

heterogeneity within affected populations. Since genetic heterogeneity within a study 

population will lead to a mixture of small genetic effects, detecting their cumulative effect 

may be possible with GSA methods if enough small effects are present within the same gene 

set.

Despite these potential benefits, considerable care is critical when interpreting the results of 

a gene set analysis. Because results can be highly dependent on the definitions of the gene 

sets and statistical methods used, GSAs should generally be viewed as exploratory analyses. 

Significantly associated gene sets can provide functional context for individual SNP or gene 

associations. However, care should be taken not to assign undue meaning to individual 

genes within a statistically identified gene set if those genes do not show at least weak 

association on their own. Following this sentiment, it has been suggested that it is not 

appropriate to apply gene set analyses to a dataset with no indication of any SNP effects 

(e.g., no deviation from diagonal on a Q-Q plot) [Sedeño- Cortés and Pavlidis, 2014].

Step 1: Primary GWAS Analysis and Data Cleaning

Gene set analyses are typically performed as a secondary analysis of GWAS data, and 

therefore can make use of either genotype data or summary statistics (e.g., SNP P-values). 

To avoid false positive associations at the gene set level, before conducting a GSA all 

standard quality control and data cleaning procedures should be applied to the GWAS data, 

including correcting summary statistics for population stratification.

Recommendations:

• Always follow best practices for GWAS QA/QC and data cleaning prior to 

downstream analyses like GSA.
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Step 2: Select Gene Set Definitions

One of the first questions to ask when planning a gene set analysis is: What gene sets will be 

tested? The investigator has a number of options regarding the source of gene set 

annotations, and the appropriate selection depends on multiple factors.

Decisions to make at this step:

• What is the biological hypothesis you want to investigate?

• What data source for gene set annotations should you use?

• How many gene sets do you want to test?

Biologically meaningful gene sets can be defined in a variety of ways, which can represent 

different biological hypotheses [Mooney et al., 2014]. For instance, biological pathways, 

protein-protein interaction (PPI) networks, and functionally related gene sets (e.g., gene 

ontology categories) each suggest different types of relationships between the members of a 

gene set.

Pathway models suggest a common function or end goal for the pathway’s members, and 

also provide specific information about how the gene members interact to accomplish that 

end goal (e.g., folate biosynthesis). PPI networks, on the other hand, provide information 

about biological interactions (e.g., physical interactions) among genes or gene products, but 

do not imply a common goal or directed action for a set of genes. This difference between 

pathways and networks is due mainly to the fact that biological interaction data often come 

from a heterogeneous mixture of sources (e.g., different experiments, different tissues, 

different animal models). And finally, functionally-related gene sets, such as gene ontology 

(GO) categories, suggest that member genes share a common function or are involved in a 

common process, but they do not provide any information about how, or if, the members 

biologically interact (e.g., different gene products may perform the same function, but in 

different tissues).

Pathways and functionally-related gene sets are self-contained groups of genes and are 

therefore ready to use in a GSA with minimal processing (see Step 3). However, because 

PPI databases contain interactions on a genome-wide scale, the use of network data for GSA 

requires an additional step. In order to use PPI data for a GSA, subsets of genes (sub-

networks) must first be extracted from the global network of all genes. These sub-networks 

become the gene sets that are later tested for association using methods discussed in Step 4. 

Sub-networks can be identified in a number of ways, including community detection 

algorithms, which use topological measures to identify tightly clustered nodes [Xu et al., 

2010; Cowley et al., 2012], and heuristic search algorithms [Bakir-Gungor and Sezerman, 

2011; Jia et al., 2011; Vandin et al., 2011].

Numerous databases contain gene set annotations or gene interaction data (Table I). The 

membership of gene sets can vary significantly depending on the data source, even for 

similar or related biological concepts [Mooney et al., 2014; Belinky et al., 2015]. For 

example, Figure 2 shows multiple gene sets related to glucocorticoid receptor processes, and 

illustrates the differences among data sources for this same conceptual domain.
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Gene sets from multiple databases can be combined to improve genome coverage and to 

take advantage of knowledge from a variety of sources. Some databases, such as Pathway 

Commons, ConsensusPathDB, and PathCards already integrate data from multiple sources 

[Cerami et al., 2011; Kamburov et al., 2013; Belinky et al., 2015]. However, because gene 

sets from publicly available databases do not represent all possible biological processes and 

because they are constructed from heterogeneous data sources (i.e., a wide variety of 

experiments conducted under a variety of conditions), manual curation of gene sets (via 

systematic literature review for example) can be beneficial. Manual curation may be 

particularly useful for defining gene sets that are relevant to a particular biological context, 

such as a disease state or tissue type. An example of the result of this type of manual 

curation is the neurodevelopmental network described in (Poelmans et al., 2011).

Gene set annotations are dynamic, not static and therefore change over time, as genes are 

further characterized and new evidence about gene function is revealed. It is important that 

the source of the gene sets chosen for an analysis is consistent with the study’s biological 

hypothesis, and that any reported results include adequate information about the gene set 

membership to ensure comparability with other studies.

Once the type and source of the gene sets has been selected, a decision must be made 

regarding the scope of the analysis. The choice here is between an analysis which focuses on 

a few candidate gene sets that are hypothesized to play an important role in the disease 

under study, or a hypothesis-free global analysis, which tests a large number of gene sets, 

usually from a repository such as those listed in Table I.

An analysis that tests an entire database of gene sets is more common, but this approach may 

not always be appropriate, particularly for small data sets. Testing a large number of gene 

sets can reduce statistical power, given the need to correct for testing multiple hypotheses. 

Permutation methods for evaluating the statistical significance of a gene set association will 

be discussed below. It should be noted that most of the proposed permutation methods do 

not adjust for the number of gene sets tested, and therefore standard multiple hypothesis 

testing corrections such as a False Discovery Rate (FDR) correction are necessary. 

However, some GSA methods, such as ALIGATOR and INRICH [Holmans et al., 2009; 

Lee et al., 2012], incorporate two stages of permutation, one to produce an empirical P-

value and another to correct for multiple testing.

Recommendations:

• Choose a source for gene set annotations that are consistent with your biological 

hypothesis.

• Combine annotations from multiple databases to take advantage of different 

sources of knowledge about gene function.

• Use up-to-date annotations and record information about the data sources (e.g., 

database versions) to allow replication by other researchers.

Step 3: Prepare Your Data

Decisions to make at this step:
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• How to filter, or clean, the list of gene sets?

• How to map SNPs to genes?

• Should imputed genotypes be used?

Several data preprocessing steps are necessary to integrate the genotype data and the gene 

set annotations. First, it is often necessary to filter the gene sets to remove those with only a 

few genes and those with a very large number of genes. This step is important because of 

known biases related to the size (number of genes) of a gene set [Holmans, 2010; Wang et 

al., 2010; Ramanan et al., 2012]. Although the limits are arbitrary, it is common to limit the 

size of gene sets to between 10 and 200 genes. Removing very large gene sets, which may 

encompass multiple cellular processes, also has the benefit of improving the specificity and 

interpretability of results.

Because gene set analyses attempt to summarize the effects of multiple SNPs in order to 

create a single gene set-level association measure, it is necessary to map SNPs to genes. The 

most straightforward way to do this is based on SNP location. For example, a common 

method is to assign a SNP to a gene if the SNP lies within the gene boundaries or within a 

fixed window upstream or downstream of the gene, which is meant to cover regulatory 

regions [Holmans et al., 2009; Chen LS et al., 2010a; Fridley and Biernacka, 2011).

Linkage disequilibrium (LD) can also be used to map SNPs to genes. In this case, SNPs are 

mapped to a gene if they are correlated with other SNPs located within the gene boundaries. 

Methods that use LD to map SNPs to genes have the advantage of not losing all the 

information contained in intergenic SNPs. However, using LD to map SNPs to genes can 

create problems when a SNP is correlated with, and therefore assigned to, multiple genes. If 

those genes are in the same gene set, this situation can lead to “multiple-counting“ of a 

single SNP and can erroneously inflate a gene set’s association measure [Sedeño-Cortés and 

Pavlidis, 2014].

The ProxyGeneLD and INRICH methods both account for LD during the process of 

mapping SNPs. These methods also avoid the multiple-counting problem by merging or 

removing genes that are highly correlated with other genes in the same gene set [Hong et al., 

2009; Lee et al. 2012].

Imputing SNPs that are not directly genotyped by a SNP array is now common practice in 

GWAS because it can improve the power to detect significant associations. Imputation to a 

common set of SNPs can clearly improve the comparability of studies and can facilitate 

meta-analyses. However, GSA presents unique challenges compared to single-SNP 

analyses, and the effects of using imputed genotypes for GSA are not clear. The use of 

imputed genotypes increases the number of SNPs included in the analysis, and therefore 

may increase the number of genes represented. For GSA methods that utilize genotypes, 

rather than summary statistics, the increased number of SNPs can increase computational 

burden. Furthermore, given that missing genotypes are imputed using the information from 

multiple neighboring SNPs (haplotypes), methods that use the genotypes of multiple SNPs 

to model gene-level or gene set-level effects will not benefit from the addition of imputed 

Mooney and Wilmot Page 5

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNPs. It should also be noted that significantly increasing the number of SNPs in a gene set 

might adversely affect model fit in studies with small sample size.

GSA methods that use a single SNP to summarize a gene (e.g., assigning the minimum P-

value of all SNPs assigned to the gene) may potentially benefit from genotype imputation, 

since some gene-level p-values may become more significant. However, the increased 

representation of genes may mean that the number of non-significant genes included in the 

analysis is increased, potentially affecting enrichment results. For example, one study found 

that the use of imputed genotypes increased the representation of smaller genes, and that 

these smaller genes were less likely to contain significantly associated SNPs [Hong et al., 

2009].

Recommendations:

• Filter out very small and very large gene sets.

• Take care in mapping SNPs to genes to avoid issues related to correlated genes.

• Do not impute genotypes, except to improve cross-study comparability.

Steps 4 and 5: Select a Gene Set Analysis Method/Evaluate Statistical Significance

Decisions to make at this step:

• What statistical hypothesis do you want to test?

• Should genotypes or summary statistics be used?

• How should statistical significance be determined?

The statistical tests employed in pathway analyses can be categorized as either competitive 

or self-contained, depending on the test’s null hypothesis [Goeman and Buhlmann, 2007]. A 

competitive test compares the proportion of association signal within the target gene set to 

the proportion of association signal outside of the target gene set. The null hypothesis for a 

competitive test is that there is no difference between the target gene set and random gene 

sets of the same size in terms of association to the trait of interest. However, this type of test 

does not tell you how strongly the gene set itself is associated to the trait. Methods that use a 

competitive test must have data (i.e., genotypes or P-values) for all genes, not only those 

within the target gene set.

In contrast, a self-contained test does not require data for any genes outside of the target 

gene set, since it is concerned only with the association signal within a single gene set. In 

this case, the test tells you how strong the association is with the trait of interest, but not how 

important the gene set is compared to other gene sets. The null hypothesis for a self-

contained test is simply that none of the genes in the gene set are associated with the trait of 

interest [Wu et al., 2010].

Most GSA methods use a permutation test to evaluate the statistical significance of pathway-

level association measures. Permutation tests can also correct for known biases, such as gene 

size. However, which permutation method is the most appropriate is still a matter of debate 
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and numerous different approaches have been proposed [Efron and Tibshirani, 2007; 

Holmans et al., 2009; Yaspan et al., 2011; Cabrera et al., 2012; Jia et al., 2012].

In general, there are two types of permutation tests used in gene set analyses, those that 

permute samples (randomly assigning case/ control status) and those that permute genes 

(creating random gene sets). In either case, the association measure for a target gene set is 

calculated using one of a variety of methods (discussed below). This association measure is 

then compared to a null distribution of association measures created through repeated 

permutation of the data.

The null hypotheses of these two types of permutation procedures relate back to the null 

hypotheses of competitive and self-contained tests. Permuting samples is consistent with the 

self-contained null hypothesis, as no data on genes outside the target gene set is needed. And 

permuting genes is consistent with the competitive null hypothesis, since the target gene set 

is compared to a collection of random gene sets [Goeman and Buhlmann, 2007; Khatri et al., 

2012]. This is not to say that competitive methods cannot use sample-permutation 

procedures, or self-contained methods cannot use gene-permutation procedures. However, 

algorithms that take this approach become, in a sense, hybrids somewhere between 

competitive and self-contained tests. For instance, it is important to realize that a self-

contained test statistic that is adjusted using a gene-permutation procedure is no longer 

strictly “self-contained“ since it has been adjusted relative to other gene sets. Similarly, 

when a competitive test statistic is adjusted by sample permutation, it is the self-contained 

null hypothesis that is ultimately being tested [Goeman and Buhlmann, 2007].

Much of the debate over the procedures used to evaluate statistical significance in GSA has 

unfolded within the context of gene expression studies, but the issues are relevant to GWAS 

data as well. Correlation between genes in expression studies is due to local co-regulation 

and large differences between groups which results in many differentially expressed genes; 

correlation among genes in GWAS is due to both linkage disequilibrium (LD) and the 

polygenic nature of complex traits. Therefore, a competitive test can identify gene sets that 

are enriched above the relatively high background due to a polygenic trait.

Because gene-set analyses originated in the context of gene-expression studies, a number of 

GSA methods originally designed to analyze expression results have been adapted to GWAS 

datasets (over-representation analyses and variations of the GSEA method listed in Table II 

are examples). It is crucial that researchers use such methods only after taking steps to 

account for the unique challenges presented by GWAS data [Fridley and Biernacka, 2011; 

Ramanan et al. 2012; Mooney et al., 2014]. For example, the choice of method for 

aggregating or summarizing SNP-level association measures at the gene level is a critical 

aspect of many GWAS-based GSA. The size of a gene (i.e., the number of SNPs it contains) 

and the correlation between SNPs (LD structure) are two potential sources of bias that can 

significantly influence gene-level statistics. Fortunately, a number of methods have been 

developed to calculate unbiased gene-level p-values [Saccone et al., 2007; Hong et al., 2009; 

Segrè et al., 2010; de Leeuw et al., 2015]. Permutation procedures, as stated above, can also 

correct for gene size and LD structure.
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Several reviews of the statistical tests used in gene set analyses are available [Wang et al., 

2010; Fridley and Biernacka, 2011; Khatri et al., 2012; Ramanan et al., 2012; Mooney et al., 

2014]. Here we will give a brief summary of the various classes of statistical tests that have 

been proposed for calculating pathway-level association measures. A selection of methods 

from each class is listed in Table II.

The simplest form of competitive test for GSA is the test for over-representation. In over-

representation analyses (also called 2 × 2 table methods), an association measure is 

calculated for each gene in the dataset and a threshold is used to determine which genes are 

significantly associated. The proportion of significantly associated genes within a target 

pathway is compared to the proportion of significantly associated genes among all genes 

outside of the target pathway. The chi-square or hypergeometric tests are commonly used 

for tests of over-representation.

A major disadvantage of over-representation analyses is that they require a strict threshold 

for determining statistical significance [Goeman and Buhlmann, 2007]. This threshold is 

arbitrary and can influence the results of an analysis. Furthermore, when pathway 

association measures are based solely on a count of significantly associated genes, 

information about the strength of association is lost [Khatri et al., 2012]. To overcome these 

issues, enrichment methods that use all gene-level P-values have been devised. An example 

of this type of method is the popular gene set enrichment analysis (GSEA) [Subramanian et 

al., 2005; Subramanian et al., 2007; Wang et al., 2007]. The GSEA algorithm calculates a 

gene-level P-value for all genes, then ranks the genes based on P-value. The next step is to 

calculate a running-sum statistic that represents the extent to which the genes in the target 

set are concentrated at the top of the ranked list. The significance of this statistic is evaluated 

by comparing it to a null distribution of statistics created by repeatedly permuting the data. 

A number of modifications of this algorithm have been developed (Table II).

For a self-contained test, the simplest approach is to combine the P-values of all members of 

a gene set. It is most common to first calculate gene-level P-values, but it is also possible to 

combine SNP-level P-values. A variety of methods for combining multiple p-values are 

available, such as Fisher’s method [De la Cruz et al., 2010; Luo et al., 2010], the gamma 

method [Biernacka et al., 2012], and the adaptive rank truncated product method [Yu et al., 

2009].

Regression-based methods, which use genotypes to model the effects of multiple SNPs have 

also been proposed. Often these methods are combined with some form of feature selection, 

such as principle component analysis, to select those SNPs that are most informative [Chen 

LS et al., 2010; Chen X et al., 2010; Biernacka et al., 2012]. Regression-based methods that 

use multiple SNPs to model gene-level effects have been found to be more powerful than 

simply selecting the minimum SNP P-value to represent a gene-level statistic [Ballard et al., 

2010].

In addition to regression-based methods, classification-type methods, which utilize genotype 

data to identify gene sets that distinguish cases and controls, have also been proposed. 

Examples are the Pathways of Distinction Analysis (PoDA) method [Braun and Buetow, 
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2011], and a random-forest based method that creates synthetic features to represent all 

SNPs within a particular gene set [Pan et al., 2014].

All the GSA algorithms discussed above treat all genes in a gene set independently and do 

not account for the relationships between genes. Topology-based GSA methods are 

fundamentally different because the relationships between genes are used to assign different 

levels of “importance“ to genes in the set. For example, a gene that interacts with only one 

other member of the gene set will be weighted less than a gene that interacts with most other 

members. Because topology-based methods require information about interactions between 

gene set members, it may be necessary to integrate gene set membership information with 

interaction data from a separate source. For example, since GO categories do not define 

interactions between genes, it would be necessary to gather interactions information from 

another sources, such as a PPI database.

Although most topology-based methods were developed for gene expression data sets, some 

require only gene-level P-values and therefore can be applied to GWAS data sets as well 

[Bakir-Gungor and Sezerman, 2011; Jia et al., 2011; Vandin et al., 2011]. For a review of 

topology-based GSA methods see [Mitrea et al., 2013].

The computational burden of a statistical algorithm can be an important factor in a GSA 

analysis and depends on the data used as input (e.g., genotypes vs. summary statistics), the 

complexity of the algorithm, and the permutation procedure used to evaluate statistical 

significance. The most computationally efficient methods are those that use summary 

statistics and a permutation procedure that randomizes genes. Permuting samples requires 

the re-calculation of SNP-level P-values for each permutation, and therefore requires access 

to the genotype data (or a reference set of genotype data [Evangelou et al., 2014]) as well as 

greater computational resources.

However, the computational burden of an algorithm should not be the deciding factor when 

planning a GSA, since it has been demonstrated that genotype-based method can have 

greater power to detect pathway-level associations [Ballard et al., 2010; Gui et al., 2011]. 

Furthermore, it has also been suggested that applying multiple GSA methods to the same 

dataset may be beneficial, given the expectation that different methods are sensitive to 

different types of genetic effects [Gui et al., 2011; Varemo et al., 2013; Network and 

Pathway Analysis Subgroup of Psychiatric Genomics Consortium, 2015].

Recommendations:

• If computational resources are available, select a method that utilizes genotypes.

• Use a permutation procedure that is consistent with your statistical hypothesis, and 

corrects for the size of a gene set.

• Apply multiple GSA methods to capture different genetic effects and identify 

robust gene set associations.
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Step 6: Reporting and Visualizing Results

Given that the results of GSA are highly dependent on the source of gene set annotations 

and the statistical algorithm used, it is often difficult to compare results across studies. 

However, when reporting results of a GSA, a number of steps can be taken to improve the 

interpretability and comparability of findings.

Providing detailed information about the gene sets tested (e.g., database versions and dates 

accessed) and the statistical algorithm used will allow other researchers to attempt to 

replicate findings. This information will also provide important context for understanding 

discordance among studies. For example, similar biological concepts may be represented by 

very different gene sets depending on the database used (Fig. 2). It is also important to 

address any potential sources of bias (such as gene set size, or correlation between genes) 

when reporting results.

One of the goals of a GSA is to provide functional context for multiple genetic associations. 

Therefore, claims of significant gene set associations should be accompanied by evidence 

supporting a role for the gene set in the disease being studied. This disease-specific context 

is important for the interpretation of results, given that gene set annotations are often 

incomplete and are of varying quality.

Finally, visualizations, which show the relationships between genes in a gene set as well as 

each gene’s contribution to the overall association (i.e., gene-level association effects), can 

be an important part of reporting findings from a GSA (Fig. 3). Tools such as Dapple 

[Rossin et al., 2011] can provide information about relationships among associated genes. It 

should be noted that depending on the source of the gene set definitions, these types of 

visualizations may require the integration of interaction data from a distinct data source 

(e.g., a PPI database) separate from the source used to define the gene set.

Recommendations:

• Provide details about the gene sets tested (e.g., database version), and the statistical 

algorithm used, to ensure comparability of results.

• Address any possible sources of bias.

• Provide disease-relevant biological context to aid the interpretation of significant 

gene set associations.

• Provide visualizations of associated gene sets.

DISCUSSION

Gene set analyses have become a popular approach for secondary analyses of GWAS data 

sets, and have been used successfully to gain additional insights into disease mechanisms 

and to provide functional context for individual SNP associations. A diverse set of methods 

for performing GSA has been proposed, and the increased application of these methods has 

exposed a number of factors that can have an important effect on GSA results. Researchers 
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have also identified a variety of circumstances that can lead to faulty findings, and have 

proposed ways to avoid misleading results.

In this tutorial we have given an overview of the steps taken during a GSA, including the 

choices that must be made at each step. We have also attempted to summarize the lessons 

learned from the numerous applications of GSA methods to GWAS datasets in recent years. 

We believe the guide presented above will not only allow researchers to make decisions 

appropriate for the available data and the biological hypotheses of interest when planning a 

GSA, but will also improve the interpretability and comparability of GSA results.

Acknowledgments

Grant sponsor: NIMH; Grant number: R01MH099064; Grant sponsor: NIH/NCATS; Grant number: 
UL1TR000128.

The authors thank Joel Nigg and Shannon McWeeney for helpful discussion. Work on this project was supported 
by NIMH (R01MH099064) and NIH/NCATS (UL1TR000128).

References

Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, Lehtio J, Pawitan Y. Network 
enrichment analysis: Extension of gene-set enrichment analysis to gene networks. BMC 
Bioinformatics. 2012; 11(13):226. [PubMed: 22966941] 

Araki H, Knapp C, Tsai P, Print C. GeneSetDB: A comprehensive meta-database, statistical, and 
visualisation framework for gene set analysis. FEBS Open Bio. 2012; 2:76–82.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 
Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, 
Ringwald M, Rubin GM, Sherlock G. Gene ontology: Tool for the unification of biology. Nat 
Genet. 2000; 25(1):25–29. [PubMed: 10802651] 

Bakir-Gungor B, Sezerman OU. A new methodology to associate SNPs with human diseases 
according to their pathway related context. PLoS One. 2011; 6(10):e26277. [PubMed: 22046267] 

Bakir-Gungor B, Egemen E, Sezerman OU. PANOGA: A web server for identification of SNP-
targeted pathways from genome-wide association study data. Bioinformatics. 2014; 30(9):1287–
1289. [PubMed: 24413675] 

Ballard DH, Cho J, Zhao H. Comparisons of multi-marker association methods to detect association 
between a candidate region and disease. Genet Epidemiol. 2010; 34(3):201–212. [PubMed: 
19810024] 

Belinky F, Nativ N, Stelzer G, Zimmerman S, Stein Iny, Lancet M. PathCards: Multi-source 
consolidation of human biological pathways. Database (Oxford). 201510.1093/database/bav006

Biernacka JM, Jenkins GD, Wang L, Moyer AM, Fridley BL. Use of the gamma method for self-
contained gene-set analysis of SNP data. Eur J Hum Genet. 2012; 20(5):565–571. [PubMed: 
22166939] 

Braun R, Buetow K. Pathways of distinction analysis: A new technique for multi-SNP analysis of 
GWAS data. PLoS Genet. 2011; 7(6):e1002101. [PubMed: 21695280] 

Cabrera CP, Navarro P, Huffman JE, Wright AF, Hayward C, Campbell H, Wilson JF, Rudan I, Hastie 
ND, Vitart V, Haley CS. Uncovering networks from genome-wide association studies via circular 
genomic permutation. G3 (Bethesda). 2012; 2(9):1067–1075. [PubMed: 22973544] 

Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C. 
Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011; 
39(Database issue):D685–D690. [PubMed: 21071392] 

Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, Peters U, Hsu L. Insights into colon cancer 
etiology via a regularized approach to gene set analysis of GWAS data. Am J Hum Genet. 2010; 
86(6):860–871. [PubMed: 20560206] 

Mooney and Wilmot Page 11

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chen X, Wang L, Hu B, Guo M, Barnard J, Zhu X. Pathway-based analysis for genome-wide 
association studies using supervised principal components. Genet Epidemiol. 2010; 34(7):716–
724. [PubMed: 20842628] 

Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi 
S, Wu J. PINA v2.0: Mining interactome modules. Nucleic Acids Res. 2012; 40(Database 
issue):D862–D865. [PubMed: 22067443] 

Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar 
MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, 
Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P. The Reactome pathway 
knowledgebase. Nucleic Acids Res. 2014; 42(1):D472–D477. [PubMed: 24243840] 

De la Cruz O, Wen X, Ke B, Song M, Nicolae DL. Gene, region and pathway level analyses in whole-
genome studies. Genet Epidemiol. 2010; 34(3):222–231. [PubMed: 20013942] 

de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized gene-set analysis of GWAS 
data. PLoS Comput Biol. 2015; 11(4):e1004219. [PubMed: 25885710] 

Efron B, Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat. 2007; 1:107.

Evangelou M, Dudbridge F, Wernisch L. Two novel pathway analysis methods based on a hierarchical 
model. Bioinformatics. 2014; 30(5):690–697. [PubMed: 24123673] 

Evangelou M, Smyth DJ, Fortune MD, Burren OS, Walker NM, Guo H, Onengut-Gumuscu S, Chen 
WM, Concannon P, Rich SS, Todd JA, Wallace C. A method for gene-based pathway analysis 
using genomewide association study summary statistics reveals nine new type 1 diabetes 
associations. Genet Epidemiol. 2014; 38(8):661–670. [PubMed: 25371288] 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, 
von Mering C, Jensen LJ. STRING v9.1: Protein-protein interaction networks, with increased 
coverage and integration. Nucleic Acids Res. 2013; 41(Database issue):D808–D815. [PubMed: 
23203871] 

Fridley BL, Biernacka JM. Gene set analysis of SNP data: Benefits, challenges, and future directions. 
Eur J Hum Genet. 2011; 19(8):837–843. [PubMed: 21487444] 

Gene Ontology Consortium. The Gene Ontology in 2010: Extensions and refinements. Nucleic Acids 
Res. 2010; 38(Database issue):D331–D335. [PubMed: 19920128] 

Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. Enrich-Net: Network-based gene set 
enrichment analysis. Bioinformatics. 2012; 28(18):i451–i457. [PubMed: 22962466] 

Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of gene sets: Methodological 
issues. Bioinformatics. 2007; 23(8):980–987. [PubMed: 17303618] 

Gui H, Li M, Sham PC, Cherny SS. Comparisons of seven algorithms for pathway analysis using the 
WTCCC Crohn’s Disease dataset. BMC Res Notes. 2011; 4:386. [PubMed: 21981765] 

Holden M, Deng S, Wojnowski L, Kulle B. GSEA-SNP: Applying gene set enrichment analysis to 
SNP data from genome-wide association studies. Bioinformatics. 2008; 24(23):2784–2785. 
[PubMed: 18854360] 

Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P, Owen MJ, O’Donovan MC, 
Craddock N. Wellcome Trust Case-Control Consortium. Gene ontology analysis of GWA study 
data sets provides insights into the biology of bipolar disorder. Am J Hum Genet. 2009; 85(1):13–
24. [PubMed: 19539887] 

Holmans P. Statistical methods for pathway analysis of genome-wide data for association with 
complex genetic traits. Adv Genet. 2010; 72:141–179. [PubMed: 21029852] 

Hong MG, Pawitan Y, Magnusson PK, Prince JA. Strategies and issues in the detection of pathway 
enrichment in genome-wide association studies. Hum Genet. 2009; 126(2):289–301. [PubMed: 
19408013] 

Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the 
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1–13. 
[PubMed: 19033363] 

Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, Lempicki RA. Extracting 
biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics. 
200910.1002/0471250953.bi1311s27

Mooney and Wilmot Page 12

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jia P, Zheng S, Long J, Zheng W, Zhao Z. DmGWAS: Dense module searching for genome-wide 
association studies in protein-protein interaction networks. Bioinformatics. 2011; 27(1):95–102. 
[PubMed: 21045073] 

Jia P, Wang L, Fanous AH, Chen X, Kendler KS, Zhao Z. International Schizophrenia Consortium. A 
bias-reducing pathway enrichment analysis of genome-wide association data confirmed 
association of the MHC region with schizophrenia. J Med Genet. 2012; 49(2):96–103. [PubMed: 
22187495] 

Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 
update. Nucleic Acids Res. 2013; 41(Database issue):D793–D800. [PubMed: 23143270] 

Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 
28(1):27–30. [PubMed: 10592173] 

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge 
and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014; 42(1):D199–D205. 
[PubMed: 24214961] 

Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding 
challenges. PLoS Comput Biol. 2012; 8(2):e1002375. [PubMed: 22383865] 

Lee PH, O’Dushlaine C, Thomas B, Purcell SM. INRICH: Interval-based enrichment analysis for 
genome-wide association studies. Bioinformatics. 2012; 28(13):1797–1799. [PubMed: 22513993] 

Liu L, Ruan J. Network-based pathway enrichment analysis. Proceedings. 2013:218–221.

Luo L, Peng G, Zhu Y, Dong H, Amos CI, Xiong M. Genome-wide gene and pathway analysis. Eur J 
Hum Genet. 18(9):1045–1053. [PubMed: 20442747] 

Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: Modeling the evolution of gene function, and 
other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013; 41(Database 
issue):D377–D386. [PubMed: 23193289] 

Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, Voichiţa C, Drăghici S. Methods 
and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013; 4:278. 
[PubMed: 24133454] 

Mooney MA, Nigg JT, McWeeney SK, Wilmot B. Functional and genomic context in pathway 
analysis of GWAS data. Trends Genet. 2014; 30(9):390–400. [PubMed: 25154796] 

Nam D, Kim J, Kim SY, Kim S. GSA-SNP: A general approach for gene set analysis of 
polymorphisms. Nucleic Acids Res. 2010:W749–W754. [PubMed: 20501604] 

Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-
wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 
2015; 18(2):199–209. [PubMed: 25599223] 

Pan Q, Hu T, Malley JD, Andrew AS, Karagas MR, Moore JH. A system-level pathway-phenotype 
association analysis using synthetic feature random forest. Genet Epidemiol. 2014; 38(3):209–219. 
[PubMed: 24535726] 

Pedroso I, Lourdusamy A, Rietschel M, Nothen MM, Cichon S, McGuffin P, Al-Chalabi A, Barnes 
MR, Breen G. Common genetic variants and gene-expression changes associated with bipolar 
disorder are over-represented in brain signaling pathway genes. Biol Psychiatry. 2012; 72(4):311–
317. [PubMed: 22502986] 

Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, Lui JC, Vedantam S, Gustafsson S, 
Esko T, Frayling T, Speliotes EK, Boehnke, Raychaudhuri M, Fehrmann S, Hirschhorn RS, 
Franke JN. Genetic Investigation, Consortium (GIANT). Biological interpretation of genome-wide 
association studies using predicted gene functions. Nat Commun. 2015; 6:5890. [PubMed: 
25597830] 

Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide association study findings: 
Identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J 
Psychiatry. 2011; 168(4):365–377. [PubMed: 21324949] 

Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, 
Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian 
A, Rani S, Ray S, Kishore Harrys, Ahmed S, Kashyap M, Mohmood MK, Ramachandra R, 
Krishna YL, Rahiman V, Mohan BA, Ranganathan S, Ramabadran P, Chaerkady S, Pandey R. 

Mooney and Wilmot Page 13

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Human protein reference database-2009 update. Nucleic Acids Res. 2009; 37(Database 
issue):D767–D772. [PubMed: 18988627] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker 
PI, Daly MJ, Sham PC. PLINK: A tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007; 81(3):559–575. [PubMed: 17701901] 

Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: Concepts, methods, 
and prospects for future development. Trends Genet. 2012; 28(7):323–332. [PubMed: 22480918] 

Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, Cotsapas C, Daly MJ. International 
Inflammatory Bowel Disease Genetics Constortium. Proteins encoded in genomic regions 
associated with immune-mediated disease physically interact and suggest underlying biology. 
PLoS Genet. 2011; 7(1):e1001273. [PubMed: 21249183] 

Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, 
Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, 
Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ. Cholinergic nicotinic 
receptor genes implicated in a nicotine dependence association study targeting 348 candidate 
genes with 3713 SNPs. Hum Mol Genet. 2007; 16(1):36–49. [PubMed: 17135278] 

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: The pathway 
interaction database. Nucleic Acids Res. 2009; 37(Database issue):D674–D679. [PubMed: 
18832364] 

Sedeño-Cortés AE, Pavlidis P. Pitfalls in the application of gene-set analysis to genetics studies. 
Trends Genet. 2014; 30(12):513–514. [PubMed: 25459301] 

Segré AV, Groop L, Mootha VK, Daly MJ, Altshuler D. Consortium DIAGRAM, investigators 
MAGIC. Common inherited variation in mitochondrial genes is not enriched for associations with 
type two diabetes or related glycemic traits. PLoS Genet. 2010; 6(8):e1001058. [PubMed: 
20714348] 

Silver M, Chen P, Li R, Cheng CY, Wong TY, Tai ES, Teo YY, Montana G. Pathways-driven sparse 
regression identifies pathways and genes associated with high-density lipoprotein cholesterol in 
two Asian cohorts. PLoS Genet. 2013; 9(11):e1003939. [PubMed: 24278029] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005; 
102(43):15545–15550. [PubMed: 16199517] 

Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: A desktop application for Gene 
Set Enrichment Analysis. Bioinformatics. 2007; 23(23):3251–3253. [PubMed: 17644558] 

Vandin F, Upfal E, Raphael BJ. Algorithms for detecting significantly mutated pathways in cancer. J 
Comput Biol. 2011; 18(3):507–522. [PubMed: 21385051] 

Varemo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by 
incorporating directionality of gene expression and combining statistical hypotheses and methods. 
Nucleic Acids Res. 2013; 41(8):4378–4391. [PubMed: 23444143] 

Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 
2013. Nucleic Acids Res. 2013; 41:W77–W83. [PubMed: 23703215] 

Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. 
Am J Hum Genet. 2007; 81(6):1278–1283. [PubMed: 17966091] 

Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. 
Nat Rev Genet. 2010; 11(12):843–854. [PubMed: 21085203] 

Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. Research review: 
Polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry. 2014; 
55(10):1068–1087. [PubMed: 25132410] 

Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST: Rotation gene set tests 
for complex microarray experiments. Bioinformatics. 2010; 26(17):2176–2182. [PubMed: 
20610611] 

Xu G, Bennett L, Papageorgiou LG, Tsoka S. Module detection in complex networks using integer 
optimisation. Algorithms Mol Biol. 2010; 5:36. [PubMed: 21073720] 

Mooney and Wilmot Page 14

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yaspan BL, Bush WS, Torstenson ES, Ma D, Pericak-Vance MA, Ritchie MD, Sutcliffe JS, Haines 
JL. Genetic analysis of biological pathway data through genomic randomization. Hum Genet. 
2011; 129(5):563–571. [PubMed: 21279722] 

Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, Caporaso N, Kraft P, Chatterjee N. Pathway 
analysis by adaptive combination of P-values. Genet Epidemiol. 2009; 33(8):700–709. [PubMed: 
19333968] 

Zhang K, Cui S, Chang S, Zhang L, Wang J. I-GSEA4GWAS: A web server for identification of 
pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to 
genome-wide association study. Nucleic Acids Res. 2010; 38:W90–W95. [PubMed: 20435672] 

Mooney and Wilmot Page 15

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
A gene set analysis workflow, including the possible choices that must be made at each step 

of the analysis. The data type requirements for the various statistical methods are indicated 

by color. For instance, regression-based methods and permutation procedures that 

randomize samples require genotypes as inputs. On the other hand, over-representation 

methods utilize summary statistics. Some methods (multicolored) are not restricted to one 

type of input data.
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FIG. 2. 
Gene sets related to glucocorticoid receptor processes. Gene sets from NCI’s Pathway 

Interaction Database, the proprietary Metacore database, and the Gene Ontology database 

were overlaid onto an interaction network from the STRING protein-protein interaction 

database (only high confidence interactions are shown, STRING combined score ≥0.9). 

Colored genes are unique to a particular database, while gray genes are shared between two 

or more databases (only NR3C1 is common to all four databases). There are clear 

differences in membership between gene sets from different data sources. These differences 

may be due to an attempt to model distinct processes, but are also indicative of incomplete 

annotation. For instance, some genes are unique to a single database even when there is 

evidence of interaction with multiple genes from another database (e.g., ARID1A is not part 

of the NCI-PID gene set, but is connected to four of its member genes).
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FIG. 3. 
Visualizations of gene set analysis results. Depending on the source of the gene sets, gene 

interaction information can be obtained from pathway maps or PPI databases. A: A 

signaling pathway map with genes colored to show gene-level association measures. Dark 

blue indicates a weak association and dark red indicates a strong association. B: A gene set 

overlaid onto a PPI network to show known interactions between genes. Here the strength of 

gene-level associations is indicated by node size.
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TABLE I

A Selection of Gene Set Databases

Database Canonical pathways Functionally-related gene sets Gene/protein interactions Links/references

Pathway Commons X pathwaycommons.org, 
[Cerami et al., 2011]

PathCards X pathcards.genecards.org, 
[Belinky et al., 2015]

KEGG X genome.jp/kegg, [Kanehisa 
and Goto, 2000; Kanehisa et 
al., 2014]

Reactome X reactome.org, [Croft et al., 
2014]

Biocarta X biocarta.com

Panther X X pantherdb.org/data, [Mi et al., 
2013]

NCI-PID X pid.nci.nih.gov, [Schaefer et 
al., 2009]

MSigDB X X broadinstitute.org/gsea/
msigdb, [Subramanian et al., 
2005]

ConsensusPathDB X X consensuspathdb.org, 
[Kamburov et al., 2013]

Gene Ontology X geneontology.org, [Ashburner 
et al., 2000; Gene Ontology 
Consortium, 2010]

STRING X string-db.org, [Franceschini et 
al., 2013]

HPRD X hprd.org, [Prasad et al., 2009]

Metacore* X X X thomsonreuters.com/metacore

Ingenuity* X X X ingenuity.com/products/ipa

*
Proprietary database.
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TABLE II

Gene Set Analysis Methods and Software Tools

Method Input References

Over-representation methods

WebGestalt Gene list Wang et al., [2013]

DAVID Gene list Huang et al. [2009]

Metacore Gene list thomsonreuters.com/metacore

GeneSetDB Gene list [Araki et al. [2012]

INRICH Genomic Regions Lee et al. [2012]

MAGENTA P-values Segrè et al. [2010]

ALIGATOR P-values Holmans et al. [2009]

Enrichment methods

GSEA Genotypes Wang et al. [2007]

i-GSEA4GWAS P-values Zhang et al. [2010]

GSA-SNP P-values Nam et al. [2010]

GSEA-P Ranked gene list Subramanian et al. [2007]

GSEA-SNP P-values Holden et al. [2008]

Methods for combining P-values

Modified fisher’s method P-values De la Cruz et al. [2010]

Modified fisher’s method P-values Luo et al. [2010]

Adaptive rank truncated product method Genotypes or P-values Yu et al. [2009]

FORGE P-values Pedroso et al. [2012]

Plink set-based test Genotypes Purcell et al., [2007]

Regression-based methods

GRASS Genotypes Chen LS et al. [2010]

MAGMA Genotypes de Leeuw et al. [2015]

PCgamma Genotypes Biernacka et al. [2012]

PAGWAS Genotypes Evangelou et al. [2014]

SGL-BCGD Genotypes Silver et al. [2013]

Supervised PCA Genotypes Chen X et al. [2010]

Classification-type methods

Pathways of distinction analysis Genotypes Bruan and Buetow, [2011]

Synthetic feature random forest Genotypes Pan et al. [2014]

Methods that incorporate interaction data (networks)

PANOGA P-values Bakir-Gungor and Sezerman, [2011]

dmGWAS P-values Jia et al. [2011]

HotNet2 P-values Vandin et al. [2011]

EnrichNet Gene list Glaab et al. [2012]

NetPEA Gene list Liu and Ruan, [2013]

NEA Gene list Alexeyenko et al. [2012]

PANOGA P-values Bakir-Gungor et al. [2014]

PINA Gene list Cowley et al. [2012]
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Method Input References

Dapple Gene list Rossin et al. [2011]

DEPICT P-values Pers et al. [2015]
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