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Abstract

Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to 

receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early 

stages of infection, allowing the bacteria to initiate contact with host cells, colonize different 

tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also 

critical for bacterial-bacterial interactions and the formation of bacterial communities such as 

biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize 

sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing 

away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored 

to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These 

latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of 

uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-

pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed 

molecular details of the structures, assembly pathways, and functions of these adhesive organelles. 

In this review, we describe the different types of adhesins expressed by both Gram-negative and 

Gram-positive uropathogens, what is known about their structures, how they are assembled on the 

bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract 

infections.

INTRODUCTION

Bacteria assemble a variety of adhesive proteins (adhesins) on their surface to mediate 

binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are 

critical for early stages of infection, allowing the bacteria to initiate contact with host cells, 

colonize different tissues, and establish a foothold within the host. Adhesins recognize 

specific receptors expressed by specific subsets of host cells. Therefore, the repertoire of 

adhesins expressed by a pathogen play a major role in dictating the tropism of the pathogen 

toward specific host tissues and organs. Moreover, binding of bacterial adhesins to host cell 

receptors influences subsequent events by triggering signaling pathways in both the host and 

bacterial cells. These signaling pathways may determine whether the bacteria remain 

*Corresponding author: 242 Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120.
Peter Chahales: chahales.pn@gmail.com; Phone, 631-632-4231; Fax, 631-632-4294
David G. Thanassi: david.thanassi@stonybrook.edu; Phone, 631-632-4549; Fax, 631-632-4294

HHS Public Access
Author manuscript
Microbiol Spectr. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:
Microbiol Spectr. 2015 October ; 3(5): . doi:10.1128/microbiolspec.UTI-0018-2013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extracellular or become internalized, and influence the intracellular trafficking of invaded 

bacteria and their ability to survive and replicate (1,2). The adhesins expressed by a 

pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial 

communities such as biofilms. The ability to adhere to host tissues is particularly important 

for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to 

maintain sterility by washing away non-adherent pathogens.

Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to 

polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed 

pili or fimbriae, and were among the first identified virulence factors of uropathogenic 

Escherichia coli (UPEC) (3). Pili were first described in the late 1940’s and early 1950’s as 

bacterial surface structures distinct from flagella (4). Duguid and co-workers used the term 

fimbriae, Latin for thread or fiber, to describe surface appendages that allowed E. coli to 

bind to and agglutinate erythrocytes (5). Brinton later used the term pili, Latin for hair, to 

describe the non-flagellar surface structures expressed by E. coli (6). Ottow subsequently 

proposed that the term pili be reserved for the F or conjugative pili involved in bacterial 

mating, and that the term fimbriae should be used to describe surface fibers involved in 

adhesion (4). However, today the terms pili and fimbriae are generally used interchangeably. 

We will refer to these structures collectively as pili.

Various schemes have been proposed to classify the different types of pili (4,7–10). 

Although most of these classification schemes are no longer in common use, parts have 

entered the standard nomenclature. Pili were originally classified as mannose resistant (MR) 

or mannose sensitive (MS), based on their ability to agglutinate erythrocytes in the presence 

or absence of mannosides (11,12). This classification led to the term type 1 pili, which is 

still in current use, to refer to MS surface fibers. The MR pili were initially divided into the 

P and unknown (X) pili, with the unknown pili now defined to include the S, Dr, and 

additional pilus adhesins (3). Uropathogenic bacteria have been closely associated with the 

discovery and characterization of pili. The chromosomal gene clusters responsible for 

expression of both type 1 and P pili were first cloned from the J96 UPEC strain (13), and the 

genes coding for S pili were isolated from UPEC strain 536 (14). As discussed in detail in 

the following section, much of our current understanding of the structure, assembly, and 

functions of bacterial pili stems from studies of the type 1 and P pili originally isolated from 

UPEC.

Bacteria are now known to express a number of different types of pilus structures and other 

non-flagellar surface appendages (15). One such additional structure, termed curli, is 

expressed by UPEC and imparts unique characteristics to the bacteria that influence 

colonization within the urinary tract, including promoting biofilm formation (16). Curli are 

assembled by a completely different mechanism from pili such as the type 1 and P pili, and 

appear as aggregated masses on the bacterial surface rather than hairlike fibers. Pilus 

assembly is not restricted to Gram-negative bacteria. Pili were observed on the Gram-

positive bacterium Corynebacterium renale in the 1960’s (17,18), but this observation was 

largely forgotten until studies dating from 2003 by Ton-That and Scheewind to characterize 

pilus biogenesis in Corynebacterium diphtheriae (19,20). A number of different Gram-

positive bacteria are now known to assemble adhesive pili associated with virulence and this 
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is an active area of research. The Gram-positive pili have unique structural features and 

assembly mechanisms compared to Gram-negative pili (21,22).

Pili and other extended surface fibers increase the functional reach of adhesins, enabling the 

bacteria to act at a distance. Pili place adhesins outside capsular or other protective surface 

structures, allowing contact with receptors while maintaining the protective integrity of the 

bacterial envelope. The ability to initiate contact at a distance also provides a means for 

pathogenic bacteria to avoid detection or uptake by host cells. Despite these advantages of 

pilus adhesins, bacteria also express a range of non-pilus adhesins, which are anchored 

directly on the bacterial surface. Non-pilus adhesins confer intimate binding to surfaces and 

are often associated with formation of bacterial colonies and biofilms. Gram-negative 

uropathogens display several adhesins important for pathogenesis on their outer membrane, 

with the majority of these adhesins assembled by the autotransporter (type V) secretion 

pathway. Gram-positive uropathogens also display adhesins on their surface important for 

colonizing the urinary tract. These Gram-positive adhesins typically are covalently linked to 

the peptidoglycan cell wall and are termed MSCRAMMs (microbial surface components 

recognizing adhesive matrix molecules) (22,23).

Table 1 lists adhesins that contribute to infection of the urinary tract by Gram-negative and 

Gram-positive uropathogens. In this chapter we will describe the different types of adhesins, 

what is known about their structures, and how they are assembled on the bacterial surface. 

We will also describe the functions of specific adhesins in the pathogenesis of urinary tract 

infections (UTIs). For the Gram-negative adhesins, we will focus our description on UPEC, 

which serves as a model system and for which extensive studies have been done.

ADHESINS EXPRESSED BY GRAM-NEGATIVE UROPATHOGENS

PILI ASSEMBLED BY THE CHAPERONE/USHER PATHWAY

A wide range of Gram-negative bacteria use the chaperone/usher (CU) pathway to assemble 

a superfamily of virulence-associated adhesive surface fibers (24–27). The CU pathway 

takes its name from the components of its secretion machinery, which consist of a dedicated 

periplasmic chaperone and an integral outer membrane protein termed the usher. The CU 

pathway builds a diverse array of peritrichous surface fibers, ranging from thin, flexible 

filaments to rigid, rod-like organelles. For uropathogenic bacteria, pili assembled by the CU 

pathway mediate adhesion to receptors in the urinary tract, initiating infection and 

promoting bacterial colonization. Pili are critical virulence factors of uropathogenic bacteria 

and have been the subject of intense study (Table 1). The CU pili expressed by 

uropathogenic bacteria are exquisitely adapted to colonization within the urinary tract, 

engineered to withstand and take advantage of forces encountered during colonization such 

as the flow of urine (28–31). In addition to binding to host molecules, CU pili are important 

for bacterial-bacterial interactions, biofilm formation, and adhesion to abiotic surfaces. 

Moreover, binding of bacteria to host cells via CU pili modulates host signaling pathways 

and promotes subsequent stages of pathogenesis such as invasion inside host cells (32–38).

Genes coding for CU pili are found on both the bacterial chromosome and on plasmids, and 

are clustered together with a similar organization: a 5’ regulatory region that is followed by 
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a single downstream operon encoding the required pilus structural proteins and assembly 

components 7 (Fig. 1). CU gene clusters are often associated together with other virulence 

determinants in pathogenicity islands, which have characteristics indicating acquisition by 

horizontal gene transfer (39). A single bacterial genome often contains multiple CU 

pathways, which presumably provides the ability to adhere to a variety of different receptors 

and surfaces (40–42). A recent genomic analysis found that E. coli strains encode as many 

as 17 CU gene clusters and that UPEC strains encode from 9–12 intact CU gene clusters 

(43). Many of the CU gene clusters present in a bacterial genome are not expressed under 

laboratory growth conditions and their functions remain unknown (41). The expression of 

CU gene clusters is typically highly regulated, subject to phase variation, and responsive to 

environmental cues (44,45). Regulatory cross talk may occur among different CU gene 

clusters (46–48). This cross talk likely ensures that a given bacterium only expresses a single 

pilus at a given time, thus controlling adhesive specificity. Furthermore, expression of 

adhesive pili has been shown to be inversely correlated with the expression of flagella for 

motility (49).

Much of what we know about the biogenesis and functions of CU pili comes from work on 

the prototypical type 1 and P pili expressed by UPEC, which bind to receptors in the bladder 

and kidney, respectively. We will focus on these pili as models, but will also discuss 

additional CU pili identified as important for pathogenesis in the urinary tract. Although we 

will limit this discussion to pili expressed by UPEC, CU pili have been identified as 

virulence factors in other uropathogens, particularly for Proteus mirabilis (Table 1) (50).

Structure of CU Pili

The pilus fiber: Pili assembled by the CU pathway range from 2–10 nm in diameter and 

generally 1–3 µm in length. The pili are linear fibers built from thousands of copies of non-

covalently interacting subunit proteins, termed pilins. Some pili adopt a final helical 

quaternary structure, resulting in the formation of rigid, rod-like organelles. Alternatively, 

the pili may remain as linear, flexible fibers, which in some cases form amorphous or 

‘afimbrial’ structures. Many pili assembled by the CU pathway are composite structures 

containing both a rigid, helical rod, which extends out from the bacterial surface, as well as a 

thin, flexible tip structure, which is located at the distal end of the rod and contains the 

adhesive activity. Type 1 and P pili expressed by UPEC are prototypical composite 

organelles with distinct rod and tip structures (Fig. 1). The Afa/Dr family of pili expressed 

by UPEC and other pathogenic E. coli are well-studied examples of thin, flexible fibers that 

often have an amorphous appearance by electron microscopy (51).

The structures of pilins and many aspects of pilus assembly by the CU pathway are 

understood in atomic detail (26,52–57). All pilins contain an immunoglobulin-like (Ig) fold 

termed the pilin domain (Fig. 2). Canonical Ig folds comprise seven β-strands arranged into 

two sheets as a β-sandwich (58). However, pilins lack the seventh, C-terminal β-strand (the 

G strand) and thus are unable to complete their own fold (52–55). This missing strand 

results in a deep groove on the surface of the subunit, exposing its hydrophobic core. To 

complete their folds, pilins rely on structural information provided by interaction with the 

periplasmic chaperone or with neighboring subunits in the pilus fiber.

Chahales and Thanassi Page 4

Microbiol Spectr. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Subunit-subunit interactions in the pilus fiber are mediated by a mechanism termed donor 

strand exchange (54,55). Pilins contain a conserved N-terminal extension (Nte) in addition 

to the pilin domain. In the pilus fiber, the Nte of one pilus subunit is ‘donated’ to the 

preceding subunit, completing the Ig fold of the preceding subunit (Fig. 2). Therefore, the 

pilus fiber consists of an array of Ig folds, with each subunit noncovalently bound to the 

preceding subunit by donor strand exchange. This arrangement provides great mechanical 

strength and stability to the pili, which is reflected by the property that subunit-subunit 

interactions in the pilus are resistant to dissociation by heat and denaturants (59,60). A high 

level of mechanical strength is essential for the pili to maintain adhesion in the face of shear 

forces encountered from the flow of urine. The helical pilus rod provides an additional 

mechanism to withstand hydrodynamic forces in the urinary tract; the helical rod is able to 

uncoil under stress to an extended linear fiber, thereby acting as a spring or shock absorber 

to prevent breakage of the pilus and extend the lifetime of pilus-receptor interactions 

(28,29,31,61).

The pilus adhesin: The receptor-binding activity of pili is conferred by the pilus adhesin. 

For composite pili such as type 1 and P pili, the adhesin is located in single copy at the distal 

end of the tip fiber (Fig. 2). Such pili have been termed monoadhesive pili (25). In contrast, 

for pili lacking a district tip structure, the main structural subunit that builds the pilus fiber 

may also contain receptor-binding sites along exposed surfaces and thus the entire pilus may 

function in adhesion (57,62–64). Such fibers are termed polyadhesive pili. Afa/Dr pili are 

polyadhesive fibers with a single major structural subunit/adhesin; however, these pili also 

have a separate subunit, termed the invasin, with distinct binding activity and which 

promotes uptake inside host cells (38,64,65). The invasin subunit is present in single copy at 

the distal end of the pilus fiber (Fig. 2).

Crystal structures have been solved for several adhesins from monoadhesive pili (52,66–71). 

In contrast to other pilus subunits, the adhesins are two domain proteins, containing an N-

terminal receptor-binding or adhesin domain (in place of the Nte) and a C-terminal pilin 

domain. The pilin domain mediates incorporation of the adhesin into the pilus fiber and is an 

incomplete Ig-like fold as found for all CU pilins. Adhesin domains also have Ig-like folds, 

but the folds are complete (not lacking the terminal β-strand) and structurally distinct from 

the pilin domain. Despite their common architecture, adhesins vary greatly in sequence and 

employ distinct receptor binding mechanisms, reflecting their specific functions within the 

host (72). The FimH adhesin from type 1 pili folds as an elongated 11-stranded β-barrel with 

a jelly roll-like topology (52,67). The binding site for the mannose ligand is located at the tip 

of the adhesin domain and is formed by a deep, negatively-charged pocket surrounded by a 

hydrophobic ridge (Fig. 2B). In comparison, the adhesin domain of the P pilus adhesin PapG 

adopts a structure with two sub-regions; one region having a β-barrel fold similar to FimH 

and the other region having a unique, largely β-sheet structure that contains the binding site 

for the globoside receptor (66,68). In contrast to FimH, the receptor-binding site of PapG is 

located in a shallow groove along the side of the adhesin (Fig. 2B). For polyadhesive fibers 

such as Afa/Dr pili, both the main structural subunit and the tip-located invasin function as 

adhesins and both are single domain proteins with Ig-like pilin domains (57,62,65,73). 

However, the invasin subunit lacks an Nte donor strand, thus restricting its position to the tip 
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of the fiber. For the AfaD and DraD major subunits, distinct receptor-binding sites for 

CD55/decay accelerating factor (DAF) and for members of the carcinoembryonic antigen 

family (CEACAM) have been located along opposite sides of the pilin domain (25,57,62). 

These binding sites would be repetitively presented along the length of the assembled fiber.

Pilus adhesins such as FimH exhibit the property of shear-enhanced binding, which enables 

tighter binding under conditions of shear stress such as encountered during bacterial 

colonization of the urinary tract (30). The application of shear stress causes FimH to switch 

from a low-affinity to a high-affinity binding state. This greater affinity presumably allows 

the bacteria to avoid being washed away by the flow of urine, and may also provide a 

mechanism for the bacteria to discriminate between surface-located and soluble receptors, as 

binding to the latter will not result in force generation on the pilus and FimH will stay in the 

low-affinity state. The shear-enhanced binding of FimH is mediated by a catch-bond 

mechanism that involves allosteric activation of the adhesin domain (74). When 

incorporated into the type 1 pilus tip fiber, the pilin domain of FimH interacts with the 

adhesin domain, causing structural alterations of the adhesin that weaken its mannose 

binding pocket. However, the application of force to the pilus fiber causes the FimH pilin 

and adhesin domains to separate, allowing the binding pocket to clamp tightly around its 

mannose ligand (75). Moreover, the physical properties of both the type 1 pilus tip fiber and 

the helical pilus rod appear to be designed to optimize the shear-enhanced behavior of 

FimH, and the flexibility of the pilus tip likely provides FimH maximum opportunity to find 

its target receptors (76,77).

Pilus Assembly by the Chaperone/Usher Pathway

Formation of chaperone-subunit complexes in the periplasm: Pilus subunits are 

synthesized with an N-terminal signal sequence that directs them to the Sec general 

secretory pathway for translocation to the periplasm (78). The signal sequence is cleaved in 

the periplasm, and the subunits form stable, binary complexes with the periplasmic 

chaperone (Fig. 2A). The chaperone enables proper folding of the pilus subunits, prevents 

premature subunit-subunit interactions, and maintains the subunits in an assembly-

competent state (52–55). In the absence of the chaperone, pilus subunits misfold and form 

aggregates that are degraded by the DegP periplasmic protease (79,80).

The structure of the PapD chaperone and subsequent structures of chaperone-subunit 

complexes revealed the molecular basis for chaperone function in pilus biogenesis (52–

54,81–83). As described above, pilins have an incomplete Ig fold, lacking the C-terminal G 

β-strand. The chaperone contains two Ig-like domains oriented in an L or boomerang shape. 

The binding site for subunits resides in the cleft between the two domains and extends out 

along the chaperone’s N-terminal domain (domain 1). The chaperone functions by a 

mechanism termed donor strand complementation, in which the chaperone inserts its G1 β-

strand and a portion of its F1–G1 loop into the groove caused by the missing G strand of the 

subunit, completing the Ig fold of the pilin domain (Fig. 2A) (52,53,83,84). Conserved 

sequence differences in the F1–G1 loop region of chaperones defines two subfamilies of CU 

pathways: chaperones with a short F1–G1 loop belong to the FGS (F1–G1 short) subfamily 

and chaperones with a long F1–G1 loop belong to the FGL subfamily (64,85). Interestingly, 
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these differences in the chaperones correlate with differences in the types of surface fibers 

assembled. FGL chaperones assemble only thin or amorphous pili comprising only one or 

two types of pilins (such as Afa/Dr pili), whereas FGS chaperones assemble both rod-like 

and thin pilus fibers that generally comprise multiple different pilins and may have 

composite architectures (such as type 1 and P pili).

The groove in the pilin domain caused by the missing β-strand contains a series of binding 

pockets, termed P1–5 (54). The G1 β-strand donated by the chaperone contains a conserved 

motif of alternating hydrophobic residues, and during donor strand exchange these residues 

insert into the P1–4 pockets of the subunit, forming a β-zipper interaction (55,86). In FGL 

chaperones, the longer G1 donor strand fills the P5 binding pocket as well, but this 

interaction is weaker than at the other pockets (86,87). The chaperone G1 β-strand is 

inserted parallel to the F strand of the subunit, forming a non-canonical Ig fold. This, 

together with the large size of the residues inserted by the chaperone maintains pilins in an 

open, “activated” state, which enables subsequent assembly into the pilus fiber (54,55,87). 

The groove of the pilin domain is also the site of subunit-subunit interactions, which are 

mediated by the donor strand exchange reaction as described above for the pilus fiber 

(54,55). Thus, donor strand complementation by the chaperone couples the folding of pilins 

with the simultaneous capping of their interactive surfaces, preventing premature fiber 

assembly in the periplasm. Recent studies have shown that chaperones also perform a 

quality control function during the initial binding of pilus subunits and that formation of 

chaperone-subunit complexes results in an allosteric change in the chaperone that permits 

binding to the outer membrane usher assembly platform (88,89).

Assembly of the pilus fiber at the outer membrane: Chaperone-subunit complexes must 

interact with the outer membrane usher for release of the chaperone, assembly of subunits 

into the pilus fiber, and secretion of the fiber to the cell surface through the usher channel 

(56,90). The usher acts as a pilus assembly catalyst, accelerating the rate of subunit 

incorporation into the pilus fiber (91). Subunit-subunit interactions form at the periplasmic 

face of the usher via the donor strand exchange mechanism (54,55). The donated subunit 

Nte contains a conserved motif of alternating hydrophobic residues, similar to the chaperone 

G1 β-strand (92,93). At the usher, the hydrophobic residues of the Nte from an incoming 

chaperone-subunit complex insert into the subunit groove of the preceding chaperone-

subunit complex bound at the usher, displacing the donated G1 β-strand of the chaperone 

from the preceding subunit by a concerted strand displacement mechanism that initiates at 

the P5 pocket (54,55,86,94,95). In contrast to the donated chaperone β-strand, the Nte is 

inserted anti-parallel to the F strand of the preceding subunit and inserts smaller-sized 

residues into the subunit groove, thus completing the Ig fold of the pilin domain in a 

canonical fashion and allowing the subunit to adopt a highly stable final state (54,55,60,87). 

ATP is not available in the periplasm and pilus biogenesis at the outer membrane usher does 

not require input from other energy sources (96,97). The canonical Ig fold formed by donor 

strand exchange represents a more compact, lower energy state compared to the non-

canonical Ig fold formed by donor strand complementation with the chaperone (54,55,87). 

This topological transition from the higher-energy chaperone-subunit complex to the lower-
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energy subunit-subunit interaction provides the driving force for fiber formation and 

secretion at the usher (98).

Pili are assembled in a top-down order, with the adhesin incorporated first, followed by the 

rest of the pilus tip and finally the rod. Each subunit specifically interacts with its 

appropriate neighbor subunit in the pilus, with the specificity of binding determined by the 

donor strand exchange reaction (99–101). In addition, the usher ensures ordered and 

complete pilus assembly by differentially recognizing chaperone-subunit complexes 

according to their final position in the pilus; i.e., chaperone-adhesin complexes have highest 

affinity for the usher, whereas chaperone-rod subunit complexes have low affinity (102–

104). The usher channel is only wide enough to allow secretion of a linear fiber of folded 

pilus subunits (56,90). Therefore, the pilus rod is constrained to a linear fiber as it passes 

through the usher and only converts to its final helical form upon reaching the bacterial 

surface.

The pilus usher: Ushers are large, integral outer membrane proteins containing five 

domains: a central transmembrane β-barrel domain that forms the secretion channel, a 

middle domain located within the β-barrel region that forms a channel gate (the plug 

domain), a periplasmic N-terminal domain (NTD), and two periplasmic C-terminal domains 

(CTD1 and CTD2) (Fig. 3) (56,90,105–109). The NTD provides the initial binding site for 

chaperone-subunit complexes and functions in the recruitment of periplasmic complexes to 

the usher (105,110). The CTDs provide a second binding site for chaperone-subunit 

complexes and anchor the growing pilus fiber (56). The usher is present as a dimeric 

complex in the OM, but only one channel is used for secretion of the pilus fiber and the 

function of the usher dimer remains to be determined, particularly since the usher monomer 

appears to be sufficient for pilus assembly (56,90,106,111,112).

The structure of the type 1 pilus usher FimD bound to the FimC-FimH chaperone-adhesin 

complex was recently solved, revealing the usher pilus assembly machine in action (Fig. 3) 

(56). The usher channel is formed by a 24-stranded β-barrel that is occluded by an internal 

plug domain (56,90). The binding of the FimH adhesin to FimD activates the usher for pilus 

biogenesis (91,103,113), resulting in displacement of the plug to the periplasm and insertion 

of the FimH adhesin domain inside the usher channel. The FimH pilin domain remains in 

complex with the FimC chaperone and bound to the usher CTDs (Fig. 3). CU pili extend by 

step-wise addition of new chaperone-subunit complexes to the base of the fiber. New 

chaperone-subunit complexes are recruited by binding to the usher NTD, which is 

unoccupied in the FimD-FimC-FimH structure (56,105,110). Modelling studies suggest that 

binding of a chaperone-subunit complex to the usher NTD would perfectly position the Nte 

of the newly recruited subunit to initiate donor strand exchange with the P5 pocket of the 

subunit bound at the usher CTDs, providing a molecular explanation for the catalytic 

activity of the usher in pilus assembly (56). Following donor strand exchange, the chaperone 

is displaced from the subunit bound at the CTDs and released into the periplasm. To reset 

the usher for another round of subunit incorporation, the newly incorporated chaperone-

subunit complex must transfer from the NTD to the CTDs, concomitant with translocation 

of the pilus fiber through the usher channel toward the cell surface. Repeated iterations of 

this cycle would then result in assembly and secretion of a complete pilus fiber.
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Functions of CU Pili Expressed by UPEC—A number of different CU pili have been 

identified that contribute to colonization of the urinary tract by UPEC (Table 1). In addition 

to type 1 and P pili, which are described in detail in the following paragraphs, CU systems 

with demonstrated or putative roles in UTIs include Afa/Dr, S, F1C, F9, type 3, Auf, Yad 

and Ygi pili (51,114–120). Further characterization is needed for many of these systems, 

which may have roles in direct adherence to host receptors or may facilitate bacterial-

bacterial interactions and biofilm formation. The best characterized of these additional CU 

pili are the Afa/Dr family, which includes Dr, F1845, Afa, Nfa and Aaf pili. Afa/Dr pili are 

thin, polyadhesive fibers that are expressed by diffusely adhering strains of diarrheagenic E. 

coil (DAEC) in addition to being prominent virulence factors of UPEC (51,114,121). Afa/Dr 

adhesins bind to the Dra blood group antigen and have affinity for DAF, members of the 

CEACAM family, type IV collagen, and α5β1 integrin (122–124). In contrast to the Afa/Dr 

polyadhesins, S and F1C pili are structurally similar to type 1 and P pili. S pili bind to sialyl-

galactoside moieties on extracellular matrix proteins such as fibronectin and laminin 

(125,126). S pili are expressed by clinical UPEC isolates and expression of S pili confers 

binding to bladder and kidney epithelial cells, indicating potential roles in ascending UTIs 

(115,127). F1C pili have affinity for globotriaosylceramide, which is present on the kidney 

epithelium, and for galactosylceramide, found in the bladder, kidney, and ureters (128).

Type 1 pili: Type 1 pili are expressed by most strains of E. coli and mediate binding to a 

variety of surfaces and host tissues in a mannose-sensitive manner. Type 1 pili are a major 

virulence factor of UPEC and antibodies to the type 1 pilus adhesin FimH provide protection 

against urinary tract infection by E. coli in both murine and primate models (129,130). 

However, a definitive requirement for type 1 pili in human UTIs has remained elusive (131), 

likely due to the large repertoire of adhesins expressed by uropathogenic strains. UPEC use 

type 1 pili to bind to α-D-mannosylated proteins present in the bladder, leading to bacterial 

colonization, bladder epithelial cell invasion, and the development of cystitis (33,132). In 

addition to urothelial cells, type 1 pili have been reported to bind to Tamm-Horsfall protein, 

surface glycoproteins of immune cells, extracellular matrix proteins, and abiotic surfaces 

(133–136).

Type 1 pili are encoded by the fim gene cluster (Fig. 1), which is present on the chromosome 

of pathogenic as well as non-pathogenic and laboratory strains of E. coli. Type 1 pili are 

built from 4 different types of pilins arranged into a rigid helical rod measuring 6.9 nm in 

diameter, and a short tip fiber measuring 2 nm in diameter and generally 10–19 nm in length 

(Fig. 1) (137,138). The type 1 pilus rod is built from greater than 1,000 copies of the FimA 

major pilin arranged into a right-handed helix (138). Type 1 pilus tips contain a single copy 

of the FimH adhesin at the distal end, followed by the FimG and FimF adaptor subunits, 

which are generally present in single copy (Fig. 2A) (75,137,138). The mannose binding site 

of the FimH adhesin is located in a deep pocket at the tip of the adhesin domain (Fig. 2B) 

(67). This places the receptor-binding site at the most distal end of the type 1 pilus organelle, 

which presumably facilitates access of the pilus to its receptor.

Studies using the murine urinary tract infection model have revealed many aspects of type 1 

pilus function during UPEC pathogenesis. Upon entering the urinary tract, UPEC use their 

type 1 pili to bind to uroplakins, mannosylated proteins that coat the luminal surface of the 
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bladder, allowing the bacteria to colonize the bladder and avoid being washed out by the 

flow of urine (33,139). Type 1 pili not only mediate binding of UPEC to the bladder surface, 

but also trigger host cell signaling pathways that lead to actin rearrangement in the urothelial 

cells and invasion of the bacteria inside the cells by a zipper-like mechanism (32,33,140). 

Additionally, bacterial uptake is facilitated by binding of type 1 pili to β1 and α3 integrins 

(34). Binding of E. coli to the urothelium leads to induction of innate host cell responses, 

such as upregulation of proinflammatory cytokines and cell death pathways (33,140,141). 

The FimH adhesin acts as a pathogen-associated molecular pattern that is recognized by 

Toll-like receptor 4 (TLR4), present on bladder epithelial cells as well as macrophages, and 

stimulates immune signaling pathways through a mechanism independent of LPS (36).

Following uptake inside bladder epithelial cells, UPEC are initially contained within 

vesicles, which may be routed for exocytosis in a TLR4- and cyclic AMP-dependent 

mechanism that may be used by the host cells to expel the invading bacteria (142). Bacteria 

that evade expulsion enter the cytoplasm where they rapidly replicate to form aggregates 

termed intracellular biofilm-like communities or pods (143,144). Bacteria within these 

intracellular communities are protected from host innate immune responses and shielded 

from antibiotics (145). Type 1 pili, which are known to contribute to the formation of 

extracellular biofilms (136), are also expressed by the intracellular bacteria and required for 

formation of the pods, separate from their function in host cell binding and invasion 

(35,146). Urothelial cells respond to UPEC invasion by undergoing programmed cell death 

and exfoliating into the bladder lumen, a host-defense mechanism to wash out the colonizing 

bacteria (33). However, UPEC counter this by fluxing out of the host cells and undergoing 

additional rounds of attachment to and invasion of neighboring cells, presumably mediated 

by type 1 pili as in the initial round of infection (144,147). During this process, the E. coli 

may gain access to the underlying bladder epithelium, leading to the formation of quiescent 

bacterial reservoirs from which recurrent infections can be seeded to begin the infection 

process anew (147,148). Thus, type 1 pili function at multiple different points during UPEC 

pathogenesis in the urinary tract and have both extracellular and intracellular roles.

P pili: P pili are expressed by UPEC and are strongly associated with the ability of the 

bacteria to colonize the kidney and cause pyelonephritis (66,149,150). P pili bind to Gal(α1–

4)Gal moieties present in the globoseries of glycolipids found in kidney epithelial cells. The 

glycolipid receptor is also part of the P blood group antigen, thus allowing P pilus-mediated 

agglutination of human erythrocytes (151). P pili are encoded by the chromosomal pap 

(pyelonephritis-associated pili) gene cluster (Fig. 1), which is present on pathogenicity 

islands of UPEC strains, and also found in E. coli causing neonatal meningitis and avian 

pathogenic strains (152). Individual E. coli strains may carry more than one pap gene 

cluster, located in different pathogenicity islands (153,154). There are three predominant 

alleles of the P pilus adhesin PapG – class I, II and III – which have specificities for receptor 

isotypes that differ in carbohydrate residues distal from the Gal(α1–4)Gal core (155,156). 

Class II PapG is correlated with human kidney infections, whereas class III PapG is 

associated with colonization of the human bladder.

P pili are built from 6 different structural subunits that form a right-handed helical rod and 

distal tip fiber, similar to type 1 pili (Fig. 1). The P pilus tip fiber is longer and more flexible 
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compared to type 1 pilus tips, measuring ~40 nm in length. The P pilus tip is composed 

mainly of PapE, which is present at approximately 5–10 copies per pilus. The PapG adhesin 

is present in single copy at the distal end of the tip and is joined to PapE via the PapF 

adaptor subunit (157,158) (Fig. 2A). Another adaptor subunit, PapK, links the tip fiber to the 

pilus rod (158). The helical P pilus rod measures 8.2 nm in diameter and is built from a 

linear homopolymer of over 1000 copies of the PapA major pilin (159). The P pilus rod is 

terminated by the PapH minor pilin, which also plays a role in anchoring the pilus fiber in 

the OM (160,161).

The glycolipid binding site on the PapG adhesin is formed by a shallow pocket on one side 

of the adhesin domain (Fig. 2B) (66,68). This is in contrast to the tip-located mannose-

binding site of FimH on type 1 pili. P pili have a longer, more flexible tip fiber compared to 

type 1 pili. The flexibility of the P pilus tip and side-on orientation of the PapG binding site 

likely function in tandem to facilitate docking of the adhesin onto the globoside moiety of 

the glycolipid receptor, which is oriented parallel to the membrane surface (66).

Expression of P pili promotes ascending urinary tract infection and facilitates colonization 

of the kidneys by E. coli (150,162). Consistent with a role in pathogenesis, vaccination with 

P pili was shown to provide protection against pyelonephritis in both murine and primate 

models (163,164). However, studies using P pilus mutants have had variable results in 

establishing an essential requirement for the pili in kidney infections, likely due to the many 

different adhesins expressed by UPEC strains (165). As for type 1 pili, P pilus-mediated 

adhesion of UPEC to the urothelium stimulates cytokine production and resultant 

inflammatory responses in the urinary tract, which likely exacerbates kidney damage during 

acute pyelonephritis (37,166,167). Binding of P pili to its glycolipid receptor in kidney 

epithelial cells causes release of the second messenger ceramide, which forms the membrane 

anchor portion of the receptor. Ceramide is as an agonist for TLR4, and thus provides a 

potential link between bacterial adhesion and induction of innate immune pathways (168). 

PapG-mediated binding also activates signal transduction pathways within the bacteria 

(169). These pathways result in upregulation of iron acquisition systems and may prepare 

UPEC for colonization of the urinary tract.

CURLI

Curli fibers, also called thin aggregative fimbriae, are produced by Gram-negative enteric 

bacteria such as E. coli and Salmonella and form part of a complex extracellular matrix that 

contributes to adhesion, biofilm formation, host colonization, and invasion (16,170–172). 

The expression of curli imparts special properties to biofilm structures, allowing attachment 

to normally resistant surfaces such as Teflon and stainless steel (170). Curli were first 

characterized by Normark and colleagues as novel bacterial surface structures that conferred 

binding to fibronectin (173). Curli bind to range of host molecules in addition to fibronectin, 

including laminin, human contact phase proteins, and MHC class I (174–176). Most bacteria 

optimally express curli at temperatures of 30°C or lower, consistent with a central role in 

biofilm formation and colonization of environmental surfaces. However, many clinical E. 

coli strains, including UPEC isolates, express curli at host temperature (37°C) (177,178). In 
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addition to conferring adhesive and aggregative properties to bacteria, curli expression is 

sensed by the host and modulates host immune responses (177,179).

Curli share many properties with eukaryotic amyloid fibers. Amyloid fibers are typically 

associated with human neurodegenerative illnesses such as Alzheimer’s, Parkinson’s, and 

prion-mediated diseases (180,181). In contrast to these diseases, which are thought to be due 

to uncontrolled protein folding, curli belong to a growing class of fibers termed ‘functional 

amyloid’, whose expression is controlled and directed for the benefit of the expressing cell 

(182,183). Curli assemble as thin, tangled fibers that are extraordinarily stable and impart 

important physiological properties to bacteria, some of which play significant roles during 

host-pathogen interactions. The pathway for assembly of curli on the bacterial surface is 

distinct from the CU pathway and other pilus assembly systems, and instead utilizes an 

extracellular nucleation-precipitation mechanism, in which curli subunit proteins are first 

secreted to the cell surface before being incorporated into the growing fiber.

Curli Structure—Curli form densely aggregated masses on the bacterial surface (Fig. 4B). 

Individual curli fibers measure 3–4 nm in diameter and are of varying lengths 

(173,184,185). Similar to eukaryotic amyloid, curli fibers are non-branching, rich in β-sheet 

structure, and highly resistant to the action of proteases and denaturants (182,184,186). Curli 

and other amyloid fibers also share the property of binding to specific dyes such as Congo 

red and thioflavin T (187).

Curli fibers expressed by E. coli are composed of repeating copies of the major subunit 

protein, CsgA (Fig. 4A). Each CsgA molecule contains five conserved repeating units (R1 

through R5), which are predicted to form two parallel, stacked β-sheets containing five β-

strands each (Fig. 4C) (16,188). Curli fibers also contain a minor, nucleating subunit; in E. 

coli this is CsgB. CsgB shares 30% sequence identity with CsgA, both proteins are of 

identical predicted size, and both are built from similar repeat motifs (189). The R1 and R5 

repeat units, which flank the N and C termini of CsgA, mediate intersubunit contacts and are 

important for CsgB-mediated nucleation of the CsgA fiber as well as for CsgA-CsgA 

polymerization (190). In contrast, the R2-to-R4 internal repeats govern the kinetics of fiber 

polymerization, slowing the rate of polymerization so as to limit toxicity during curli 

production (190). Structural analysis indicates that the individual CsgA subunits in the curli 

fiber stack on top of each other, forming an extended β-helix-like structure (185). Therefore, 

the final fiber consists of an expanse of β-sheets oriented parallel to the fiber axis, but with 

the individual β-strands oriented perpendicular to the fiber axis. Such a cross β-strand 

structure is a hallmark of amyloid fibers (181,185).

The exact binding sites present on curli fibers and the mechanism by which curli bind to a 

wide range of receptors is unknown. A study examining synthetic peptides corresponding to 

overlapping regions of the CsgA sequence identified N- and C-terminal regions of 24 and 26 

residues, respectively, that recapitulated binding to several different human proteins (176). 

In addition, CsgB may have a direct role in adhesion separate from its role in nucleating 

polymerization of CsgA. This is suggested by studies in S. enterica, in which a deletion of 

csgB, but not csgA, decreased adherence to alfalfa sprouts (191).
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Curli Assembly on the Bacterial Surface—The genes required for curli biogenesis in 

E. coli are encoded by the divergently transcribed csgBAC and csgDEFG operons (Fig. 4A) 

(192). The csgBAC operon encodes the major structural subunit CsgA and the nucleator 

protein CsgB (189,192). CsgC is a periplasmic protein with structural similarity to oxido-

reductases (193). The function of CsgC is not understood, but it may be important for proper 

function of the CsgG outer membrane channel (193). Expression of the csgBAC operon is 

dependent on the positive regulator CsgD, which is part of the csgDEFG operon (192,194).

Extracellular nucleation-precipitation: Assembly of curli on the bacterial surface occurs 

by an extracellular nucleation-precipitation pathway (16). In the absence of the CsgB 

nucleator protein, curli are not assembled; instead, CsgA is released from the bacteria in an 

unpolymerized, soluble form (184,189). This released CsgA can be assembled into curli 

fibers on recipient cells expressing only CsgB (189). This process, termed interbacterial 

complementation, demonstrates that curli assembly may take place entirely on the bacterial 

surface, and that assembly likely involves a conformational change in CsgA that is triggered 

by CsgB. Thus, CsgA is secreted outside the bacteria as a soluble, unstructured monomer, 

which is then nucleated into a fiber on the cell surface by interaction with CsgB or with the 

structurally altered CsgA in the growing curli fiber (Fig. 4A) (182,195).

Curli assembly machinery: The secretion and polymerization of CsgA is dependent on the 

CsgE, CsgF and CsgG proteins, the functions of which are not fully understood (192). CsgG 

is an outer membrane lipoprotein that is thought to form the channel for secretion of CsgA 

and CsgB to the cell surface (196). In the absence of CsgG, curli fibers are not assembled 

and the CsgA and CsgB subunits become unstable (184). Consistent with a channel protein, 

CsgG forms oligomeric, ring-shaped complexes and overexpression of CsgG correlates with 

increased pore-formation in the outer membrane (196). Structural analysis of CsgG predicts 

that it belongs to the recently characterized class of transporters that assemble in the outer 

membrane as α-helical rather than β-barrel channels (193). The CsgG-mediated secretion of 

CsgA is dependent on the N-terminal 22 amino acids of the mature CsgA protein. These 

residues are not predicted to be an integral part of the curli fiber, suggesting that they act as 

a secretion signal (196,197).

CsgE is a periplasmic protein and its expression is important for stability of the CsgA and 

CsgB subunits (184). Consistent with a role in proper folding of the curli subunits, csgE 

mutant bacteria do not act as donors or acceptors for interbacterial complementation and the 

few curli fibers produced by csgE mutants are morphologically distinct from curli expressed 

by wild-type cells (184). CsgE physically interacts with CsgG at the outer membrane, and 

CsgE may chaperone periplasmic CsgA subunits to the CsgG secretion channel by 

interacting with the N-terminal CsgA signal sequence (198). CsgE may also function to 

prevent premature fiber assembly in the periplasm (198). The CsgF protein also interacts 

with CsgG at the outer membrane; however, CsgF localizes to the cell surface rather than 

the periplasm (199). csgF mutants have a distinct phenotype, producing reduced levels of 

curli fibers and secreting soluble, unpolymerized CsgA (184,199). Similar to csgB mutants, 

csgF mutants act as donors but not acceptors for interbacterial complementation. In 

agreement with this behavior, CsgF influences the folding of CsgB and localization of CsgB 
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to the bacterial surface, suggesting that CsgF functions as an extracellular chaperone for 

CsgB (199).

Functions of Curli in UPEC—Curli are multifunctional surface fibers, conferring 

adhesion to specific host molecules, promoting bacterial community behaviors such as 

aggregation and biofilm formation, and modulating interactions with the host immune 

system (16,170–172,178,200). Curli bind to the extracellular matrix proteins fibronectin and 

laminin (173,174). Curli also bind to human contact phase proteins including H-kininogen, 

fibrinogen, and factor XII (175,176). By binding to the contact phase proteins, curliated 

bacteria slow clotting, which could facilitate bacterial dissemination throughout the host 

(177,201). In addition, curli interact directly with molecules of the immune system. MHC 

class I molecules, which present antigens to T cells, bind to curli and curliated bacteria 

adhere better to tissue culture cells that over-produce MHC class I (202).

UPEC and other E. coli isolates produce curli at the host temperature of 37°C, including 

UPEC strains freshly isolated from the urine of infected patients (178,201). This supports a 

functional role for curli in colonization of the urinary tract. Curli expression enhances 

adhesion to urothelial cells in cell culture, and the ability to express curli correlates with 

increased colonization of the urinary tract during early stages of the murine infection model 

(178,203,204). Curli-mediated binding to host molecules may also facilitate uptake inside 

host cells (16,172,173). Expression of curli genes promoted invasion of human epithelial 

cells by a non-pathogenic K12 strain of E. coli, and invasion was inhibited by addition of 

peptides that blocked curli formation (172,205).

In addition to binding to specific host molecules, a major functional role of curli in UPEC is 

likely promoting bacterial aggregation and biofilm formation. Indeed, curli were shown to 

contribute to biofilm formation by UPEC distinct from the action of type 1 pili (203). 

Finally, curli expression by UPEC appears to be an important modulator of host immune 

responses during infection. Curli fibers are recognized by host cells as a PAMP (pathogen-

associated molecular pattern) (200). Curli recognition is mediated by TLR2, resulting in the 

activation of pro-inflammatory molecules such as IL-6, IL-8, and TNF-α (177,200). A 

recent study demonstrated multiple functions for curli during infection of the murine urinary 

tract: facilitating colonization, protecting the bacteria from the action of host anti-microbial 

peptides, and provoking an increased pro-inflammatory response (178). Taken together, 

these results demonstrate that curli play important and varied roles during both initial 

colonization and subsequent stages of the infectious process.

AUTOTRANSPORTERS AND OTHER NON-PILUS ADHESINS

In addition to assembling adhesins in the form of extended pili or curli fibers, Gram-

negative uropathogens also display adhesins directly on their cell surface. The majority of 

these non-pilus adhesins are assembled on the outer membrane by the autotransporter (type 

V) secretion pathway (206,207). Autotransporters are a widespread family of secreted 

proteins with activities ranging from proteases and toxins to adhesins and invasins. The term 

autotransporter was first used by Meyer and colleagues to describe the IgA1 protease of 

Neisseria meningitidis, and refers to the idea that a single polypeptide encodes both 
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functional and secretion activities (208). The range of autotransporter functions is reflected 

by additional well-studied autotransporters such as the NalP protease of N. meningitidis, the 

VacA cytotoxin of Helicobacter pylori, and the Pertactin and AIDA-I adhesins of Bordetella 

pertussis and E. coli, respectively (209–213). Autotransporters are characterized by the 

presence of a conserved C-terminal translocator or β-domain that inserts into the outer 

membrane and directs the secretion of an N-terminal passenger or α-domain, which carries 

the functional activity, to the cell surface (206,207). Following secretion, the passenger 

domain may remain tethered to the outer membrane by the translocator domain or may 

undergo proteolytic cleavage to be released into the extracellular environment (Fig. 5) 

(207,209). In some cases, such as with AIDA-I and related autotransporters, the passenger 

domain remains associated with the cell surface even after proteolytic cleavage, through 

noncovalent interactions with the translocator domain (214).

The contributions of autotransporters to bacterial pathogenesis in the urinary tract are still 

being defined, and their identification has largely proceeded from genomics studies and 

efforts to characterize UPEC-specific virulence factors (Table 1). One reason for the relative 

paucity of information on surface-located adhesins compared to pili is that the expression of 

pili or other extended surface structures may obscure or sterically hinder the functions of 

proteins present at the bacterial surface (215,216). Thus, autotransporter adhesins are likely 

to be important under conditions in which pili expression is turned off. Eleven 

autotransporters have been identified in the genome of UPEC strain CFT073, a prototypical 

pyelonephritis isolate (153,217,218). Seven of these belong to the AIDA-I family of 

autotransporter adhesins, and at least four of the UPEC autotransporters function in adhesion 

to host cells and contribute to fitness in the urinary tract, as discussed below. At least one of 

the other UPEC autotransporters, Sat, is not an adhesin but is an important protease and 

toxin of UPEC (219). In addition to UPEC, autotransporter adhesins that contribute to 

colonization of the urinary tract have also been identified in P. mirabilis (220).

This section will provide an overview of the structure and assembly of autotransporters, and 

will describe the functions of autotransporter adhesins that have been characterized in 

UPEC. We will also describe two additional non-pilus adhesins expressed by UPEC that are 

assembled by distinct mechanisms.

Autotransporter Structure

The translocator domain: Autotransporters contain a C-terminal translocator domain and 

N-terminal passenger domain. The translocator domain is the most conserved feature of 

autotransporters, whereas passenger domains exhibit a high level of sequence variation 

(221). Translocator domains belonging to the classical (type Va) autotransporter family are 

typically 250–300 residues in length and insert into the outer membrane to form a β-barrel 

channel. Crystal structures for several translocator domains have been solved, revealing a 

typical outer membrane β-barrel structure comprising 12 antiparallel transmembrane β-

strands, enclosing a channel of ~10–13 Å diameter (Fig. 6) (210,222,223). An α-helical 

linker region important for secretion of the passenger domain precedes the β-barrel, and the 

helix and barrel together have been termed the translocation unit (224–226). In the 

autotransporter structures, the α-helical linker occupies the lumen of the β-barrel channel 
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(Fig. 6) (210,222,223). The N terminus of the α-helix is oriented toward the bacterial 

surface, suggesting that translocation of the passenger domain would occur through the β-

barrel channel. However, as discussed below, there is debate about the exact mechanism of 

passenger domain secretion.

Some autotransporters have smaller translocation domains, consisting of only ~70–80 amino 

acids. These proteins trimerize to form a single 12-stranded β-barrel, with each monomer 

contributing 4 strands (Fig. 6) (227–229). The Hia and YadA adhesins of H. influenzae and 

Y. pestis are prototypical members of this subfamily (type Vc), termed trimeric 

autotransporter adhesins (206,230,231). The β-barrel formed by the Hia translocator domain 

has a central pore of 18 Å diameter, which is sufficient to accommodate passage of the three 

α-helical linker segments that connect to the extracellular passenger domains (Fig. 6) (229). 

Of the 11 autotransporters identified in UPEC, only UpaG belongs to the trimeric subfamily 

(232).

The passenger domain: The N-terminal passenger domains of autotransporters are 

structurally and functionally diverse, but share important conserved features. Most 

passenger domains are large in size and contain repetitive sequence motifs that assemble 

into repetitive structural elements (206,207). The sequence motifs typically form β-sheets 

that are arranged into an extended β-helix, with each rung of the helix comprising three β-

strands in a triangular arrangement (Fig. 6) (212,233–235). In different autotransporters, this 

β-helix core structure may be modified with interspersed extended loops, globular domains, 

or other elements, which contain specific functions such as receptor binding sites or protease 

activity. However, not all passenger domains have a β-helix architecture. For example, the 

complete structure of the EstA autotransporter from Pseudomonas aeruginosa revealed a 

typical 12-stranded β-barrel translocator domain, but a globular passenger domain primarily 

composed of α-helices and loop sequences (Fig. 6) (222).

Passenger domains from the trimeric autotransporter subfamily exhibit a distinct architecture 

compared to the classical autotransporters, but also assemble into extended structures built 

from repetitive sequence elements. Members of this family typically function as adhesins 

and the passenger domains remain attached to the outer membrane translocator rather than 

undergoing proteolysis. The passenger domains trimerize, matching the trimeric structure of 

the translocator domain, and form extended rod-shaped structures. A common architecture is 

shared by the trimeric passenger domains, comprising a globular N-terminal head region 

with extensive β-sheet structure, followed by an extended coiled-coil stalk region that 

connects to the translocator anchor domain in the outer membrane (Fig. 6) (230,231,236–

238). Some trimeric autotransporters have more complex architectures, with modular 

arrangements of interspersed head, neck, and stalk regions (236,237). The head region 

typically contains the receptor binding site (Fig. 6), which may be present in each monomer 

and thus displayed in triplicate around the surface of the trimer, such as for the Hia adhesin 

(230). The stalk region may also have binding activity for host molecules or mediate 

bacterial-bacterial interactions (238,239).
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The Autotransporter Secretion Pathway

Transit across the periplasm and insertion into the outer membrane: Nascent 

autotransporter polypeptides are synthesized with an N-terminal signal peptide that is 

cleaved following translocation of the protein from the cytoplasm to the periplasm via the 

Sec general secretory pathway (78). The passenger domain must be kept in a largely 

unfolded state to remain competent for secretion. Resident periplasmic chaperones and 

folding factors (DegP, FkpA, SurA, and Skp) interact with the extended autotransporter 

polypeptide in the periplasm (Fig. 5) to maintain the passenger domain in a secretion-

competent state and prevent non-productive interactions, as well as assist in proper folding 

and insertion of the translocator domain in the outer membrane (206,207,240,241). Some 

autotransporters have an extended N-terminal Sec signal sequence that slows the rate of 

translocation across the cytoplasmic membrane through the Sec system (207,242,243). This 

slowing of translocation may facilitate proper transit of the autotransporter polypeptide 

across the periplasm.

Secretion of the N-terminal passenger domain to the cell surface requires the C-terminal 

translocator domain, which inserts into the outer membrane to form a β-barrel channel. 

Recent studies have defined a set of proteins in the bacterial outer membrane, termed the β-

barrel assembly machine (Bam) complex, which is responsible for proper insertion of most 

β-barrel proteins into the outer membrane (244). In keeping with this, correct assembly of 

the translocator domain in the outer membrane and its proper functioning in autotransporter 

secretion requires the Bam complex (245–247).

Secretion of the passenger domain to the cell surface: The exact mechanism by which the 

passenger domain is secreted from the periplasm to the bacterial surface remains a topic of 

active investigation. Two main models have been proposed for this process: a ‘classical’ 

hairpin model and a newer model that invokes a central role for the Bam complex (206,207).

In the hairpin model, secretion of the passenger domain occurs through the lumen of the β-

barrel channel formed by the translocator domain. Secretion of the passenger domain 

initiates when a C-terminal region of the passenger domain, likely including the α-helical 

linker region, forms a temporary hairpin structure within the pore (Fig. 5). Formation of the 

hairpin exposes part of the C terminus of the passenger domain to the cell surface, where it 

may begin folding. Folding of the passenger domain would then proceed vectorially from 

the C to the N terminus, progressively pulling the polypeptide through the channel 

(248,249). The hairpin model requires the presence of two strands of the passenger domain 

polypeptide within the lumen of the translocator domain pore. Given the narrow dimensions 

of the pore, these strands would need to be in a largely unfolded and extended conformation, 

which is consistent with studies showing a general lack of tolerance for structured elements 

in passenger domains (241,250,251).

Autotransporter secretion across outer membrane does not require the input of energy from 

the cytoplasmic membrane, and folding of the passenger domain at the cell surface likely 

provides the energy to drive secretion through the translocator channel (248,249). Folding at 

the cell surface could also act as a ratchet to prevent diffusion of the passenger back into the 

periplasm. Most passenger domains contain a conserved junction sequence adjacent to the 
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α-helical linker, termed the autochaperone domain. This region, which is critical for the 

folding of β-helical passenger domains, would be exposed to the cell surface upon formation 

of the hairpin loop and may act as an intramolecular chaperone to nucleate folding of the 

rest of the passenger domain on the cell surface (Figs. 5 and 6) (252–254). Progressive 

folding of rest of the passenger domain would then occur through a self-templating 

mechanism, driven by the repeated β-helix structure (255). Once secretion of the passenger 

domain is complete, the linker region would assume its final α-helical conformation to plug 

the pore, as observed in the autotransporter crystal structures (Figs. 5 and 6) (210,222,223).

The classical hairpin model proposes that the β-barrel channel formed by the translocator 

domain is sufficient for passenger secretion and that no other accessory factors are required 

(which is the basis for the term autotransporter). However, conflicts with this model, 

particularly in studies showing tolerance for secretion of some folded elements and the 

presence of post-translationally modified passenger domains (256–258), have lead to revised 

models that invoke a central role for the Bam complex (210,245,259). In these models, the 

β-barrel translocator domain serves to target the autotransporter polypeptide to the Bam 

complex. Interaction with the Bam complex then allows folding and insertion of the 

translocator domain in the outer membrane, coupled with secretion of the passenger domain 

to the cell surface. Rather occurring through the translocator domain channel, secretion of 

the passenger domain would occur, at least in part, through the BamA channel or through 

some interface between the Bam complex and the translocator domain (207,210). As the 

BamA channel is unlikely to be able to gate laterally to allow release of the passenger 

domain, secretion of the passenger domain would need to occur in concert with insertion of 

the translocator β-barrel into the outer membrane, and is likely to involve some aspects of 

the hairpin model (206,207,245,259,260). Thus, the Bam complex may facilitate coupled 

formation of the hairpin structure and insertion of the translocator domain into the outer 

membrane (Fig. 5), and possibly also assist in secretion of structured regions. This would 

then establish an initiating point from which secretion of the remainder of the passenger 

domain would proceed through the translocator channel as proposed in the classical hairpin 

model.

Functions of Autotransporter Adhesins in UPEC

Ag43: Antigen 43 (Ag43) is an autotransporter adhesin encoded by the flu gene (also termed 

agn43). Ag43 functions in adhesion to host cells and self-associates to promote bacterial 

aggregation (autoaggregation), leading to flocculation in static liquid cultures and biofilm 

formation on surfaces (261–264). Ag43 is present in approximately 80% of UPEC strains, 

and many strains encode more than one copy (265). UPEC strain CFT073 expresses two 

Ag43 variants, Ag43a and Ag43b. The Ag43a variant appears to be the functionally relevant 

form in UPEC, promoting high levels of aggregation, biofilm formation, and colonization of 

the urinary tract (265). Expression of Ag43 is phase variable and opposite from expression 

of type 1 pili; expression of the longer pilus fibers on the bacterial surface sterically blocks 

adhesion mediated by the shorter Ag43 molecules (216,266).

Ag43 belongs to the AIDA family of autotransporters (267). Similar to AIDA-I, the 

passenger domain of Ag43 is proteolytically processed following transport to the cell 
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surface, but remains associated with the translocator domain via non-covalent interactions. 

Also similar to AIDA-I, the Ag43 passenger domain is glycosylated in some E. coli strains, 

including UPEC isolates (258). The importance of glycosylation for Ag43 function remains 

to be determined, as different studies have found variable effects of glycosylation on 

autoaggregation, biofilm formation, and adhesion to host cells (258,263). Ag43 promotes 

adhesion to various cell lines, including human kidney cells, and binds to the extracellular 

matrix components collagen and laminin (263). The Ag43 passenger domain contains 

multiple repeats of ~19 residues each and folds with an extended, L-shaped β-helical 

structure (268). The region of Ag43 responsible for autoaggregation is located in the first N-

terminal third of the mature passenger domain (261). Recent structural analysis of the Ag43 

passenger domain suggests that self-association is mediated by a “Velcro-like” mechanism 

(268).

Several lines of evidence point to a role for Ag43 in UTIs. Anderson and colleagues found 

that Ag43 is expressed during bladder infection by UPEC strain UTI89 (143). Specifically, 

Ag43 was present on the surface of bacteria engaged in formation of intracellular biofilm-

like communities following invasion of bladder epithelial cells. Consistent with this 

observation, the Ag43a variant was found to promote long-term persistence of UPEC strain 

CFT073 in the murine UTI model; a fluA but not fluB mutant of CFT073 is present at lower 

numbers in the bladder compared to the parental strain at day 5 post infection (265). In 

addition, expression of Ag43 may promote formation of linked bacterial chains that are 

formed by asymptomatic bacteriuria E. coli isolates when grown in human urine (269). The 

autoaggregation properties of Ag43 are likely to enhance bacterial colonization of the 

urinary tract as well as formation of intracellular and extracellular biofilms.

UpaB: UpaB is an autotransporter adhesin identified in UPEC strain CFT073, and is widely 

distributed among both uropathogenic and non-uropathogenic E. coli strains (270). UpaB 

belongs to the AIDA-I family of autotransporters and contains a predicted pertactin-like 

passenger domain (270). UpaB confers binding to extracellular matrix proteins, including 

fibronectin, fibrinogen, and laminin. A upaB deletion mutant of CFT073 is outcompeted by 

the wild-type strain for colonization of the bladder, and the mutant strain is specifically 

defective for an early stage of bladder colonization (270). However, a direct role for UpaB 

in adhesion to the urinary tract has not been demonstrated. UPEC encode an additional 

autotransporter related to UpaB, termed UpaC; however, UpaC is not expressed by CFT073 

and a UpaC mutant had no phenotype in the murine UTI model (270).

UpaG: UpaG is a trimeric autotransporter adhesin prevalent among extraintestinal 

pathogenic E. coli (ExPEC) strains belonging to the B2 and D phylogenetic groups, 

including UPEC strain CFT073 (232). The structure of UpaG has been reconstructed from 

crystal structures of fragments of the homologous Salmonella enterica protein SadA (237). 

UpaG assembles as an extended coiled-coil fiber, ~115 nm in length, containing four YadA-

like head repeats and adaptor neck regions typical of trimeric autotransporters (237). 

Expression of UpaG in CFT073 promotes adhesion to the T24 human bladder epithelial cell 

line, with specificity for fibronectin and laminin, and promotes autoaggregation and biofilm 

formation (232). UpaG was identified as a potential protective antigen of ExPEC, suggesting 
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that it is expressed during infection (271). However, native expression of UpaG was not 

detected in CFT073 grown under in vitro conditions, and no role was found for UpaG in 

colonization of either the bladder or kidneys using the murine infection model (232).

UpaH: The UpaH autotransporter adhesin is expressed by the CFT073 UPEC strain, where 

it provides a competitive advantage for colonization of the bladder and contributes to 

biofilm formation (217). UpaH is a large-sized (~280 kDa) member of the AIDA-I family of 

autotransporters (272). UpaH binds to the extracellular matrix proteins collagen V, 

fibronectin, and laminin (272). However, a direct role for UpaH in adhesion to the urinary 

tract has not been demonstrated. The upaH gene is present in the chromosomes of many 

UPEC isolates, as well as in non-uropathogenic E. coli strains (217). Bioinformatics analysis 

predicts a typical 12-stranded β- barrel translocator domain and a large passenger domain 

with 50 imperfect sequence repeats predicted to encode an extended β-helix structure (217). 

Sequence variation is present in the UpaH passenger domain from different E. coli isolates 

(272). These variations were found to impact function in biofilm formation but not binding 

to extracellular matrix proteins.

FdeC: FdeC was identified in a screen for ExPEC vaccine antigens that provided protection 

in a murine sepsis model (273). The fdeC gene is widely distributed among ExPEC as well 

as intestinal E. coli strains (274). FdeC shares a low level of sequence homology with the 

invasin and intimin proteins of Yersinia pseudotuberculosis and enteropathogenic E. coli, 

respectively, which function in adhesion to host cells (275,276). Similar to these proteins, 

FdeC is anchored in the outer membrane via a presumed N-terminal β-barrel domain, with 

the extracellular portion of the protein forming an elongated structure comprising 9 repeated 

Ig-like domains (274). A model was recently proposed that proteins such as intimin and 

invasin form a new subfamily of autotransporters (type Ve) (206,277). In this model, the 

proteins are secreted in an analogous mechanism to autotransporters, but with a reverse 

topology; i.e., the outer membrane translocator domain is located at the N terminus instead 

of the C terminus as for typical autotransporters. In contrast to intimin and invasin, no 

obvious lectin domain is present in FdeC (274). Recombinant FdeC binds to human 

urothelial cell lines, as well as other types of epithelial cells, with specificity for collagen 

(274). FdeC is expressed during interactions with host cells and during infection of the 

urinary tract, and an fdeC mutant of UPEC strain 536 was defective for colonization of the 

bladder and kidneys during co-infection with the wild-type strain (274).

Other Outer Membrane-Associated Adhesins of UPEC—At least two additional 

non-pilus adhesins that contribute to pathogenesis in the urinary tract have been identified in 

UPEC. These adhesins are assembled on the bacterial outer membrane by mechanisms that 

are distinct from the autotransporter pathway. The Iha adhesin is secreted by the type I 

secretion pathway and TosA, a multifunctional siderophore receptor and adhesin, is an 

integral outer membrane protein.

Iha: The IrgA homologue adhesin (Iha) protein, encoded by the iha gene, is prevalent 

among UPEC strains and has the novel phenotype of functioning in both adhesion and iron 

uptake (278,279). Iha was originally identified in the diarrheagenic E. coli strain O157:H7 
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as an adhesin with homology to the Vibrio cholerae iron-regulated virulence factor IrgA 

(280). Iha is an outer membrane protein with homology to β-barrel siderophore receptor 

proteins such as FepA (281). Iha is a virulence factor of UPEC, as demonstrated by reduced 

fitness of a CFT073 iha deletion mutant for colonization of both bladder and kidneys in the 

murine UTI model (279). Similarly, an iha mutant of the UPEC clonal group A outbreak 

strain UCB34 (282) was attenuated for infection of the urinary tract in competition with the 

parental wild-type strain (278). There is also evidence supporting a role for iha in the 

pathogenesis of UTIs caused by Proteus mirabilis (283). Iha is expressed in vivo during 

infection of the murine urinary tract (278). Expression of recombinant Iha promoted 

adhesion to human epithelial cells, including the T24 bladder cell line, whereas 

overexpression of other siderophore receptors did not promote adhesion (278,279). In 

addition to its function as an adhesin, Iha functions in iron uptake as an iron-regulated 

catecholate siderophore receptor (278). Given the likely topology of Iha as in integral outer 

membrane β-barrel protein, adhesive activity is presumably conferred by surface-exposed 

loops of the protein. Whether the adhesin function, iron uptake, or both are important for 

pathogenesis remains to be determined.

TosA: TosA belongs to the repeats-in-toxin (RTX) family of secreted bacterial proteins that 

have diverse functions, including acting as toxins, proteases, and adhesins (284). RTX 

proteins share the characteristic features of repetitive glycine- and aspartate-rich sequences, 

located in the C-terminal region of the protein, and use of the type I secretion system for 

export out of bacteria. Type I secretion systems function in the secretion of a variety of 

toxins and other virulence factors directly from the cytoplasm to the extracellular milieu in a 

single energized step (285,286). The type I system comprises three components: an outer 

membrane channel-forming protein (TolC in E. coli), a periplasmic adaptor or membrane 

fusion protein, and an inner-membrane pump that typically belongs to the ATP-binding 

cassette family. In contrast to most RTX proteins, TosA remains associated with the 

bacterial surface following secretion, rather than being released into the external 

environment (287). The tosA gene is present in a pathogenicity island in UPEC strains, 

particularly those of the B2 phylogenetic group, in an operon together with genes encoding a 

type I secretion system (287,288). tosA is expressed in vivo during infection of the urinary 

tract (287) and a CFT073 ΔtosA mutant was defective for colonization of both the bladder 

and kidneys in the mouse UTI model (289). Evidence suggests that tosA also enhances 

fitness during disseminated infections (287). Expression of TosA promotes adherence to 

both murine and human kidney epithelial cells, but does not appear to be important for 

colonization of the lower urinary tract (287).

ADHESINS EXPRESSED BY GRAM-POSITIVE UROPATHOGENS

While Gram-negative bacteria are responsible for the majority of UTIs, Gram-positive 

bacteria are also significant uropathogens. Staphylococcus saprophyticus is the second 

leading cause of community acquired UTIs in sexually active women, accounting for ~15% 

of all incidences (290). Entercoccus faecalis, a normal member of the gut flora, is also a 

causative agent of UTIs, particularly in nosocomial infections (291). The adhesive 

organelles of Gram-positive bacteria differ significantly from those of Gram-negative 

bacteria in structure and assembly mechanism, but fall into the same two general classes of 
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pilus or surface-located adhesins. Gram-positive pili, like their Gram-negative counterparts, 

consist of multiple pilin subunits linked together to form an extended, hairlike fiber 

(21,22,292). The majority of non-pilus adhesins associated with UTIs are multi-domain 

proteins known as MSCRAMMs (microbial surface components recognizing adhesive 

matrix molecules), which are anchored directly to the bacterial cell wall (22,23).

MSCRAMMs

The extracellular matrix is a complex protein network that serves as the major scaffolding 

component of eukaryotic cells and tissues, and mediates numerous essential cellular 

processes including morphogenesis and differentiation (293,294). Gram-positive bacteria 

utilize components of the extracellular matrix such as collagen, fibronectin, and laminin as 

binding ligands to promote adherence, colonization, and biofilm formation (295–297). To 

achieve this, Gram-positive bacteria express the MSCRAMM family of surface-associated 

adhesins. MSCRAMMs are multi-domain proteins that are covalently linked to the 

peptidoglycan cell wall, exposing both conserved and non-conserved regions to the 

extracellular milieu. Different MSCRAMM domains confer specific functionality, including 

ligand binding, cell wall anchoring, and structural integrity (22). Crystal structures have 

been solved for domains from several different MSCRAMMs, including SdrG from 

Staphylococcus epidermidis, Ace from E. faecalis, and Cna and ClfA from Staphylococcus 

aureus, providing a structural context for understanding the assembly and functions of 

MSCRAMMs (298–305). MSCRAMMs that have been associated with uropathogenic 

bacteria are Ace, expressed by E. feacalis, and UafA, UafB and SdrI, expressed by S. 

saprophyticus (306–309).

Structure of MSCRAMMs—All MSCRAMMs share a common domain organization. 

The N terminus contains a signal peptide that directs the proteins for translocation across the 

cytoplasmic membrane by the Sec pathway. The N-terminal signal peptide is followed by a 

multi-domain central region, where the major functional and structural diversity resides (22). 

The C terminus contains a conserved cell wall sorting signal (CWSS), which consists of the 

amino acid sequence LPXTG (X represents any amino acid), followed by a hydrophobic 

transmembrane domain, followed by a positively charged cytoplasmic tail (Fig. 6A). This 

CWSS is required for the covalent linkage of MSCRAMMs to the cell wall (310).

The MSCRAMM functional region is typically divided into A and B regions. The N-

terminal A region is responsible for ligand binding and specificity; the C-terminal B region 

can have both binding and structural properties. Variations on this organization occur, 

including the presence of an R structural region instead of or in addition to a B region (22). 

The C-terminal structural domains function to project the binding domain away from the 

bacterial surface. Similar to the CU pilins of Gram-negative bacteria, MSCRAMMs, as well 

as Gram-positive pilins, have exploited the Ig fold as a common building block (58). Two Ig 

variants present in both MSCRAMMs and Gram-positive pilins are the DEv-IgG and IgG-

rev folds (Figs. 7B and 8) (22). These folds were first observed in the A and B regions of the 

S. aureus Cna and ClfA MSCRAMMs (305,311). A typical IgG constant domain contains 

two β-sheets (sheets 1 and 2) of four and three β-strands, arranged into a barrel 

configuration. DEv-IgG folds contain the same overall structure, but with the addition of at 
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least two β-strands between strands D and E of sheet 1. The IgG-rev fold has a typical two 

sheet, seven-stranded barrel, but the strands are arranged in a reverse order compared to 

typical Ig folds.

Ace and the collagen hug model: The E. faecalis Ace (adhesin to collagen of E. faecalis) 

protein was the first MSCRAMM to be associated with UTIs (295,297,306,312). Much of 

the structural organization of Ace was delineated based on its homology to Cna 

(295,302,303). The functional portion of Ace is made up of A and B regions. The A region 

is divided into two DEv-IgG subdomains, N1 (146 amino acids) and N2 (135 amino acids). 

These domains are essential for binding extracellular matrix proteins such as laminin and 

collagen I and IV (297). Crystal structures have been solved for the Ace N1 and N2 

subdomains (Fig. 7B) (300,301). Both subdomains are composed of ten β-strands forming 

two β-sheets in a sandwich like configuration. A missing G strand in sheet 1 of the N1 

subdomain is complemented by a C-terminal extension of the N2 subdomain, forming an 

interface between the two subdomains (Fig. 7B). This interface, in addition to a collagen-

binding site on the N2 subdomain and a linker region connecting the two subdomains, forms 

a deep, tunnel-like collagen binding trench. Together, the N1 and N2 subdomains form a 

dynamic cooperative structure utilizing a “collagen hug” model of ligand binding (301).

Structural and functional studies of both Cna and Ace have led to a mechanistic 

understanding of ligand binding by the A region. The structures of the N1 and N2 

subdomains of the A region show a closed form of the molecule, in which the N1 and N2 

subdomains and the inter-domain linker interact with each other, creating a tunnel to 

accommodate and secure collagen (Fig. 7B) (302). This closed form of the molecule is 

unable to initiate binding to collagen, and evidence indicates that the N1 and N2 subdomains 

exist in equilibrium between open and closed conformations (301). In the open 

conformation, a shallow groove in the N2 subdomain binds the repeating glycine-proline-

hydroxylproline (GPO)n, triple helical peptide of collagen with low affinity. Following 

binding, the C-terminal extension of the N2 subdomain orients and inserts into a trench in 

the N1 subdomain, complementing a missing N1 β-strand and allowing the N1 and N2 

subdomains to come into close proximity of each other, shrinking the hole and “hugging” 

the collagen molecule in place (301,302). The N2 C-terminal extension also acts as a latch, 

securing the complex. Truncations of the latch cause a decreased affinity for collagen, likely 

due to the N1 and N2 subdomains insufficiently securing the collagen in place (301).

The B region of Ace has not been resolved, but a high degree of sequence homology 

between this region and the B region of Cna provides insight into its structural organization 

and function. The Ace B region comprises five repeating domains, B1–5 (301). The crystal 

structure of the Cna B domain indicates that it functions as a structural element rather than 

in ligand binding (303). The Cna B1 domain is divided into two IgG-rev fold subdomains, 

D1 and D2. Domains B2–5 share the same structure, and the repeating B domains are 

arranged in an accordion-like fashion, which acts as a stalk supporting the A region and 

extending it distally from the surface of the cell (303). C terminal to the B region is the 

characteristic CWSS, which allows anchoring to the peptidoglycan cell wall by the 

housekeeping sortase enzyme.
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UafA and the dock, lock and latch model: Another MSCRAMM shown to impact 

bacterial adherence in the urinary tract is UafA (uro-adherence factor A), expressed by S. 

saprophyticus (307). Information obtained from MSCRAMMs such as the S. aureus Cna 

and ClfA, as well as the recent crystal structure of the functional region of UafA, have 

provided insight into the structural organization and function of UafA (Fig. 7B) (313). UafA 

contains an N-terminal Sec signal sequence, a 72 kDa A region, a 13 kDa B region, a 148 

kDa R region, and a C-terminal CWSS. Unlike Ace however, the UafA A region comprises 

three subdomains, N1–3, and the B region contains a single, non-repeating domain. The 

additional R region is rich in serine and glutamine residues and of low complexity (313).

The A region of UafA is required for ligand binding and shares the same variant DEv-IgG 

folds in its N2 and N3 subdomains as seen in Ace, Cna, and ClfA (305,313). The single B 

domain does not act as a stalk to extend the A region from the surface, but instead is a 

required component in ligand binding (313). A short loop links the B domain to the N3 

subdomain, and in the three-dimensional structure the B domain also resides adjacent to the 

N2 subdomain (Fig. 7B). The low-complexity R region is thought to form the UafA stalk, 

supporting both the upstream A and B regions (313).

A “dock, lock and latch” model has been proposed for UafA, based on similarities with ClfA 

and the S. epidermidis fibrinogen-binding protein SdrG (298,299,304). This model is 

mechanistically related to that of the collagen hug model of Ace and Cna, but has distinct 

features. The N3 subdomain is composed of two β-sheets with a total of nine β-strands in the 

configuration of A, B, D, E and C, D1, D2, F and G (313). The N2 subdomain contains two 

similar β-sheets, but sheet 2 lacks a D β-strand and in its place exists a D loop, which does 

not appear to hydrogen bond with the adjacent E strand. The dock, lock and latch model 

proposes that in the apo form of the complex, the ligand is first captured by binding between 

the N2 and N3 subdomains. This docking event then triggers a conformational change to 

engage the loop connecting the N3 subdomain and the B domain (Fig. 7B), causing the loop 

to insert into the pocket between the D and E β-strands of the N2 domain, completing the 

missing β-strand and forming the “latch” (298).

The ligand for UafA has not yet been defined. UafA functions in hemagglutination and this 

activity is dependent on the N2 and N3 subdomains, as well as the B domain (313). 

Hemmagglutination studies with proteinase K-treated erythrocytes suggest that the ligand is 

not a protein, but may instead be a carbohydrate or lipid molecule (313). In addition, the B 

domain may also have secondary ligand binding properties of its own, independent of the N2 

and N3 subdomains (313).

Assembly of MSCRAMMs—The majority of surface exposed proteins in Gram-positive 

bacteria utilize a highly conserved assembly mechanism that facilitates translocation of these 

proteins across the cytoplasmic membrane and their covalent linkage to the peptidoglycan 

cell wall. As with most Gram-negative adhesins, MSCRAMMs are synthesized with an N-

terminal signal sequence that directs the proteins for translocation across the cytoplasmic 

membrane via the Sec general secretory pathway. The signal sequence is then cleaved 

following translocation by the signal peptidase (22,314). Since Gram-positive bacteria lack 

an outer membrane, proteins translocated across the cytoplasmic membrane will be lost to 
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the extracellular milieu unless they are anchored to the peptidoglycan cell wall (315). 

Proteins destined to be anchored to the cell wall, including MSCRAMMs, contain the highly 

conserved CWSS, comprising the LPXTG motif, a stretch of hydrophobic residues, and a 

positively charged C-terminal tail. Mutations to this motif abrogate cell wall anchoring 

(316). Following passage across the cytoplasmic membrane via the Sec pathway, the 

hydrophobic region of the CWSS forms a transmembrane domain, with the positively 

charged tail orienting the domain such that the C terminus remains in the cytoplasm and the 

LPXTG motif is exposed on the extracellular surface of the membrane (Fig. 6A). Anchoring 

of the secreted protein to the call wall is then achieved by processing of the LPXTG motif 

by membrane associated proteins known as sortases (317,318).

Sortases are cysteine transpeptidases responsible for sorting covalently linked cell wall 

proteins to the bacterial surface, including many virulence factors (319). While different 

classes of sortases exist, most Gram-positive bacteria express a general housekeeping 

sortase required for displaying a broad spectrum of proteins with distinct functions (320). 

Sortase A (SrtA) is the best characterized of these housekeeping sortases (318). SrtA is 

responsible for processing a newly secreted protein’s CWSS by catalyzing a transpeptidation 

reaction between the LPXTG motif and an amino acid cross-bridge of the peptidoglycan 

(Fig. 7A). SrtA cleaves the carbonyl carbon between the threonine and glycine residues of 

the LPXTG motif via nucleophilic attack by the conserved active site cysteine of the sortase 

(318). This cleavage facilitates the creation of a thioacyl bond between the SrtA cysteine and 

the threonine of the surface protein, resulting in the two proteins being covalently linked 

together (Fig. 7A). SrtA then transfers the covalently linked protein to lipid II, a membrane 

bound peptidoglycan precursor. An amino group of lipid II nucleophilically cleaves the 

sortase-surface protein thioacyl linkage, forming an isopeptide bond with the surface protein 

threonine and creating a lipid II-surface protein complex (Fig. 7A). The lipid II-surface 

protein complex is then modified by transpeptidases and transglycosylases during 

peptidoglycan synthesis. The lipid moiety is processed and the resulting protein and 

peptidoglycan fragment is integrated into to the cell wall, covalently anchoring the protein to 

the peptidoglycan amino acid cross-bridge and exposing it to the surface (Fig. 7A) 

(321,322).

Functions of MSCRAMMs in Uropathogenic Bacteria—The initial stage of 

adherence and colonization is absolutely necessary for pathogenic Gram-positive bacteria to 

establish successful infection (323). MSCRAMMs mediate this process by facilitating the 

recognition and binding of surface exposed host ligands to promote colonization of specific 

tissues. In the context of UTIs, Gram-positive uropathogens express and assemble 

specialized MSCRAMM molecules with a distinct tropism for urogenital epithelia. This 

tropism is dependent both on the ligand expressed by the host tissue, in most cases a 

component of the extracellular matrix, as well as the affinity for that ligand by the bacterial 

adhesin. However, compared to well-characterized Gram-negative adhesins such as type 1 

and P pili, much less is known about the mechanisms of MCRAMMs during bacterial 

infection of the urinary tract.
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Ace: E. faecalis, a major contributor of endocarditis and infections of the blood, wounds and 

abdomen, is also associated with high incidences of nosocomial catheter associated urinary 

tract infections (CAUTIs) (324,325). The Ace A domain is required for recognition and 

binding of extracellular matrix molecules. In vitro mutational analysis as well as competitive 

inhibition studies of the A domain show that the protein has binding affinity for laminin and 

types I and IV collagen, each of which is a major component of the extracellular matrix 

(297). Ace has been identified as an important virulence determinant of E. faecalis in UTIs, 

using the murine infection model. Lebreton and colleagues showed that significantly higher 

doses of an E. faecalis ace deletion mutant are required to establish infection in mice when 

compared to wild-type E. faecalis (306). Furthermore, organ burden analysis revealed that 

an ace deletion mutant is attenuated in its ability to colonize renal tissue (306,312). While 

current research implicates collagen as the major Ace binding ligand, further work needs to 

be done to determine the role of Ace and its binding partners in the establishment of UTIs.

UafA: S. saprophyticus holds significant prevalence as a causative agent of uncomplicated 

UTIs (326). Comparative genomic analysis between S. aureus, S. epidermidis, and S. 

saprophyticus revealed that S. saprophyticus contains the unique MSCRAMM UafA (307). 

Expression of uafA by S. saprophyticus promotes adherence to human bladder carcinoma 

cells, while deletion of the uafA gene causes decreased adherence (307). Furthermore, 

strains of S. saprophyticus that express UafA, in addition to other surface proteins such as 

SdrI and Ssp, are internalized into human bladder carcinoma cells (327). Although the 

precise ligand or tissue tropism of UafA remains unknown, preliminary data suggest that the 

ligand may be a carbohydrate or lipid molecule rather than a protein (313).

UafB: UafB is a recently discovered, plasmid-encoded MSCRAMM of S. saprophyticus that 

affects bacterial adherence to uroepithelial cell lines (308). In addition to a predicted N-

terminal Sec signal sequence and C-terminal CWSS, the majority of the 2279 residue UafB 

protein comprises three serine-rich tandem repeats (repeats 1–3) and a single non-repeating 

region. The non-repeating region lies between repeats 1 and 2, and is a putative binding 

domain. The third repeat region is the longest of the three and is located just upstream of the 

CWSS. S. saprophyticus UafB is predicted to be glycosylated on the surface of S. 

saprophyticus (308). Although less prevalent than UafA among S. saprophyticus isolates, 

strains expressing UafB exhibit increased adhesion to human bladder carcinoma cells when 

compared to a uafB mutant (308). Analysis of the putative non-repeat binding domain 

indicates that UafB binds both fibronectin and fibrinogen, but not collagen types I, II or IV, 

laminin, or vitronectin (308). This information may suggest that UafB has a tropism for 

bladder epithelium since human bladder carcinoma cells abundantly express fibronectin 

(328). However, a role for UafB during infection remains to be established, as both wild-

type and uafB knockout strains equally colonize mouse bladders in a murine ascending UTI 

model (308).

SdrI: SdrI is a recently discovered MSCRAMM in S. saprophyticus classified by its serine-

aspartate repeat (SD or Sdr) region, which is indicative of the Sdr family of MSCRAMMs. 

Sequence analysis of SdrI shows that it contains a C-terminal CWSS, an N-terminal A 

region, a B region containing two repeat domains, and the SD region (329). Initial binding 
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experiments showed that when SdrI was deleted, S. saprophyticus exhibited a significant 

deficiency in adhesion to collagen compared to wild-type bacteria (329). Further work 

indicated that SdrI also has affinity for fibronectin, which is dependent on its A domain 

(296). This is unique since SdrI does not contain any known fibronectin binding motifs. In 

vivo data using a murine UTI model revealed that sdrI mutant S. saprophyticus bacteria do 

not have defects in initial colonization of the bladder or kidneys when compared to wild-

type bacteria; however, the mutant strain is cleared faster from these organs (309). This 

suggests a role for SdrI in the persistence of S. saprophyticus in the urinary tract, rather than 

in initial adhesion or colonization.

Additional surface-located adhesins: A unique class of Gram-positive surface exposed 

adhesins has been discovered that lack both a Sec secretion signal as well as a cell wall 

localization LPXTG motif (330). These adhesins are not classified as MSCRAMMs or pili. 

While little has been elucidated as to their structure, one such adhesin, the enterococal 

fibronectin-binding protein A (EfbA), expressed by E. faecalis, has been implicated in 

mouse models of ascending urinary tract infections. An efbA deletion strain was 

significantly attenuated in its ability to bind immobilized fibronectin in vitro as well as 

mouse kidneys and bladders in vivo (331).

An additional protein, Esp, has been implicated in colonization and persistence of E. faecalis 

in the urinary tract (332). Esp has not been classified as an MSCRAMM, but it contains an 

N-terminal Sec signal sequence, a central region with a non-repeat domain followed by a 

number of repeating sequences, and a CWSS-like region at the C terminus with a variation 

of the LPXTG motif. The N-terminal region of Esp promotes biofilm formation in vitro, but 

may do this indirectly (333).

GRAM-POSITIVE PILI

Although first described in 1968, the assembly of pili by Gram-positive bacteria has only 

been widely recognized and characterized since the work of Ton-That and Scheewind 

beginning in 2003 (17–20). Multi-subunit, peptidoglycan-linked adhesive pili have now 

been described on the surface of a number of Gram-positive bacteria (21,22). Like 

MSCRAMMs, pili play important roles in binding to and recognizing extracellular matrix 

molecules, colonization of host tissues, and biofilm formation. Gram-positive pili are 

expressed from gene clusters encoding one or more minor pilins, a major pilin, and pilus 

assembly machinery in the form of pilus-specific sortases. Gram-positive pili expressed by 

C. diphtheria and Streptococcal pathogens have been well studied and serve as prototypes 

(334–338). Although similar to Gram-negative pili in their general ultrastructure (hairlike 

polymeric fibers) and functions (adhesion to and colonization of surfaces), Gram-positive 

pili have unique features, including the presence of intramolecular and intermolecular 

covalent bonds that stabilize the fibers against factors encountered in the extracellular 

environment. Currently, E. faecalis and E. faecium are the only Gram-positive bacteria 

known to express pili associated with UTIs. These pili were first identified as biofilm 

determinants during endocarditis infections and are named Ebp for endocarditis and biofilm 

associated pilus (339,340).
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Structure of Gram-Positive Pili

The pilus fiber: Gram-positive pili form thin, extended fibers one protein subunit wide (~3 

nm diameter) and up to several micrometers in length. The pilus fiber is built from repeating 

copies of covalently linked major pilus subunits, with minor pilins covalently incorporated 

at different points in the fiber. Minor pilins that function to recognize and bind target host 

ligands are known as tip pilins, while pillins that anchor the entire pilus fiber to the cell wall 

are referred to as base pilins. The major pilin forms the pilus shaft, which functions to 

extend the adhesive tip pilin distally from the bacterial surface.

A number of crystal structures have been solved for Gram-positive pilins, including from C. 

diphtheria, Streptoccocal species, and Bacillus cereus (Fig. 8) (22,334–338,341). Pilins 

share a common domain organization with MSCRAMMs, comprising an N-terminal Sec 

secretion signal, a central structural region, and a C-terminal CWSS (Fig. 9). The central 

structural region typically contains multiple N subdomains that adopt DEv-IgG or IgG-rev 

folds (Fig. 8) (335,342). An important characteristic of Gram-positive pilins is their ability 

to form covalent, intramolecular isopeptide bonds between lysine and asparagine residues of 

the DEv-IgG and IgG-rev folds (Fig. 8) (343). These isopeptide bonds promote resistance to 

proteases and increase pilin stuctural stability (334). DEv-IgG folds typically posses a D-

type isopeptide bond, in which a lysine residue in the A β-strand of sheet 1 forms a bond 

with an asparagine on the antiparallel F β-strand of sheet 2 (Fig. 8). A C β-strand aspartic 

acid residue on sheet 2 catalyzes this reaction. IgG-rev folds exhibit an E-type bond where a 

lysine on the A β-strand of sheet 1 is covalently linked to the asparagine of the parallel G β-

strand, also of sheet 1 (Fig. 8). A glutamine residue on the sheet 2 E β-strand catalyzes this 

reaction (22).

In addition to their LPXTG motif, major pilins also have a conserved pilin motif, typically 

of the sequence VYPK, housing an essential lysine residue (22). An intermolecular 

isopeptide bond is formed between the lysine of the pilin motif and the threonine of the 

LPXTG motif of a neighboring subunit in the pilus fiber, catalyzed by a pilus-specific 

sortase (Fig. 9). Tip pilins have an LPXTG motif but typically lack a pilin motif, and 

therefore can only be incorporated at the beginning of the pilus fiber. Base pilins, which 

contain both LPXTG and pilin motifs, are linked to the peptidoglycan cell wall via their 

LPXTG motif by the housekeeping sortase, thus anchoring the pilus fiber to the bacterial 

surface (Fig. 9) (336). In some instances, base pilins can also be incorporated along the 

length of the pilus fiber (19,344). Some pilins, particularly major pilins, may also possess a 

third motif called an E-box, which contains an invariant glutamic acid residue. Little work 

has been done to elucidate the role of the E-box in pilus assembly, but it may facilitate 

integration of minor pilins throughout the pilus fiber (19).

Ebp pili: The Ebp operon, found in both E. faecalis and E. faecium, consists of four genes, 

ebpA, ebpB, ebpC, and srtC on what is termed a pilus island on the bacterial chromosome 

(Fig. 9) (340). Little is known about the structure of Ebp pili, but studies have shown that 

EbpA and EbpB are minor pilins, with EbpA serving as the tip pilin and EbpB as the base 

pilin (340). EbpC is the major structural pilin. SrtC is a class C pilus specific sortase 

required for polymerization of the pilus fiber (340,345,346). Sequence analysis of these 
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pilins suggests that they share structural characteristics with known MSCRAMMs, having 

potential Dev-IgG and IgG-rev domains (347). EbpA and EbpC also possess predicted E-

box motifs (340,347).

Sequence and mutational analysis of EbpA predicts that the tip pilin contains a von 

Willebrand factor A (VWA) domain with a metal ion-dependent adhesion site (MIDAS) 

(Fig. 8), which facilitates adhesion to host molecules (345,348). VWA domains are found in 

proteins from different kingdoms and contain a β-sheet surrounded by a number of α-

helices. Many VWA domain proteins also contain a MIDAS motif (348). Functional 

analysis of the EbpA MIDAS motif indicates that it is essential for EbpA function 

(348,349). While the ligand specificity of EbpA remains unknown, other VWA domain- and 

MIDAS motif-containing proteins bind extracellular matrix proteins such as collagen (350).

Assembly of Gram-Positive Pili—The assembly mechanisms of Gram-positive pili in 

bacteria such as C. diphtheriae have been well studied and share many commonalities with 

the anchoring of MSCRAMMs to the cell wall (19,20,292). Additional pilus specific 

features such as the pilin motif and class C sortases are required for biogenesis of the multi-

subunit pilus fiber. The initial stages of pilus assembly are essentially the same as for all 

LPXTG cell wall anchored proteins. Like MSCRAMMs, Gram-positive pilins contain a 

cleavable N-terminal signal sequence for targeted translocation across the cytoplasmic 

membrane via the general Sec pathway. Following translocation, the transmembrane domain 

and the positively charged cytoplasmic tail of the CWSS retains and orients the pilin as so to 

make the LPXTG motif accessible for cleavage by a sortase (Fig. 9). Gram-positive pilus 

gene clusters typically encode a class C pilus specific sortase (srtC), which is essential for 

pilus polymerization (340). Differences between the pilus specific and housekeeping (SrtA) 

sortases determine how the LPXTG motif of individual pilins are processed, either for 

covalent linkage to the lipid II peptidoglycan precursor via SrtA, or for the formation of 

structural pilin-pilin isopeptide bonds via SrtC.

For both major and minor pilins, SrtC cleaves between the threonine and glycine residues of 

the pilin LPXTG motif, forming an acyl-enzyme intermediates between the active site 

cysteine of the sortase and the threonine of the pilin (Fig. 9). Major pilins contain a pilin 

motif (VYPK) in addition to the LPXTG motif, whereas tip pilins typically only contain the 

LPXTG motif. To incorporate the tip pilin into the pilus fiber, SrtC catalyzes formation of 

an intramolecular isopeptide bond between the lysine of the pilin motif of the major pilin 

with the threonine of the LPXTG motif of the tip pilin (Fig. 9). This reaction releases the tip 

pilin from its SrtC molecule, forming a tip pilin-major pilin-SrtC complex (351). This 

process is then repeated to add additional major pilins to the complex, elongating the pilus 

structure and forming the pilus shaft to project the tip pilin distally from the bacterial 

surface. Pilus elongation is terminated via incorporation of a minor base pilin into the pilus 

structure by the same mechanism (21,292). Following elongation, the pilus fiber must be 

securely anchored to the peptidoglycan cell wall. This is achieved by the SrtA housekeeping 

sortase, which catalyzes isopeptide bond formation between the LPXTG motif of the base 

pilin and a lipid II amino group (Fig. 9) (345). As for MSCRAMMs, the lipid II-pilus fiber 

complex is then processed by transpeptidases and transglycosylases, covalently securing the 

pilus to the peptidoglycan cross-bridge.
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Function of Ebp Pili in UTIs—The Ebp pili expressed by E. faecalis and E. faecium, two 

major causative agents of hospital acquired CAUTI, are the only Gram-positive pili that 

have been associated with UTIs (345,352). The connection between Ebp pili-mediated 

biofilm formation and infection was first investigated in a rat endovascular model (340,353). 

Data from this work showed that strains with deletions of each individual pilin, or a deletion 

of srtC alone, had significant defects in biofilm formation in vivo. Additionally, a deletion 

strain of just the tip pilin ebpA was significantly attenuated for colonization of aortic 

vegetations and kidneys, when compared to wild-type bacteria, suggesting a role for Ebp pili 

in UTIs as well as endocarditis (340). Later studies confirmed the role of Ebp pili in 

colonization of the urogenital tract, using ebpA and ebpC deletion strains to show a 

colonization defect in both the kidneys and bladders of mice (346,352). Similar results were 

observed in experiments using ebp deletion mutants in E. faecium (339).

Experiments have also been done to identify the role of Ebp pili in CAUTI. Using a murine 

CAUTI model, an E. faecalis strain lacking the ebpABC pilus genes displayed significantly 

reduced adherence compared to the wild-type strain to bladders and silicone implants placed 

in the bladder to mimic catheters (345). Interestingly, bacteria lacking only the major pilin 

EpbC colonized mouse bladders and implants similar to wild-type bacteria, suggesting that 

expression of just the minor pilins on the bacterial surface is sufficient to mediate 

colonization. Although the ligand(s) for Ebp pili remain unknown, mutations introduced into 

the MIDAS motif of the EbpA tip pilin drastically inhibited bacterial adhesion in the CAUTI 

model, indicating a role for this motif in EbpA function and pilus-mediated adhesion (345).

CONCLUDING REMARKS

The diverse array of adhesins expressed by uropathogenic bacteria reflects the importance of 

adhesion to colonization. Pathogens invading into the urinary tract must have strong 

adherence properties to overcome the washing action of the flow of urine. In addition, 

adhesins expressed by bacteria must be able to withstand mechanical forces exerted by urine 

flow, to avoid being sheared off once they have bound to their receptors on the urothelial 

surface. These factors underlie the prominence of pilus adhesins such as type 1 and P pili, 

which are adapted to function in the urinary tract, among the virulence factors of 

uropathogens. Uropathogenic bacteria encode multiple different types of adhesins, providing 

specificity for different niches within the urinary tract, as well as redundancy in function to 

ensure maintenance of adhesion under varying conditions. Bacterial colonization is also 

enhanced by formation of bacterial-bacterial interactions and biofilm structures, explaining 

the association of adhesins such as curli and Ag43 with uropathogens.

Adhesion is crucial at early stages of infection, and thus represents an attractive target for 

therapeutic intervention. Advances in understanding the structure and assembly of bacterial 

adhesins will be critical for the development of effective vaccines and antimicrobial agents 

that target adhesion. Pilus-based vaccines have shown promise in preventing UTIs, although 

none has reached clinical use. Studies using purified P pili or recombinant PapG adhesin 

purified in complex with its PapD chaperone demonstrated protection against pyelonephritis 

in primates (163,354). Similarly, vaccination with the type 1 pilus adhesin FimH, purified in 

complex with its FimC chaperone, provided protection in primates against challenge with a 
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UPEC cystitis isolate (129). Interestingly, a recent study found that rather than blocking type 

1 pilus-mediated adhesion, the host antibody response may actually enhance binding of 

FimH to its ligands by stabilizing the adhesin’s high-affinity binding state (355). An 

improved understanding of pilus adhesion mechanisms under conditions in the urinary tract 

may allow tailoring of the antigen used for vaccination to provoke a more effective immune 

response. In addition to pili, surface-located adhesins such as the MSCRAMMs expressed 

by Gram-positive bacteria also represent viable targets for vaccine development (356,357).

An alternative approach to vaccination is to disrupt bacterial adhesion to host cells through 

the use of small molecule competitive inhibitors of adhesin-receptor interactions. Examples 

include the use of galabiose- and mannose-based inhibitors to interfere with adhesion 

mediated by P and type 1 pili, respectively, with the goal of preventing UPEC colonization 

of the urinary tract (358–361). Another alternative approach is to develop small molecule 

inhibitors that disrupt the machinery used for adhesin biogenesis, thereby preventing 

assembly of the adhesins on the bacterial surface. Once such class of small molecules 

developed by Almqvist and colleagues, termed pilicides, interferes with the CU assembly 

pathway and blocks expression of both P and type 1 pili by E. coli (362). Pilicides target the 

periplasmic chaperone and appear to disrupt pilus assembly by interfering with binding of 

chaperone-subunit complexes to the outer membrane usher. Modified pilicides were recently 

developed that also had activity against curli (203). Treatment of UPEC with one of these 

inhibitors blocked assembly of both curli and type 1 pili, reduced biofilm formation, and 

attenuated bacterial colonization in the murine urinary tract infection model (203). These 

compounds highlight the potential for a new class of anti-infective agents that target 

virulence factor secretion systems and the assembly of virulence-associated surface 

structures, rather than disrupting essential biological processes as for conventional 

antibiotics (363,364). Such anti-virulence molecules should place less pressure on the 

bacteria and thus may be less prone to the development of resistance mechanisms. This 

strategy may also allow the selective targeting of pathogenic bacteria, avoiding detrimental 

side effects of broad-spectrum antibiotics on the normal bacterial flora.
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Figure 1. 
Representative CU gene clusters and pili. Gene clusters coding for P (pap), type 1 (fim) and 

Dr/Afa pili are depicted, with the functions of the genes indicated. Electron micrographs are 

shown for (A) an E. coli bacterium expressing type 1 pili, (B) a P pilus fiber, and (C) a type 

1 pilus fiber. Scale bars equal 700 nm (A), 100 nm (B), and 20 nm (C). The images in panels 

A–C are reprinted from references (138), (157), and (137), respectively, with permission of 

the publishers.
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Figure 2. 
(A) Model for pilus biogenesis by the CU pathway. Pilus subunits enter the periplasm as 

unfolded polypeptides via the Sec system. Subunits fold upon forming binary complexes 

with the periplasmic chaperone (yellow). The crystal structure in the lower right depicts the 

chaperone-subunit donor strand exchange reaction (PapD-PapA; PDB ID: 2UY6), with the 

chaperone donor strand indicated in red. Pilus assembly takes place at the outer membrane 

usher, which catalyzes the exchange of chaperone-subunit for subunit-subunit interactions. 

Models for assembled P, type 1 and Afa/Dr pilus fibers are shown. The crystal structure in 
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the upper left depicts the subunit-subunit donor strand exchange reaction that occurs in the 

pilus fiber (PapA-PapA; PDB ID: 2UY6), with the Nte donor strand indicated. (B) Crystal 

structures of the PapG (P pili; PDB ID: 1J8R) and FimH (type 1 pili; PDB ID: 1KLF) 

adhesin domains with bound globoside and mannose, respectively. The sugars are depicted 

as dark gray spheres.
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Figure 3. 
Crystal structure of the FimD-FimC-FimH type 1 pilus assembly intermediate (PDB ID: 

3RFZ). The Usher NTD, plug, β-barrel channel, and CTD domains are indicated. The FimH 

adhesin domain (FimHA) is inserted inside the usher channel, and the FimH pilin domain 

(FimHP) and bound FimC chaperone are located at the usher CTDs.
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Figure 4. 
(A) Model for curli biogenesis by the extracellular nucleation/precipitation pathway. The 

csg gene cluster coding for curli biogenesis is shown at the bottom. The curli subunit 

proteins enter the periplasm via the Sec system and are secreted to the bacterial surface via 

the CsgG outer membrane channel. CsgE may act as a chaperone for the curli subunits in the 

periplasm, whereas CsgF assists assembly of CsgB on the cell surface. Polymerization of 

CsgA occurs on the cell surface and is nucleated by interaction with CsgB. (B) Electron 

micrograph of E. coli expressing curli. Scale bar equals 1 µm; reprinted from reference (205) 
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with permission of the publisher. (C) Structure of a CsgA subunit, with the R1–R5 repeats 

indicated.
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Figure 5. 
Model for autotransporter secretion and assembly on the bacterial surface. The domain 

organization of an autotransporter protein is shown at the bottom. Autotransporter 

polypeptides have an N-terminal signal sequence for translocation to the periplasm via the 

Sec system. The protein is maintained in an extended, largely unfolded state during transit 

across the periplasm, assisted by periplasmic folding factors (SurA, Skp, DegP and FkpA). 

The C-terminal translocator domain inserts into the outer membrane as a β-barrel channel, 

with the assistance of the Bam complex. The Bam complex may also assist in secretion of 
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the passenger domain to the cell surface. In the hairpin model of secretion, the C-terminal 

region of the passenger domain forms a hairpin structure in the translocator channel, 

exposing part of the passenger to the cell surface. Folding initiates at the autochaperone 

region, which then nucleates folding and secretion of the rest of the passenger domain. 

Following secretion, the linker region adopts an α-helical structure to plug the translocator 

domain channel. The passenger domain may remain linked to the translocator domain or 

may be proteolytically cleaved.
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Figure 6. 
Crystal structures of representative autotransporter proteins. Translocator domains from the 

monomeric NalP and trimeric Hia autotransporters are shown (PDB IDs: 1UYN and 2GR7, 

respectively), with the β-barrel channels in blue and the α-helical linker regions in red. 

Passenger domains from the monomeric Pertactin and trimeric EibD autotransporters are 

shown (PDB IDs: 1DAB and 2XQH, respectively), with the approximate location of the 

Pertactin autochaperone region indicated in purple. The complete structure of the EstA 

autotransporter is shown (PDB ID: 3KVN), with the translocator domain in blue, the α-

helical linker in red, and the globular passenger domain in gray.
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Figure 7. 
(A) Model for MSCRAMM secretion and incorporation into the cell wall. The domain 

organization of a typical MSCRAMM is shown at the bottom. MSCRAMMs have an N-

terminal Sec signal sequence for translocation across the cytoplasmic membrane. The 

protein remains anchored in the cytoplasmic membrane by the CWSS. The positively 

charged C terminus remains in the cytoplasm, orienting the LPXTG motif to the 

extracellular side of the membrane. The SrtA sortase cleaves between the Thr and Gly of the 

MSCRAMM LPXTG motif, forming a covalent thioacyl intermediate. The MSCRAMM is 

then transferred to a lipid II peptidoglycan precursor and finally integrated into the cell wall 

at an amino acid cross-bridge. (B) Crystal structures of the Ace and UafA MSCRAMMs 

(PDB IDs: 2Z1P and 3IRP, respectively). The upper structure shows the N1 and N2 

subdomains of Ace in blue and green, respectively; the yellow circle represents bound 

collagen. Both domains have DEv-Ig folds. The C terminus of the N2 subdomain inserts into 

the N1 subdomain, forming a latch. The lower structure depicts the N2, N3 and B 

subdomains of UafA. The N2 and N3 subdomains adopt DEv-Ig folds and the B subdomain 

adopts a variant of the IgG-rev fold. The loop connecting the N3 and B domains (cyan) is 

thought to insert into the N2 subdomain upon ligand binding to form a latch.
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Figure 8. 
Crystal structures of representative tip and major pilins. The RrgA tip pilin of S. pneumoniae 

(PDB ID: 2WW8) is shown on the left, with the fold adopted by each of the four 

subdomains indicated. The VWA domain is depicted in green, with the residues forming the 

MIDAS motif and bound magnesium ion shown in purple. The residues involved in 

intramolecular isopeptide bond formation are shown in red. The Spy0128 major pilin of S. 

pyogenes (PDB ID: 3B2M) is depicted on the right in purple and the two subdomains are 

labeled as for RrgA. The lysine side chain of Syp0128 thought to be involved in 

intermolecular isopeptide bond formation is shown in cyan.
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Figure 9. 
Model for Gram-positive pilus polymerization and incorporation into the cell wall. The 

domain organization of typical major and minor pilins is shown at the bottom, along with 

the ebp gene cluster coding for Ebp pili of E. faecalis. The steps of secretion across the 

cytoplasmic membrane and covalent linkage to a sortase are the same as for MSCRAMMs, 

except the pilins are processed by the SrtC pilus-specific sortase. Pilus subunits are 

polymerized by formation of intermolecular isopeptide bonds between the Lys of a pilin 

motif of one subunit and the Thr of the LPXTG motif of a preceding subunit in the fiber. 

Linkage to the cell wall occurs when a growing pilus fiber is transferred to a base pilin 
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bound to the SrtA housekeeping sortase. Integration of the pilus into the cell wall follows 

the mechanism as described for MSCRAMMs.
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