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Abstract

Objectives—To build and test cardiac arrest prediction models in a pediatric intensive care unit, 

using time series analysis as input, and to measure changes in prediction accuracy attributable to 

different classes of time series data.

Methods—A retrospective cohort study of pediatric intensive care patients over a 30 month 

study period. All subjects identified by code documentation sheets with matches in hospital 

physiologic and laboratory data repositories and who underwent chest compressions for two 

minutes were included as arrest cases. Controls were randomly selected from patients that did not 

experience arrest and who survived to discharge. Modeling data was based on twelve hours of data 

preceding the arrest (reference time for controls).

Measurements and Main Results—103 cases of cardiac arrest and 109 control cases were 

used to prepare a baseline data set that consisted of 1025 variables in four data classes: 

multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 

arrest prediction models using a matrix of five feature sets (combinations of data classes) with four 

modeling algorithms: linear regression, decision tree, neural network and support vector machine. 

The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 

87% area under the receiver operating characteristic curve (AUROC). The best model 

(multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 

94% and 98% AUROC.
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Conclusions—Cardiac arrest predictions based on a traditional model built with multivariate 

data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that 

included time series trend analysis and built with a support vector machine algorithm. Although 

the final model lacks the specificity necessary for clinical application, we have demonstrated how 

information from time series data can be used to increase the accuracy of clinical prediction 

models.
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Introduction

Children admitted to pediatric intensive care units (PICU) are inherently unstable, and 

change rapidly between states of improvement and deterioration. When deteriorations 

happen, bedside caregivers must detect them, assess their potential impact to the patient, and 

intervene if necessary. Each of these functions is operator-dependent, so patients receive 

different levels of service at different points in time. Despite continuous monitoring of their 

vital signs and high staffing ratios, thousands of children suffer cardiac arrests in PICUs 

every year (1-4). Many arrests are preceded by serial deteriorations in vital signs (5-8), 

suggesting that progressive shock may contribute to some arrests, though not all since some 

arrests occur suddenly and without warning. The shock state can be a result of insufficient 

oxygen or fuel availability, or of inadequate cardiac output.

In an ideal environment, a cardiac arrest attributable to undertreated shock could be averted 

by early recognition of deterioration and timely intervention before the arrest occurred. The 

goal of this study is to focus on the recognition aspect of the problem by using time series 

analysis as a way to encode deterioration (a time dependent phenomenon) and evaluating its 

utility as an input into prediction models for cardiac arrest in a PICU.

Most scoring tools in clinical use are based on models built using multivariate data 

structures(9-14), for which single values represent a variable of interest. If time dependent 

phenomena are included in these models, they are usually limited to quasi-multivariate 

abstractions such as min/max or magnitude of change between two time points(15). The 

tools are typically based on regression algorithms, which perform well in smaller data sets 

but have not proven robust in large data sets where the number of variables outweigh the 

number of training examples. This problem has been addressed in genetic microarray 

analysis(16,17), where more sophisticated algorithms such as neural networks and support 

vector machines have proven robust(18). In this study our aims are to determine whether or 

not adding time series analysis results as input into cardiac arrest prediction models increase 

their predictive accuracy, and to determine whether or not modeling algorithm choice 

influences predictive accuracy.
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Methods

Setting

This is a retrospective cohort study of patients admitted to a tertiary care PICU that provides 

care to over 2000 cases annually and serves a referral population of over 4 million people. 

Patients treated range in age from infants to the early 20s, with a median age of 5 years. 

Disease classes treated include medical, surgical, trauma, cancer, and bone marrow and solid 

organ transplantation. Patients with operative cardiac conditions are cared for in a separate 

cardiovascular ICU that is not part of this study. The study protocol was approved by our 

institutional review board. We identified 103 cases of cardiac arrest that occurred in the 

PICU by reviewing code sheets that were generated when patients received acute, intensive 

resuscitation between July 2006 and December 2008. Criteria for inclusion as an arrest case 

were: 1. event location in PICU; 2. first cardiac arrest in the PICU; 3. external cardiac 

massage for at least two minutes; and 4. able to be matched with records from the hospital's 

data repository and physiologic monitor database. We also identified 109 control cases from 

patients admitted to the PICU by random selection from the following three categories: 1. 

first six hours of admission (representing the most consistent point in time when patients 

experience rapid change and receive multiple interventions); 2. day of maximum severity of 

illness occurring after 24 hours of hospitalization (representing deteriorations after 

admission); and 3. random point in time (representing baseline noise in PICU physiology). 

Criteria for inclusion as a control case included: 1. did not experience a cardiac arrest in the 

PICU; 2. survived to discharge (to exclude deteriorations in Do Not Attempt Resuscitation 

patients); 3. had matching data in the physiologic monitor database and the data repository; 

and 4. selected by random number generation (to keep the case:control ratio roughly equal in 

order to satisfy modeling algorithm assumptions).

Equipment

Physiologic monitor data was measured on GE Solar 8000M patient monitors and archived 

by Excel Medical BedMaster Software (version 1.3) configured to log data every one 

minute. Modeling and analyses were conducted in MATLAB (R2007a), using The Spider 

programming environment (version 1.71).

Data Aggregation

Data from code sheets, the hospital's data repository, and the physiologic monitor database 

were merged to create the initial data set. For arrest cases, we defined the reference time in 

the monitor database as the initial deterioration's worst measurement, ranked by heart rate, 

then pulse oximeter, and finally blood pressure criteria. We assumed time synchronization 

between the data repository and monitor database. Reference time assignment for control 

cases were randomly assigned from within their designated block of time. Time series data 

were constrained to a 12 hour prearrest window.
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Preprocessing and Data Class Assignment

Outlier removal and imputation of missing data elements were performed using a limit-

based, carry-forward strategy. When no values were present from which to carry forward, a 

normal value for the field was imputed.

We defined multivariate data as either a single measurement (for lab data) or the first 

measurement preceding the reference time (for time series data). We defined raw time series 

data as all measurements preceding the one classified as multivariate. Raw time series data 

consisted of 60 high-resolution data elements (every minute for one hour prior to the 

reference point) and 12 low-resolution data elements (hourly averages for 12 hours prior to 

the reference time). Trend analysis data consisted of means, slopes, and intercepts for 5, 10, 

15, and 60 minute prearrest epochs; and also included ratios of means between each epoch 

and more distal epochs: 5/(10,15,60); 10/(15,60); and 15/60.

Given the model's theoretical basis on a progressive shock state, we explicitly encoded two 

clinical calculations (CC) as a separate data class: the shock index (SI = heart rate / systolic 

blood pressure) and an oxygen delivery index (ODI = heart rate * pulse pressure * 

hemoglobin * % oxygen saturation) were calculated for each set of vital signs. The shock 

index has been shown to correlate with severity of shock(19), and the oxygen delivery index 

(ODI) is based on the oxygen delivery equation used in hemodynamic calculations(20). 

Here, we substituted heart rate and pulse pressure as surrogate variables for cardiac output, 

since it is not directly measured.

We created five feature sets to use as model inputs, using various combinations of the four 

data classes described above. To prepare variables for modeling, each variable was 

transposed to a 0:1 range by min-max normalization. Data was then split: 67% into a 

training / internal validation set and 33% into a holdout testing / external validation set.

Modeling

We developed 20 models from a matrix of five feature sets and four modeling algorithms.

(Figure 1) Feature sets included: 1. pure multivariate (MV: traditional approach as 

reference / no time series elements); 2. multivariate + raw time series (TS: to measure 

effects of unaltered time series measurements); 3. multivariate + raw time series + clinical 

calculations (CC: to measure effects of clinical calculations); 4. multivariate + trend analysis 

(TRD: to measure effects of trend analysis without raw time series measurements); and 5. 

All classes combined (ALL: to measure effects of all data classes in combination). Modeling 

algorithms included: 1. linear regression (LR: traditional approach as reference); 2. j48 

decision tree (DT: advanced algorithm / readable model); 3. neural network (NN: advanced 

algorithm / black box); and 4. support vector machine (SVM: advanced algorithm / black 

box). For each of the 20 models, we performed 10-fold cross validation to determine mean 

performance characteristics and their associated variance. We generated one representative 

model for each combination of feature set + modeling algorithm using the training data set. 

We estimated external validity in the holdout / testing data set by comparing each model's 

predictions to the actual categories (arrest vs. control). Performance measures included 

accuracy (ACC) and area under the receiver operating characteristic curve (AUROC). Since 
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data sets contained a balanced ratio of cases:controls, performance measures relying on 

positive predictive value in their determination were not performed.

To further isolate and validate the effects of trend calculations on model performance, we 

repeated the above procedures after eliminating variables measured only once (i.e., not 

subject to trend calculations).

To assess for overfitting effects we performed two methods of automated variable selection: 

SVM weighting (SVMW) and recursive feature elimination (RFE), constraining models to a 

range of 15 to 50 variables in 5 variable increments. We used the dominant modeling 

algorithm (SVM) to repeat model training and testing for the resultant matrix of eight input 

feature sets (of 15, 20, 25, 30, 35, 40, 45 and 50 variables) for each variable selection tool 

(SVMW and RFE).

Our final step was to qualitatively assess the results we obtained in the steps above, to 

determine if any variables were conserved between the various modeling algorithms.

Results

We identified 103 cases of initial PICU cardiac arrest events with corresponding data in the 

physiologic monitor database and the data repository. 109 controls were randomly selected 

from their respective categories. Lab data had 0.47% outliers, and physiologic data had 

1.18% outliers. Imputation accounted for 16.8% of lab data and for 1.7% of physiologic 

data.

Significant differences in mean values between arrest and control cohorts were present for: 

1) 16 of 20 (80%) multivariate variables; 2) 413 of 497 (83%) raw time series variables; 3) 

155 of 288 (54%) clinical calculations; and 4) 182 of 220 (83%) trend analysis results. 

Figure 2 shows the differences in heart rate, oxygenation, and systolic blood pressure for 

arrest versus control cases. With the notable exception of respiratory rate, all vital signs in 

the arrest category demonstrated a drop in mean value starting as many as 20 minutes from 

the arrest, with more drastic drops occurring in the 5-minute prearrest window.

Internal measures of model accuracy, using 10-fold cross validation, demonstrated a 

baseline accuracy of 66 ± 4% (MV+LR model). The TRD+SVM model demonstrated the 

best performance, with an accuracy of 79 ± 4% (p<0.0001 vs. baseline). Only models that 

included trend analysis data demonstrated significant increases in accuracy when compared 

to baseline. When all data elements were used (ALL+SVM), accuracy dropped to 73% ± 5% 

(p = 0.02 vs. TRD+SVM), suggesting a moderate overfitting effect.

External validation in the test data set (unseen during model training) demonstrated better 

performance than internal measures. The best performance was again seen in the TRD

+SVM model: with 94% accuracy (baseline accuracy for MV+LR was 78%). Similarly, 

AUROC increased from an 87% baseline to 98% in the TRD+SVM model. Performance 

characteristics across the matrix of 20 models is given in Table 1. The AUROC for the 

reference model (MV+LR) vs. best model (TRD+SVM) is shown in Figure 3.
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Repeated training and external validation in data excluding single measurement variables 

(where trend calculations could not be performed) resulted in an increase in logistic 

regression performance without substantial effect on other modeling algorithm performance. 

Trend features again served to improve model performance, shown in Table 1, with 

accuracy increasing from 83% (MV+LR) to 94% (TRD+SVM), and AUROC increasing 

from 89% (MV+LR) to 98% (TRD+SVM).

Feature reduction with RFE demonstrated peak accuracy at 15 variables: 88% accuracy with 

86% AUROC. SVMW demonstrated peak accuracy at 35 variables: 95% accuracy with 96% 

AUROC.

No variables were conserved across all models. The best model (TRD+SVM) used 51% 

trend analysis variables and 49% multivariate variables. Figure 4 shows a plot of the top 35 

variables selected by SVM weighting, providing the best visual discrimination of variables 

separating arrest cases from control subjects.

Discussion

The mortality rate of inpatient pediatric cardiac arrest is generally reported to be in excess of 

60%, with high disability rates in survivors (21-27). Antecedents to cardiac arrest identified 

in the literature have been described primarily in the context of patients in acute care units 

who deteriorate to the point of requiring transfer to an ICU or arresting (28-30). These 

studies suggest that deteriorations often are detectable hours before an arrest occurs and that 

patients often are evaluated beforehand but fail to receive treatment that could possibly 

prevent the event. Scoring tools have been developed and deployed to help Medical 

Emergency Teams (METs) objectively assess patients for risk of having life-threatening 

deteriorations (9,31). However, their target population is one of relatively healthy patients, 

and their purpose is to differentiate a patient who is sick from one who is healthy. ICUs 

contain a population of patients already determined to be sick, so scoring tools that have 

proven useful in an acute care setting are unable to identify the patients who are most likely 

to suffer cardiac arrest in an intensive care setting. Clinicians use data from earlier points in 

time to interpret new data and determine their implications. Tools that can perform these 

interpretations automatically are needed.

Physiologic monitors connected to patients are not good tools for identifying patients at risk 

of having cardiac arrest. They are plagued by such high rates of false alarms that nurses 

frequently ignore them(32). Several techniques relevant to this study have been employed to 

help reduce false alarms (33-36). Our approach combines the usefulness of multiple 

channels and multiple measurements, but also explicitly characterizes the outcome of 

interest (cardiac arrest) in terms of measureable risk factors based on a physiologic model 

(progressive shock).(37)

Deteriorations are frequent events in PICUs, and the vast majority do not result in cardiac 

arrest. Determining which deteriorations are associated with higher risk than others of 

progressing to arrest becomes one of clinical intuition. Objective scoring tools that 

accurately and continuously screen patients for arrest risk can help provide a decision 
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support based safety net that can present caregivers with automated assessments, help them 

perceive and interpret changes they may not otherwise be aware of, and help them to decide 

which deteriorations have the highest risk. In the same spirit that early warning scores have 

helped prevent death and disability in acute care units of the hospital, intensive care based 

warning scores could prevent death and disability in a population that is at much higher 

baseline risk.

We were surprised that the trend analysis model (without the raw time series data) 

outperformed models that included raw time series data, and that it even outperformed 

models whose variables were selected by automated feature selection tools. This is likely 

attributable to an overfitting effect in the raw time series data, since downsampling into 

trend data substantially reduces the variable:case ratio. We were also surprised that the 

external validation performance exceeded that of the internal 10-fold cross-validation. We 

believe this is most likely due to a “doubly restricted” set of targets available to the 

algorithms during internal validation: models trained for external validation used all training 

data, whereas internal cross-validation required additional cases to be held out during each 

train/test cycle.

This being the first case of use, there are many limitations to the study. First and foremost, 

although we have demonstrated a significant improvement in baseline performance by 

adding time series analysis results as model inputs, the incidence of cardiac arrest is so low 

that employing the current model would still result in an unacceptably high false alarm rate. 

A tool that continuously monitors risk for cardiac arrest requires a specificity of roughly 

99.99% in order to alarm once for every 7 patient-days. Even at that level, the false alarm : 

true alarm ratio would be close to 10:1. This is an important consideration for future work in 

continuous risk prediction models.

A second limitation to this study is the superficial nature of comparisons. We only included 

variables that relate to physiologic and laboratory findings, and were unable to include a 

number of desirable variables because they were not available electronically: comorbid 

conditions, prior ICU admissions, medications (including vasoactive infusions), 

transfusions, etc. Also, we only included trend analysis from the time series data. Numerous 

other analyses could be performed on the time series data and included as additional classes 

of data. Specifically, heart rate variability measures from the frequency domain of time 

series analysis could be used in this way. We only included four modeling algorithms of 

dozens that are available, and we limited our scope to using default model parameters 

because the number of permutations would otherwise be too large. It is unlikely that the 

optimum modeling algorithm is the SVM with its default parameters.

We focused this study on permutations of data classes used to train models, modeling 

algorithms, and feature selection. We were not able to include a sensitivity analysis of 

optimum resolutions in the prearrest timeframe. We selected a 60 minute high resolution + 

12 hour low resolution prearrest window based on intuition, and it is possible that different 

sized windows could improve predictive accuracy. Similarly, our data set contained data up 

to one minute prior to the arrest. We therefore do not know precisely how fast performance 

will deteriorate as data is serially restricted to prearrest windows that exclude the two to ten 
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minutes (or more) of data immediately adjacent to the arrest. Our control selection focused 

on culling data from different phases of care (peri-admission, maximum point of illness, and 

random point in time). Due to project constraints relating to much of the data predating 

implementation of our electronic medical record, we could not control for age, gender, 

diagnosis, or other similar factors. An important consequence of this limitation is that the 

absolute performance characteristics are not applicable in a real-world setting. However, our 

study was focused on comparing relative differences between time series based and 

multivariate based models, and to that end we feel this limitation was acceptable.

Finally, derangements in physiology leading to a cardiac arrest have different time scales: 

some patients may deteriorate from progressive shock slowly over hours from a slow bleed 

while others may deteriorate over seconds from something like an unplanned extubation. We 

expect that the work presented here is more likely to predict the first case rather than the 

second – for which bedside monitors already do an adequate job in most cases.

We believe the most meaningful finding in this study is that the trend analysis from the time 

series data were more important in discriminating cases from controls than were the raw 

time series data. This finding supports extending the scope of time series analysis to 

generate other data classes for modeling cardiac arrest in a PICU.

Conclusions

A traditional model using multivariate data with a linear regression algorithm misclassified 

cases 3.7 times more frequently than one that used time series trend analysis with a support 

vector machine algorithm. Features based on clinical calculations did not improve model 

performance. Most vital signs changes occur within five minutes of an arrest, although more 

subtle drops may be noted as many as 20 minutes before an arrest. We have demonstrated 

how time series trend analysis can be used to improve the predictive accuracy of a clinical 

prediction model for cardiac arrest in a PICU. Although these findings have significant 

potential to improve identification of patients at risk for cardiac arrest, and to prevent death 

and disability by avoiding their occurrence, further refinements are needed to improve 

model specificity prior to application in a real-world setting.

Acknowledgments

Financial support: NIH NLM 5 K22 LM008389 Internal research funding by Baylor College of Medicine and 
Texas Children's Hospital

References

1. Meert KL, Donaldson A, Nadkarni V, et al. Multicenter cohort study of in-hospital pediatric cardiac 
arrest. Pediatr Crit Care Med. 2009; 10:544–553. [PubMed: 19451846] 

2. Berg MD, Nadkarni VM, Zuercher M, et al. In-hospital pediatric cardiac arrest. Pediatr Clin North 
Am. 2008; 55:589–604. [PubMed: 18501756] 

3. Zideman DA, Hazinski MF. Background and epidemiology of pediatric cardiac arrest. Pediatr Clin 
North Am. 2008; 55:847–859. [PubMed: 18675022] 

4. de Mos N, van Litsenburg RRL, McCrindle B, et al. Pediatric in-intensive-care-unit cardiac arrest: 
Incidence, survival, and predictive factors. Crit Care Med. 2006; 34:1209–1215. [PubMed: 
16484906] 

Kennedy et al. Page 8

Pediatr Crit Care Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Kause J, Smith G, Prytherch D, et al. A comparison of antecedents to cardiac arrests, deaths and 
emergency intensive care admissions in Australia and New Aealand, and the United Kingdom--the 
ACADEMIA study. Resuscitation. 2004; 62:275–282. [PubMed: 15325446] 

6. Bharti N, Batra YK, Kaur H. Paediatric perioperative cardiac arrest and its mortality: Database of a 
60-month period from a tertiary care paediatric centre. Eur J Anaesthesiol. 2009; 26:490–495. 
[PubMed: 19300269] 

7. Schein RM, Hazday N, Pena M, et al. Clinical antecedents to in-hospital cardiopulmonary arrest. 
Chest. 1990; 98:1388–1392. [PubMed: 2245680] 

8. Reis AG, Nadkarni V, Perondi MB, et al. A prospective investigation into the epidemiology of in-
hospital pediatric cardiopulmonary resuscitation using the international Utstein reporting style. 
Pediatrics. 2002; 109:200–209. [PubMed: 11826196] 

9. Egdell P, Finlay L, Pedley D. The PAWS score: Validation of an early warning scoring system for 
the initial assessment of children in the emergency department. Emerg Med J. 2008; 25:745–749. 
[PubMed: 18955610] 

10. Hodgetts TJ, Kenward G, Vlachonikolis IG, et al. The identification of risk factors for cardiac 
arrest and formulation of activation criteria to alert a medical emergency team. Resuscitation. 
2002; 54:125–131. [PubMed: 12161291] 

11. Subbe C, Kruger M, Rutherford P, et al. Validation of a modified early warning score in medical 
admissions. QJM. 2001; 94:521–526. [PubMed: 11588210] 

12. Pollack MM, Patel KM, Ruttimann UE. PRISM III: An updated pediatric risk of mortality score. 
Crit Care Med. 1996; 24:743–752. [PubMed: 8706448] 

13. Pollack MM, Ruttimann U, Getson PR. Pediatric risk of mortality (PRISM) score. Crit Care Med. 
1988; 16:1110–1116. [PubMed: 3048900] 

14. Leteurtre S, Martinot A, Duhamel A, et al. Validation of the paediatric logistic organ dysfunction 
(PELOD) score: Prospective, observational, multicentre study. Lancet. 2003; 362:192–197. 
[PubMed: 12885479] 

15. Tontisirin N, Armstead W, Moore A, et al. Change in cerebral autoregulation as a function of time 
in children after severe traumatic brain injury: a case series. Childs Nerv Syst. 2007; 23(10):1163–
9. [PubMed: 17429655] 

16. Nadon R, Shoemaker J. Statistical issues with microarrays: Processing and analysis. Trends Genet. 
2002; 18:265–271. [PubMed: 12047952] 

17. Murphy D. Gene expression studies using microarrays: Principles, problems, and prospects. Adv 
Physiol Educ. 2002; 26:256–270. [PubMed: 12443997] 

18. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification 
models: A methodology review. J Biomed Inform. 2002; 35:352–359. [PubMed: 12968784] 

19. Rady MY. The role of central venous oximetry, lactic acid concentration and shock index in the 
evaluation of clinical shock: A review. Resuscitation. 1992; 24:55–60. [PubMed: 1332162] 

20. Fuhrman, BP.; Zimmerman, JJ. Pediatric critical care. 2nd edition. Mosby, Inc; St. Louis, MO: 
1998. 

21. Berlot G, Pangher A, Petrucci L, et al. Anticipating events of in-hospital cardiac arrest. Eur J 
Emerg Med. 2004; 11:24–28. [PubMed: 15167189] 

22. Tibballs J, Kinney S, Duke T, et al. Reduction of paediatric in-patient cardiac arrest and death with 
a medical emergency team: Preliminary results. Arch Dis Child. 2005; 90:1148–1152. [PubMed: 
16243869] 

23. Naeem N, Montenegro H. Beyond the intensive care unit: A review of interventions aimed at 
anticipating and preventing in-hospital cardiopulmonary arrest. Resuscitation. 2005; 67:13–23. 
[PubMed: 16150531] 

24. Chen Y. Pediatric in--intensive-care-unit cardiac arrest: New horizon of extracorporeal life 
support. Crit Care Med. 2006; 34:2702–2703. [PubMed: 16983285] 

25. Sharek PJ, Parast LM, Leong K, et al. Effect of a rapid response team on hospital-wide mortality 
and code rates outside the ICU in a children's hospital. JAMA. 2007; 298:2267–2274. [PubMed: 
18029830] 

26. Fineberg SL, Arendts G. Comparison of two methods of pediatric resuscitation and critical care 
management. Ann Emerg Med. 2008; 52:35–40. e13. [PubMed: 18407376] 

Kennedy et al. Page 9

Pediatr Crit Care Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Topjian AA, Nadkarni VM, Berg RA. Cardiopulmonary resuscitation in children. Curr Opin Crit 
Care. 2009; 15:203–208. [PubMed: 19469022] 

28. Kinney S, Tibballs J, Johnston L, et al. Clinical profile of hospitalized children provided with 
urgent assistance from a medical emergency team. Pediatrics. 2008; 121:e1577–1584. [PubMed: 
18519463] 

29. Akre M, Finkelstein M, Erickson M, et al. Sensitivity of the pediatric early warning score to 
identify patient deterioration. Pediatrics. 2010; 125:e763–769. [PubMed: 20308222] 

30. Edwards ED, Powell CVE, Mason BW, et al. Prospective cohort study to test the predictability of 
the Cardiff and Vale paediatric early warning system. Arch Dis Child. 2009; 94:602–606. 
[PubMed: 18812403] 

31. McGaughey J, Alderdice F, Fowler R, et al. Outreach and early warning systems (EWS) for the 
prevention of intensive care admission and death of critically ill adult patients on general hospital 
wards. Cochrane Database Syst Rev. Jul 18.2007 (3):CD005529. [PubMed: 17636805] 

32. Graham KC, Cvach M. Monitor alarm fatigue: Standardizing use of physiological monitors and 
decreasing nuisance alarms. Am J Crit Care. 2010; 19:28–34. [PubMed: 20045845] 

33. Orphanidou C, Clifton D, Khan S, et al. Telemetry-based vital sign monitoring for ambulatory 
hospital patients. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:4650–4653. [PubMed: 
19963616] 

34. Hravnak M, Edwards L, Clontz A, et al. Defining the incidence of cardiorespiratory instability in 
patients in step-down units using an electronic integrated monitoring system. Arch Intern Med. 
2008; 168:1300–1308. [PubMed: 18574087] 

35. Ismail F, Davies M. Integrated monitoring and analysis for early warning of patient deterioration. 
Br J Anaesth. 2007; 98:149–150. [PubMed: 17158134] 

36. Kunadian B, Morley R, Roberts AP, et al. Impact of implementation of evidence-based strategies 
to reduce door-to-balloon time in patients presenting with STEMI: Continuous data analysis and 
feedback using a statistical process control plot. Heart. 2010; 96:1557–1563. [PubMed: 20736208] 

37. Kennedy CE, Turley JP. Time-series analysis as input for clinical predictive modeling: modeling 
cardiac arrest in a pediatric ICU. Theor Biol Med Model. 2011; 8:40. [PubMed: 22023778] 

Kennedy et al. Page 10

Pediatr Crit Care Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Four classes of data were combined into five feature sets. Each feature set was used to train 

and test cardiac arrest prediction models using four modeling algorithms. Of the 1025 

variables, 20 were multivariate, 497 were raw time series, 288 were clinical calculations, 

and 220 were time series trend analysis. Differential performance between the Multivariate 

feature set with the Linear Regression algorithm and other models measured: 1) effects 

attributable to data class (for a given algorithm); or 2) effects attributable to modeling 

algorithm (for a given data class).

Kennedy et al. Page 11

Pediatr Crit Care Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Mean values for heart rate (position on y-axis with shaded 95% SEM), oxygen saturation 

(dot color), and systolic blood pressure (dot size) are shown for arrest (red line) and control 

(blue line) subjects over the span of 12 hours. Left to right, the first 12 values represent 

hourly averages, and the last 60 values represent minute-by-minute measurements. Heart 

rate indicators occurred very close to the arrest event (acute drop 1-2 minutes beforehand). 

Pulse oximetry and blood pressure indicators started noticeable trends downward at 15-20 

minutes beforehand.
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Figure 3. 
Area under the receiver operating characteristic curve (AUROC) for reference model (MV

+LR: 0.865) (red) and for best model (TRD+SVM: 0.975) (blue). The performance increase 

is attributable to the combined effects of adding trend analysis and using the SVM 

algorithm. Performance suffered if either change was made in isolation.
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Figure 4. 
Top 35 variables determined by support vector machine weighting. The columns are 

arranged in descending order of mean variable intensity of the arrest cases. However, the 

order does not reflect the weight of the variable in predicting arrest. Visually, the first four 

variables are highly correlated, and represent SPO2 values preceding the arrest: at t minus 

1,2,7, and 10. These raw SPO2 values did not rank in the top 5 weights, but two of the top 

five weights were trend calculations involving SPO2: 5 minute intercept, and 60 minute 

Kennedy et al. Page 14

Pediatr Crit Care Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



slope. Visually, arrest cases tend to transition from dark to light, whereas control cases tend 

to transition from light to dark.
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Table 1

Measures of model performance in validation data set. Mean performance of modeling algorithm (rows) or 

feature set (columns) is listed outside the table, with the best measure in boldface. Inside the table, reference 

performance for MV feature + LR algorithm is shown in the top left, underlined. Models using trend 

calculations without raw time series features (the TRD data class) along with the SVM algorithm 

demonstrated the best overall performance. Removing single measurement variables not subject to trend 

calculations did not significantly impact model performance.

Matrix of Model Performance in Validation Data

All Available Relevant Variables

Accuracy MV TS CC TRD ALL

LR 78% 69% 58% 77% 69% 70%

DT 72% 88% 80% 81% 86% 81%

NN 67% 63% 67% 72% 66% 67%

SVM 77% 89% 88% 94% 88% 87%

73% 77% 73% 81% 77%

AUROC MV TS CC TRD ALL

LR 87% 72% 60% 72% 80% 74%

DT 74% 90% 79% 83% 88% 83%

NN 82% 83% 80% 92% 79% 83%

SVM 82% 95% 96% 98% 97% 94%

81% 85% 79% 86% 86%

Variables Constrained to Trend Calculation Compatible

Accuracy MV TS CC TRD ALL

LR 83% 78% ---- 87% 84% 83%

DT 81% 81% ---- 81% 86% 82%

NN 64% 56% ---- 72% 64% 64%

SVM 73% 84% ---- 94% 91% 86%

75% 75% ---- 84% 81%

AUROC MV TS CC TRD ALL

LR 89% 79% ---- 87% 83% 85%

DT 81% 81% ---- 80% 86% 82%

NN 79% 74% ---- 92% 82% 82%

SVM 83% 91% ---- 98% 97% 92%

83% 81% ---- 89% 87%

Abbreviations:

AUROC = area under the receiver operating characteristic curve.

Data Classes:

MV = multivariate

TS = multivariate + time series

CC = multivariate + time series + clinical calculations

TRD = multivariate + trend analysis

ALL = all 1025 variables - 17
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Model classes:

LR = linear regression

DT = decision tree

NN = neural network

SVM = support vector machine
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