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Abstract

The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual 

computation in the brain. While the detailed neural mechanisms of Bayesian inference are not 

fully understood, recent computational and neurophysiological works have illuminated the 

underlying computational principles and representational architecture. The fundamental insights 

are that the visual system is organized as a modular hierarchy to encode an internal model of the 

world, and that perception is realized by statistical inference based on such internal model. In this 

paper, I will discuss and analyze the varieties of representational schemes of these internal models 

and how they might be used to perform learning and inference. I will argue for a unified 

theoretical framework for relating the internal models to the observed neural phenomena and 

mechanisms in the visual cortex.
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I. INTRODUCTION

The general theory of the perceptual computation is that the visual system performs 

Bayesian inference. This idea can be traced back to Helmholtz’s [1] theory of unconscious 

inference, which states that the brain transforms the noisy and often impoverished 2D 

optical image impinged on the retina into a perceptual interpretation of the 3D world. This 

transformation involves a probabilistic computation that finds the most likely interpretation 

of the world, based in part on prior knowledge from experience, to explain the retinal input. 

This prior knowledge is a form of memory, or what we call an internal model of the world, 

for supporting Bayesian inference. What is the nature of this internal model? How does the 

brain build it and how is it used to make inferences of the world?

The complexity of the world and its images is daunting. The number of possible images that 

can be expressed in a gray-level image patch of 30 by 30 pixels is 900256, practically 

infinite. Yet, moment by moment, we comfortably analyze a continuous stream of color 

visual images coming in through our retina as we parse the visual scene – recognizing 

objects, their spatial layouts and scene structures in a fraction of a second. It is almost 

impossible to encode prior knowledge of such a scale in the brain, even with its billions of 
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neurons. Fortunately, natural images live in a restricted space, a much lower dimensional 

manifold inside this universe of infinite possibilities. Our visual system must have 

discovered and exploited the statistical structures of natural scenes in order to build an 

efficient internal model of the world.

Herb Simon [2] argued that the only way to model complexity is through hierarchical 

models, which should have the property of near-decomposability that allows modularization 

and compartmentalization of functions. A nearly decomposable modular hierarchical system 

separates high frequency dynamics and fast communication within a module, and low 

frequency computational dynamics with sparser and slower communication across modules. 

Simon argued that hierarchy and modularity are inevitable: Among evolving systems, only 

those that managed to obtain and then reuse stable subassemblies (modules) are likely to be 

able to search through the fitness landscape with reasonable speed. Thus, among possible 

complex forms, modular hierarchies are the ones that have time to evolve and survive.

The visual system is indeed such a modular hierarchical system, with its 30 or so visual 

areas arranged in a hierarchical organization (Figure 1). Each area specializes in certain 

functions [3], potentially concealing most aspects of its internal computations from others. 

These visual areas do interact with each other and perceptual experience emerges from the 

collective computation resulting from such interactions. Each visual area follows the design 

of a near-decomposable system, recursively organized in different modules and sub-

modules. Thus, the visual cortex is in itself a form of a hierarchical memory system that 

encodes the brain’s internal model of the visual world.

II. Varieties of Internal Models

Five major classes of computational models have been proposed over the last 40 years on 

how the hierarchical internal models in the visual cortex are constructed and function to 

support perceptual learning and inference. While they were all inspired by the hierarchical 

architecture of the biological visual system and share many fundamental characteristics, they 

represent different perspectives how the internal model can be learned and used for 

inference, and in my opinion, each capturing or emphasizing certain elements of the reality 

of the brain.

A. Class I: Neocognitron, HMAX and CNN

The first class of hierarchical models of the visual cortex, starting with Fukushima’s 

Neocognitron [4], is a feedforward multi-layer neural network. It primarily models the 

ventral stream of the visual hierarchy (V1, V2, V4, IT), i.e., the object recognition pathway. 

Along the model hierarchy, as in the visual system, neurons develop more complex and 

larger compound feature detectors from component detectors in the previous layer, with 

gradually increased tolerance to position, scale and rotation deformations of the feature 

detectors at each level. Orientation and position specific edge detectors in V1 are combined 

to articulate tunings to corners, junctions and curves in V2 and V4, culminating into 

“grandmother” neurons in the inferotemporal cortex (IT) that are selective to specific views 

of a particular class of objects. A central computational issue is how one can construct 

feature detectors that are highly specific on one hand and yet invariant to irrelevant 
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variations on the other. For example, a neuron that responds only to an image of a cat (no 

matter how it is seen – in different views, lighting conditions, and spatial locations in the 

world) is called the specificity and invariance dilemma [5].

Inspired by Hubel and Wiesel’s [6] discovery of simple and complex cells, Fukushima [4] 

suggested that simple cells compute conjunctions of features, and complex cells introduce 

local invariance to these feature detectors. In the case of V1, a simple cell is an oriented 

edge detector, and a complex cell integrates responses of simple cells of the same orientation 

in a small spatial neighborhood. This provides an oriented edge label that is insensitive to 

local shift, or the exact luminance appearance of the edge, representing a more abstract 

concept. Fukushima imagined that this simple/complex cell scheme could be repeated in 

each visual area along the hierarchy, as a strategy to gradually achieve specificity and 

invariance. A simple cell in one layer combines output from different complex cells in the 

previous layer to form compound feature detectors, as forming letters from strokes, then 

words from letters. A complex cell introduces tolerance to local deformation in position, 

scale and orientation for detectors in each layer. Such a cascade can develop neurons with 

high levels of selectivity to particular objects. At the same time, they can simultaneously 

achieve a high degree of invariance against variations in size, position and views of these 

objects.

LeNet [7] and HMAX [8] are recent refinements of similar ideas. They follow a similar 

architecture, but with richer representations empowered by more powerful learning and 

classification methods. When tuned well with supervised or unsupervised learning methods, 

these feedforward models can be highly effective in some object recognition tasks [9], [7], 

[10], [10]. Because these models conform to conventional wisdom that the visual cortex 

performs computation mostly in a series of feedforward modules, and can explain some 

behaviors of IT neurons, they are the most publicly recognized hierarchical models of the 

visual cortex. With the available of big labeled data, convolution neural networks, trained 

with back-propagation algorithms, presently offer the best state-of-the-art performance in 

object recognition in computer vision and in speech recognition[11], [12].

B. Class II: Interactive Activation and Adaptive Resonance

The second class of models is called the interactive activation model [13] or the adaptive 

resonance model [14] in the connectionist literature. It is motivated by the psychological 

observation that visual perception is a constructive process and that global percept can 

influence low-level sensory processing. For example, visual perception of an individual 

letter can be influenced by the perception of the entire word. When the four letters WQRD 

are shown briefly, they can be perceived as WORD, with the Q “mistakenly” perceived as 

an O. This is called word-superiority effect. The essential idea is that the visual system is 

interconnected in a recurrent fashion. Higher level interpretations can feed back to influence 

low-level processing. Within each area, there is a competition mechanism to suppress 

spurious noises or alternative interpretations. Thus, the activation of the WORD neuron in 

the higher area will feed back to suppress the representation of Q and enhance the 

representation of O at the earlier areas. The key distinction of this class of models with the 

first class is in its emphasis on perception being an interactive process, involving top-down 
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feedback. The model is based on the association principle and can be tied to constraint 

satisfaction and probabilistic models of perception [15], [16]. O’ Reilly et al.’s [17] Leabra 

cognitive architecture may be the most powerful instantiation of this class of models for 

recurrent processing in object recognition.

C. Class III: Boltzmann Machines and Deep Belief Nets

Models in the first class compute by deterministic feedforward projection. Models in the 

second class are essentially dynamical systems that compute constraint satisfaction problems 

by gradient descent on an energy landscape. The energy functions or the objective functions 

for vision problems are usually not convex. Thus, these dynamical system models could be 

trapped into suboptimal solutions. To account for the flexibility in human inference, Hinton 

and Sejnowski [18] proposed the Boltzmann machine to model learning and inference in a 

statistical inference framework. The proposed Boltzmann machine models the joint 

distribution among the states of the different neurons and the observable data. Sampling 

techniques such as Gibbs sampling and Markov chain Monte Carlo are used to estimate this 

distribution. The pairwise connections in the energy function of the Boltzmann machine are 

learned based on Hebbian principle – neurons firing together during a visual experience will 

be wired together to encode the statistical priors of stimulus correlations in the world. The 

Boltzmann machine learns by generating fantasy according to the encoded priors or internal 

models. Unsupervised learning is fueled by the need to match the statistical correlations 

between the states of neurons in the network during fantasy (or in dreams) to those that 

occur during natural experiences.

Despite its conceptual appeal, the Boltzmann machine was not very useful at the beginning 

because Gibbs sampling, used for both learning and inference in such a system, is very slow. 

When Boltzmann machines are restricted to have only the feedforward and feedback 

connections between visible and hidden units, without horizontal connections between units 

in each layer, the sampling process can become easy and fast, as one can fix one layer and 

make fast inference on the states of units in the second layer. Connections in these so-called 

restricted Boltzmann machines can be learned between two layers at a time, and then 

stacked up together to form deep belief nets [19], [20] to build a complex internal model of 

the world (see also the Helmholtz machine [21]). The dynamic interaction of these neurons 

in the Boltzmann machine corresponds to computing probabilistic inference, and learning of 

the synaptic weights corresponds to learning the parameters of an internal probabilistic 

model of the visual input space. However, deep learning networks of this kind utilize 

feedback only during learning; inference is approximated by feed-forward deterministic 

computation. Hinton argues that visual perception has to happen fast, yet Gibbs or MCMC 

sampling is slow. Thus, during perception, we don’t fantasize.

D. Class IV: Predictive Coding Model

Inspired by Grenander’s [22] analysis by synthesis theory of inference, and by Burt and 

Adelson’s [23] Laplacian pyramid for efficient coding, Mumford [24] proposed that the 

visual hierarchy might form an efficient image pyramid, and that vision is accomplished by 

an analysis process and a synthesis process in a close loop. Here, the feedforward 

computation extracts features and proposals, and the feedback computation synthesizes 
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expectations based on the high level of interpretation of the proposals using the internal 

models. The mismatch between the top-down prediction and the input produces a prediction 

error signal or residue that can be used to update the internal models at the higher level to 

refine the synthesized top-down “prediction” until all the meaningful inputs are explained 

[24]. In his scheme, each layer of the hierarchy only needs to encode the residues in a 

manner similar to the Laplacian pyramid but is now more general, forming an efficient 

image pyramid that can describe an image with an minimum description length (MDL) code 

(e.g., Figure 4) in accord with Barlow’s [25] efficient coding principle. Rao and Ballard [26] 

developed a Kalman filter-based “predictive coding” model to illustrate this idea. They used 

it to explain some of contextual modulation effects and end-stopping effects in V1 neurons. 

The predictive coding idea has recently become quite popular in some circles of the 

cognitive neuroscience community. It has been generalized to non-visual systems [27], [28] 

and even to a “unified theory” of the brain [29]. In Rao and Ballard’s [26] model, the 

representation of a static input image at each level was maintained over time. It is set up by 

the initial feed-forward computation and subsequently modified by both top-down and 

bottom-up signals. While this does not exactly satisfy Mumford’s MDL pyramid motivation, 

the system is efficient in that the lower level only needs to feed forward the residue error 

signals in subsequent feedforward communication after the initial volley of spikes. After all, 

why waste energy sending the bottom-up representation again once it has already been sent! 

It is important to note that deep belief nets (class III) can also be made to synthesize images 

during inference by unfolding the feedback path into a feedforward path in the form of auto-

encoders [20]. Auto-encoders [20] or predictive coding models [26], in their current form 

can “code” current input with intermediate and higher level features, which are useful for 

classification. However, they cannot predict future events.

E. Class V: Hierarchical Bayes and Compositional System

The hierarchical Bayesian inference theory that David Mumford and I proposed [30] is an 

attempt to unify and reconcile the first four classes of models. It accepts the basic feed-

forward computational architectural design of Neocognitron and convolutional neural 

networks, but emphasizes the critical functional roles of feedback shared by the interactive 

activation model and the predictive coding model, and argues for a statistical inference 

framework similar to that of the Boltzmann machine. The theory is motivated in part by the 

evidence of higher order feedback modulation observed in the primary visual cortex, and the 

enormous number of intrinsic horizontal connections in V1. Similar to the interactive 

activation model [13] and Ullman’s [31] earlier proposal, signals, now in the form of 

Bayesian beliefs, are propagating up and down the hierarchical network to update the 

representations at each level. However, every visual area is also endowed with its own 

intrinsic computational circuitry, modeling the visual concepts and their statistical 

relationship at a particular level, to perform probabilistic inference. In V1, this intrinsic 

horizontal connectivity encodes the geometric priors of contours and surfaces of the natural 

environment. Thus, V1 should be considered a geometric computing engine (a high-

resolution buffer) engaging in all levels of visual computations that require high spatial 

resolution and fine details. This includes computations such as tracing contours, or 

“coloring” an object precisely with saliency signal, or constructing a mental representation 

of our perception.
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In each visual area, computation is performed based on bottom-up, top-down and horizontal 

information. Horizontal intrinsic connections are important for encoding statistical 

relationships between the visual concepts of a particular level of abstraction encoded in a 

particular area. They go beyond local competition or the smoothness constraint in computer 

vision. For example, horizontal connections can encode the co-occurrence priors of edge 

detectors [32], [33] and higher order priors [34], [35] for contour completion, as well as co-

occurrence in visual cues such as texture, shading, and binocular disparity in terms of 

association field for surface interpolation [36], [37], [38], [39], [35]. More generally, 

association fields and contextual relationships between different visual events across time 

and across space can be encoded in latent contextual variables to bring about prediction and 

interpolation [40].

In our proposal, feedback itself might not have to explicitly synthesized an expected image 

to be compared with the input image or the representation in the previous level, as the 

predictive coding model [26] suggested. We reasoned that since V2 representation is more 

abstract and invariant, it does not have the precision to synthesize a high-resolution image to 

feed back to V1. Rather, feedback provides a set of global beliefs from a higher order 

extrastriate cortex as high level commands and instructions to condition and “work with” 

V1’s own intrinsic circuitry to synthesize a precise internal representation of the prediction 

of the input to V1 (see also [41]. A spatially fuzzy top-down feedback could work with the 

intrinsic circuitry in V1 to produce a spatially precise surface and figure-ground 

representations in V1. The prediction error of the synthesized representation and the bottom-

up input representation is used to select, update and revise the cortical internal models for 

generating further predictions.

It is important to recognize that signals reaching V1 and IT are 40 ms and 80 ms 

respectively, later than the occurrence of the actual events. At each moment in time, our 

visual cortex is basically processing signals of past events. Cortical computation for 

integrating evidence, reasoning about them and planning motor action will take additional 

time. In such a processing pipeline, decisions based on past events would always be reactive. 

While a 100–150 ms delay might not be critical, if our internal models can “predict” what is 

actually happening in the world right now or in the future, our brain can then reason and act 

proactively. From this perspective, the brain could be operating entirely on a “grand 

illusion” of mental representations synthesized from internal models, and sensory signals 

(from the past), arriving later into the cortex and serving only to validate and revise past 

predictions of the internal models. The prediction error signals between the synthesized 

representation and the “observed” representation can be used to train the predictive aspects 

of the internal model. In this scheme, inference and learning happen continuously and 

simultaneously. The input signals or reality provide mostly the teaching signals for training 

the internal model.

Furthermore, in order to allow multiple hypotheses to be simultaneously represented in 

terms of probability distribution, Mumford and I [30] suggested that probability distribution 

of hypotheses can be encoded non-parametrically as particles and that hierarchical inference 

can simultaneously proceed top-down, bottom-up and horizontally, using particle filtering or 

loopy Bayesian belief propagation.
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A number of computational hierarchical models using belief propagation have been 

constructed to realize these ideas [42], [43], [44]. Hawkins’ hierarchical temporal memory 

model [44], in particular, further emphasized the importance of the role of time and argued 

that visual scene processing is a serial dynamic process. Thus, it is important to encode 

visual events in terms of temporal memory in a modular hierarchy.

But the most concrete realization of these ideas in computer vision are the powerful 

hierarchical compositional models that S.C. Zhu and Mumford [45], L. Zhu and Yuille [46], 

[47] have developed. These are graphs of structured probabilistic distributions that allow 

explicit modeling of the relationship between parts (horizontal edges), and the relationship 

between parts and whole (vertical edges). These allow a dynamic flexible recombination of 

reconfigurable parts to overcome the complexity issue. Figure 4 shows an example of an 

AND/OR graph with the highlighted edges indicating the parsing tree of a particular clock 

perceived (shown at the top of the graph) [45].

These models have proved to be quite effective in unsupervised learning of object and scene 

representation, object recognition and scene parsing [46], [47], [45].

The top node of the graph in Figure 4 does not have to be an object; it could represent an 

entire scene. In fact, in a real visual scene, multiple objects are usually present 

simultaneously. The purpose of perception is not simply for identifying or classifying an 

object, scene or event, but instead is for understanding the relationship between the 

participating objects and the mutual consequence of their interactions. The hierarchical 

compositional models in computer vision mentioned above have begun to address the issues 

of both scene composition, and modeling the relationship of objects in a complex scene to 

solve the scene-parsing problem. These models, sometimes modeled as an AND/OR graph, 

provide a stochastic grammar framework for understanding vision in a manner similar to 

that of language. From that perspective, scene parsing is analogous to parsing a paragraph, 

while object recognition is like parsing a sentence.

III. Elements of Representations

In this section, we will discuss some observations of neural mechanisms and architecture 

that provide insights into the construction and operations of the internal models in the visual 

system.

There are three major considerations on representations. First, at both the macro level and 

micro level, the visual system might be organized into modules in many different levels. 

This gives flexibility in representation to deal with the complexity and scalability issues by 

allowing flexible reconfiguration of parts and the flexible association of the parts and the 

whole concept. Second, at each module, there needs to be a dictionary of visual concepts 

represented either in the tunings of individual neurons or in the population codes of neuronal 

assembly. In addition, the probability distributions and uncertainty of these visual concepts 

need to be represented. Third, the relationships between the dictionary elements need to be 

encoded in the functional connectivity among the neurons as an integral part of the internal 

model for probabilistic inference.
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A. Hierarchical and Modular Organization

Visual scene is a hierarchical composition of “stuff”. A forest scene is composed of trees 

and rocks. A tree in turn is composed of its trunk, branches, leaves, and so on. That means it 

should be decomposable into its constituent parts. Our internal model of the world in the 

visual cortex might be best expressed in terms of a modular hierarchy, with a feedforward 

composition mechanism and feedback decomposition mechanism. The visual system 

appears to be factorized into a modular hierarchy recursively, allowing a division of labors 

at many levels, with each visual area representing specific information and performing 

specific functions. Within each visual area, it is divided into different modules or 

hypercolumns and mini-columns or neuronal pools. Neurons within a mini-column (e.g. 

orientation column) encodes similar features, whereas a hypercolumn denotes a unit 

containing a full set of values for any given set of receptive field parameters.

Mathematically, decomposition of a function into non-interacting components generally 

permits a more economical and compact representation of the function. For example, 

consider y is a function of 10 binary variables, y = f(x1, x2, x3, x4,…, x10). The number of 

possible values it can assume is 210=1024. However, if f can be factored into {g1, g2, g3} 

where there are 23=8 values in g1(x1, x2, x3) and 4 in g2(x4, x5,) and 32 values in g3(x6, x7, 

x8, x9, x10), then, with decomposition, the total number of possible values that need to be 

considered for f is only 44. Similarly, consider a 3D tensor, with each dimension = N, the 

tensor will be defined by N3 possible numbers. If, however, it can be decomposed into and 

represented by a set of p principal components where (p<<N), and each is defined by the 

outer product of three rank 1 vectors, then we only need 3N numbers to represent a 

component, and there are only 3pN numbers in the hypothesis space.

From a statistical modeling perspective, if the interdependency of variables is relatively 

local, the brain’s internal model of the probability distribution of visual scenes can be 

factorized into a product of potential functions, each of which has much lower 

dimensionality than the original distributions.

where  is some subset of variables in set a in I and Z, and where I is the input image and 

Z the internal model. Such models, when certain constraints are satisfied, can be expressed 

in terms of a Bayes network, or for other constraints, as a Markov random field (MRF), 

organized in a hierarchy. MRFs are simply large, multivariate probability distributions that 

can be expressed as the product of factors, each of which is the function of a small subset of 

the variables in the original distribution. By isolating the variables within each potential 

function from the rest of the system, a modular hierarchical system allows more compact 

and economical representations, minimizing connections, and making learning and inference 

tractable.

The factorized modules allow intense and fast computation to happen within each module 

with dense connections. The modules need to interact, albeit with slower dynamics and 
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sparser connections, in order to achieve the global objective function collectively. Neurons 

with similar tunings often cluster together to form columns in a topological map to facilitate 

their interaction.

Information flow in cortical modules is characterized by vertical connections in columns and 

horizontal connections in layers. Each visual area (module) is typically composed of 6 main 

layers, with similar topological maps across layers. In the early visual area, neurons in each 

column have overlapping receptive fields, i.e., they analyze the same window in the visual 

space. The vertical flow of information is across layers within the same column. The basic 

information flow is as follows: bottom-up input primarily arrives at layer 4 (though some 

also reach layer 2 and layer 5), projects to layers 2 and 3, then to layers 5 and 6, and then 

back to layer 4, forming a closed loop. Layers 2+3 neurons project up to layer 4 of the 

higher visual areas. Layers 5+6 project back to layers 2+3 and 5+6 of the lower visual areas. 

Neurons within layers 2+3 emanate dense local horizontal axonal collaterals to form 

networks [48]. Neurons within layers 5+6 form their own horizontal networks. Layers 2+3 

project to and receive feedback from higher areas, while layers 5+6 project to lower visual 

areas or subcortical areas. The recurrent horizontal and feedback connections introduce 

contextual effects on the responses of the neurons. Neurons do not fire simply based on the 

stimulus presented to their receptive fields, but depend on local and global contexts [49], 

[50], [30].

Neurons in one module provide both convergent and divergent projections to neurons in the 

other modules: V1 neurons from multiple hypercolumns will project to a single column in 

V2, and a single V1 neuron will also provide a divergent projection to multiple columns in 

V2. This results in the expansion of the receptive fields of neurons across different visual 

areas. A V2 neuron’s receptive field is twice the diameter of a V1 neuron’s receptive field, 

while a V4 neuron’s receptive field is twice the diameter of that of a V2 neuron at the same 

eccentricity [51]. As one moves up the hierarchy, the neurons become more selective to 

more complex features, yet with greater and greater tolerance to translation, scaling and, to a 

certain extent, rotation. The modular architecture at different scales or levels of the hierarchy 

allows flexible composition of the visual concepts represented in the modules to create more 

global new visual concepts.

B. Dictionary of Visual Concepts

Let us consider the visual cortex as a graph, then the nodes of the graph represent “visual 

concepts”. How could these concepts be learned? How could such concepts be represented 

by neurons and neuronal populations?

A visual concept can be considered as a conjunction of a set of more elementary concepts or 

features. They could be produced by feedforward connections through an AND operation, 

and are encoded in the form of receptive field tuning of individual neurons, or potentially in 

the tuning of neuronal populations.

The first principle of concept learning is that of suspicious coincidence, proposed by Barlow 

[25]. If multiple features occur frequently together, it is likely they originate from the same 

visual event, e.g., when parts of an object always occur together, they will be grouped 
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together, and a neuron will be created to encode the conjunction of these features as a 

“higher order concept”. This is the basic point of the “simple cell” operation in each layer of 

the Neocognitron or the AND operation in the AND/OR graph.

The second principle of concept learning is called redundancy reduction, also from Barlow 

[25]. If a neuron in the next layer is encoding a particular conjunction of features, i.e., 

expressing a specific visual concept, there should be no need for the other neurons in that 

layer to encode the same sets of features or concept. This can be implemented by local 

competition or a winner-take-all mechanism among the neurons [52].

These two principles have been successfully applied to explain the emergence of simple cell 

receptive fields in the primary visual cortex, in the framework of sparse coding [53], [54], 

[90], [55], [9], [10]. The local competition for removing redundancy between similarly 

tuned neurons can be learned by the anti-Hebbian rule [52], [42]. By demanding that the 

responses of the neuronal population be sparse, the receptive fields of the hidden units in the 

first layer of many hierarchical generative models typically resemble the simple cell 

receptive fields in V1.

Many of these sparse coding models are based on the “linear receptive fields” assumption, 

minimizing reconstruction cost function with L1 norm. Recent neurophysiological studies 

suggest that feedforward computations, even those in the retina, might not be so linear [56]. 

It was also found that synchronized spikes from distinct LGN neurons provide a much 

stronger drive to V1 neurons [57], [58] than when they are not synchronized, and that 

synchronized spikes coming into the same dendritic branch of a neuron could produce super-

linear responses [59]. Thus, feedforward computation could work as a soft version of an 

AND operator that integrates evidence to create a conjunctive feature detector. A soft-AND 

requires the coexistence of several pieces of evidence, but tolerates some missing parts, 

which could arise due to occlusion or noises, and hence is less rigid than a simple AND 

operator. From this perspective, simple cells could be tuned to a great variety of specific 

features, similar to the rich dictionary of feature detectors learned using K-mean related 

methods in computer vision [54], [60], [61].

In fact, the ratio between the number of V1 neurons and the number of retinal ganglion cells 

covering the same visual space is about 2000:1 near the fovea and 200:1 in the peripheral. 

Such an over-complete representation can enhance resolution of the analysis in the feature 

domain and provide flexibility in representation for building models. For any computational 

problem, finding the best way to represent the problem state space is crucial; some problems 

can be solved much more easily given the right representation. A single complete 

representation forces us to decide on only one representation, whereas over-complete 

representations allow us to retain the benefits of multiple complete representations.

From a feature detector perspective, an over-complete representation allows V1 neurons to 

tune to a great variety of specific complex local features. A recent stunning Ca imaging 

experiment of macaque V1 by Tang Shi-Ming and colleagues at Beijing University, 

monitoring thousands of neurons simultaneously in response to a large array of visual 

stimuli, suggests that macaque V1 might have an extremely rich and highly selective set of 
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nonlinear feature detectors that are very sparse in their activities at both the individual and 

population levels.

Hubel and Wiesel [6], [66] suggested that simple cells feed their output to complex cells to 

form more abstract and invariant feature detectors, insensitive to the precise location and 

appearance of the stimuli. Riesenhuber and Poggio [8] suggested this operation can be 

characterized as max-pooling. A complex cell of a particular orientation will fire when any 

one of the simple cells of the same orientation in a spatial neighborhood gets excited. More 

generally, a complex cell can be considered to indicate a more abstract visual concept. This 

operation allows any instance that belongs to the complex cell’s visual concept to turn it on, 

allowing it to select from many possible options of the same label. For example, a vertically 

tuned complex cell indicating the concept of a vertical edge can be activated by many 

different types of vertical edges represented by simple cells, or simple cells of the same kind 

within a spatial neighborhood. This can be considered as an OR operation. This local 

competitive OR circuit could retain “memory” of which a simple cell excited that complex 

cell. This allows the backward tracking along the hierarchy when a parsing tree is 

instantiated in the AND/OR graph (see Figure 4 and Figure 5).

Both the OR operation and the max-pooling operation are nonlinear operation that can be 

implemented by a local competitive circuit that forces similarly tuned neurons at a spatial 

location (within a mini-column) to compete. This can happen between simple cells in an 

orientation column in V1 (blue tinted circle in Figure 5) for instance selection. Thus, the OR 

operation can be implemented by simply summing the output of a set of related instance 

feature detectors (or hypothesis particles) after they are subjected to strong local competition 

for redundancy reduction, which can also be interpreted as max-pooling.

The complex cells themselves will engage in local competitive mechanism of a different 

nature. This concerns the competition among neurons tuned to very different visual concepts 

at the same spatial location (within a hypercolumn) to mediate concept selection. This is 

equivalent to an OR operation on distinct hypotheses or the implementation of the 

uniqueness constraint [67]. For example, competition between different disparity-tuned 

neurons in the same hypercolumn of V1 falls into this category [38], [39]. It might also be 

related to the classical phenomena of cross-orientation inhibition, as well as the ubiquitous 

divisive normalization mechanism [68], [69]. Divisive normalization can be implemented 

using a shunting inhibition mechanism: The sum of the inhibitory input coming into a 

neuron is gated by that neuron’s activity. The stronger is its activity, the stronger will be the 

effect of the inhibition. Shunting inhibition could be imposed on the axonal initial segments, 

or possibly the soma, making parvalbumin (PV) expressing inhibitory basket cells or 

chandelier cells prime suspects for mediating such action.

C. Encoding the Probability of Visual Concepts

Natural scenes are complex and inherently ambiguous. Thus, the visual concepts inferred 

also need to be associated with probabilities or uncertainties. Probability distributions and 

uncertainty of the visual concepts can be encoded implicitly or explicitly. Barlow and 

Levick [70], among others [71], [72], [30], [73], advocated an explicit representation of 

probability by neurons’ activities. That is, a neuron is supposed to be encoding a specific 
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stimulus feature, and its activity is monotonically related to the probability density or the log 

probability of that feature. Uncertainty is represented implicitly by a broader and lower 

activation pattern, i.e., greater entropy, across the representational elements. Typical data 

structures in computer vision are similar to this, where the probability distributions and 

marginalized beliefs are represented over a histogram of discretized values of a variable 

[32], [74] to make the computation more tractable. This is called the explicit probability 

distribution code.

We [30] have proposed that probability distributions of hypotheses can be represented non-

parametrically by samples, called particles. This particle sample code is inspired by the 

particle filtering computational framework used effectively in visual tracking [75] and robot 

spatial localization at the time. The essential idea is that each visual area has to compute and 

represent not just one guess for the true value of its set of features, but a moderate number of 

guesses. There could be n sets of values for the features in a visual area. In addition, each of 

these guesses is assigned a weight in such a way that the weighted sum of these guesses is a 

discrete approximation of the full posterior probability distribution. The neurons are the 

particles, representing specific hypotheses. The weight or importance is represented by the 

firing rates of the neurons. In the broadest terms, particle filtering is simply replacing a full 

probability table with a weighted set of samples. When the number of values of a random 

variable becomes astronomical (as happens in perception), this is quite possibly the best way 

to deal with distributions on it, which is known to probabilists as using a “weak 

approximation”. In this representation scheme, a probability distribution is represented or 

approximated by particle samples. Shi and Griffiths (2009) [76] provided a rigorous 

formulation of similar ideas in terms of hierarchical importance sampling. The particle filter 

framework dictates that the density of the particles encoding the prior distribution of visual 

events should be high in regions where events happen often, and sparse in region where 

events are rarely observed. Thus, the distribution of samples should reflect the first order 

statistics or the frequency of occurrence of the visual events. In early visual areas, neurons 

tuned to different stimulus parameters can be considered as particles. As an example, Figure 

6 shows that the distribution of preferred tunings of disparity detectors in V1 match the first 

order statistics or frequency of occurrence of the disparity signals of 3D natural scenes [77], 

[78].

In this framework, a neuron can be considered as a particle sample, labeling a particular 

hypothesis at a particular level. Its firing rate reflects its confidence in the hypothesis it 

represents.

A problem with this representation is that the tuning curve is measured in terms of firing 

rates obtained by averaging spikes of a neuron over many trials. Neurons tend to exhibit 

Poisson variability in their spiking activities from trial to trial. One can obtain such averaged 

spike counts by summing the spikes over a longer period of time, or pooling spikes from 

over a population of neurons with similar tunings. In this view, a neuronal pool, rather than 

an individual neuron, is responsible for representing a visual concept.

Hoyer and Hyvärinen [80] suggested that the temporal variability of neuronal spiking 

activity could potentially be interpreted as Monte Carlo sampling of the posterior. The idea 
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is that at each moment in time, the activity of a neuronal population represents a “sample” of 

the posterior probability distribution with each neuron representing a variable (feature) in a 

high-dimensional multivariate distribution, and each population activity pattern representing 

a point in this high dimensional space. Variability in a neuron’s spiking activity, and co-

variability in the response among neurons, reflect the network dynamics for sampling from 

the posterior distribution. Each sample could be a binary vector, indicating whether each cell 

in the population has fired or not fired within a 20 ms time bin. Over time, the samples could 

also provide a non-parametric approximation of the posterior distribution. Fiser et al. [81] 

suggested that the spontaneous activity of neurons might be such “samples” from the prior 

distribution. There is some evidence showing that the distribution of spike patterns of the 

spontaneous activity in the V1 neuronal populations of newborn ferrets initially was very 

different from the distribution of spike patterns when they were watching movies, but these 

two distributions grew closer over the course of two weeks during development [82]. This 

observation has been used to argue that the spontaneous activity of the neurons might indeed 

serve to encode priors. Bayesian inference then involves the interaction of the “spontaneous 

activity” and the activity evoked by visual input. This sampling code is an intriguing 

hypothesis that merits further investigation.

The particle codes can also be related to the so-called probabilistic population code. The 

probabilistic population code uses the Poisson model of spike count variability of neurons to 

model the likelihood function p(ri|s) for each neuron i. With Bayes rule, the posterior 

distribution of the stimuli s given the spike counts of a neuronal population, 

, is given by

where fi(s) is the tuning curve of neuron i, the expected or mean number of spikes for each 

stimulus or behavior s parameter in a time window of a particular duration (e.g. 200 ms, or 1 

second), ri is the actual observed spike count within a particular time window, and p(s) is the 

prior on s. The tuning curves can be quite general, and can be coarse or fine, but the neurons 

are assumed to be independent. Such a model has been extensively used in Bayesian 

decoding of movement and location based on the neural signals in the motor system and in 

the hippocampus. A number of researchers [83], [84], [85], [86] have suggested that such a 

representational scheme might in fact be used by the brain to represent probability 

distributions using neuronal population activity. The bottom panel of Figure 6, for example, 

shows the averaged posterior distribution of the “visual concepts”, in this case, 11 disparity 

of the input stimulus across. Whether the trial-by-trial posterior distribution reflects the 

uncertainty associated with behavior remains to be shown. Computational algorithms 

exploiting such code to solve real vision problems remain to be developed.

D. Relationships between Visual Concepts

The vertical and horizontal edges in the probabilistic graph model of the visual cortex (e.g., 

Figure 4) specify relationships between the visual concepts. The vertical edges specify the 
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relationship between a visual concept (parent) and its parts (children). They are implemented 

by feedforward and feedback connections. The horizontal edges specify the relationship 

between one visual concept and the other visual concepts (siblings), which are implemented 

by horizontal connections. These ideas are illustrated in Figures 3 and 5.

Over the years, two computational principles concerning the vertical and horizontal 

interaction in the cortex have emerged. The first is the predictive coding principle, which is 

a generalization of the efficient coding or sparse coding principle from tunings in the 

individual neuron level to the hierarchical system. As discussed earlier in the context of 

predictive coding models (Class IV internal models), this principle allows efficient 

representation of an entire visual concept in the system by minimizing the redundancy 

between the higher order representation and the lower level representation. Predictive 

coding proposes that when a global concept is inferred at a higher level, a prediction is 

synthesized to suppress the redundant lower level representations in the early level via 

feedback (Figure 2). These different levels could mean different visual areas in the visual 

cortex, but could also mean different layers within a visual area, i.e., the predictive feedback 

can be intra-areal or inter-areal.

It has been proposed [24], [26] that surround suppression, which is ubiquitous in the visual 

cortex [87], [88], [89], [90], can be considered a manifestation of predictive coding. The 

basic phenomenon is that while neurons would not fire unless their receptive fields are 

directly stimulated, their responses to receptive field stimuli are often modulated by the 

stimuli in the surrounding context. Most of the time, particularly when the stimuli are 

sinusoidal grating stimuli, the surround modulation observed is suppressive. The strongest 

suppression often occurs when the stimulus parameters of the receptive field (orientation, 

direction of motion, disparity, color) are the same as those in the surround. Testing with 

orientation stimuli, Knierim and Van Essen [91] found that 2/3 of the V1 neurons 

experienced stimulus-unspecific suppression (independent of the orientation of the stimuli), 

and 1/3 of the cells experienced the greatest suppression when the orientation of the 

surround and the receptive field stimuli were the same. Zipser et al. [92] found that neurons 

experienced surround suppression in response to many different cues (color, movement, 

orientation and disparity), though most neurons could experience surround suppression 

responding to one cue but not to others. Lee et al. [64] showed that such surround 

suppression in V1 generalized to higher order visual constructs such as 3D shape from 

shading and as such, the relative enhancement of the signals inside a small region can be 

considered a neural correlate of perceptual saliency. The spatial extent of the surround 

suppression can be quite large, about 3–6 times larger than the receptive fields. The effect 

was observed typically at 40–60 ms after the initial response onset, and was significantly 

attenuated when V2 was deactivated by cooling [93], [113], supporting the idea that a 

significant fraction of the surround modulation is mediated by recurrent feedback interaction 

[24], [26], [30]. In real life, the visual system has to process a continuous temporal sequence 

of events. The concept of predictive coding can be extended to the time domain to generate 

predictions of future events. Recently neurophysiological results found that neurons in IT 

experienced more significant suppression when an incoming event is predicted than when 

such event is not predicted [94], [95]. Prediction, apart from facilitating visual processing, 
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can be used to obtain an error signal to drive both the learning process and the inference 

process [40].

When the global context of a stimulus predicts that the features appear in the receptive field 

of a neuron, the neuron’s response to these features is suppressed. Thus, such a neuron’s 

response can be considered to carry a prediction error signal. We have suggested the 

observation that the later part of early cortical visual neurons’ responses are often lower than 

the initial response which is, in fact, a reflection of the recurrent feedback’s predictive 

suppression. A recent experiment provides clear evidence that this might at least be part of 

the story. When pictures of a set of large objects were presented repeatedly to the receptive 

fields of earlier cortical neurons across days, it was found [96] that the neurons’ later 

responses became more suppressed as the system became familiar with the object. The 

acquisition of familiar global object representation appeared to have introduced an 

additional suppressive effect on the later part of the neurons’ responses of these early 

cortical neurons with localized receptive fields. The effect was likely to change in global 

representation and not in the transformation of the receptive field tunings of the neurons. 

This is because the receptive field stimuli are no different from those in the other images 

that the animal remained exposed to during its daily activities.

However, the neural responses of early cortical neurons usually are never completely 

suppressed even when the global context and/or the global objects in the visual stimuli are 

very clear, i.e., when there should not be any prediction error signals, indicating that the 

neural responses of most early visual neurons are not coding simply the prediction error 

generated by subtraction [26] between the top-down prediction and the bottom-up input. 

This, we reasoned, is because V1 and the extra-striate areas represent different and 

complementary information, and the feedback signals are likely less precise; thus we still 

want V1 to maintain representation of the high-resolution fine details of the image. The 

emergence dynamic or long-term linking of a neuron representing a particular visual concept 

and neurons representing the higher order parent concept and other sibling concepts could 

support a normalization of the responses to the parts and to the whole, resulting in 

attenuation of this concept signal as it becomes increasingly associated with a larger context. 

Error signals might still be calculated, possibly by another group of neurons, which can be 

used to update and refine the internal models during both learning and inference. But such 

signals remain to be identified in early cortical neurons’ responses by appropriate 

experiments.

The second principle is the associative coding principle, derived from Hebbian learning, 

which is the cornerstone of the interactive activation class of models. Association coding 

associates low-level concepts to high-level concepts through the feedforward and feedback 

vertical connections between different layers in the hierarchical system to encode the parent-

child relationships in a graphical model. It can also be used to encode sibling relationships 

between concepts at the same level using horizontal connections. It allows networks to learn 

spatial relationships between parts of objects, or between objects in a visual scene, as a key 

part of the hierarchical compositional system.
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Deep belief nets [97] and convolution neural nets [7] focus primarily on vertical 

connections. Without loopy horizontal connections, inference is allowed to progress very 

fast in a feedforward manner. Here, I want to focus on the discussion of horizontal 

connections, which are well known in neurophysiology but often willfully ignored or 

neglected in deep learning models.

Tso et al. [98] first demonstrated that V1 neurons of similar orientation tunings in the 

superficial layers tend to be connected together horizontally. Such connections can provide 

facilitation to presumably enable boundary completion and surface interpolation in V1. 

Anatomical evidence [99] and physiological evidence [100] suggested that these 

connections are not isotropic, but stronger along the longitudinal direction of the preferred 

orientation of the neurons, consistent with the contour association field discovered in 

psychophysical studies [101] and scene statistical studies [32], [33]. Steve Zucker’s [35] 

works suggested that individual V1 neurons might be associated with a curvature transport 

field. The classical contour association field measured psychophysically [101], [32], [33], 

from this perspective, is the superposition of many of these curvature fields. There is indeed 

evidence for curvature sensitive cells even in V1 [102], [103]. Moreover, the extensive and 

dense local horizontal connections in V1 are not likely just to support contour completion, 

but likely serve a number of other early vision computations such as surface interpolation, 

segmentation and image reconstruction. Indeed, Zucker [35] suggested that there might also 

be transport fields for interpolating surface cues such as color, texture, shading and disparity 

along with the contour curvature transport fields. Our laboratory has found converging 

evidence from statistical analysis of 3D scenes [78], [104] as well as neurophysiological 

recordings [38], [39] that implicated the existence of a disparity association field in V1 that 

encodes the pairwise correlation of disparity signals experienced in 3D natural scenes, which 

can facilitate stereo surface interpolation computation.

Association fields are natural outcomes of Hebbian learning due to stimulus correlations in 

natural scenes. Ko et al. [84] demonstrated the existence of direct monosynaptic and 

bidirectional connectivity between pairs of neurons that exhibited correlated responses to 

natural movies. It has been proposed that Markov random fields can be used to 

conceptualize cortical computation in the primary visual cortex [105], [106]. Markov 

random fields can encode the relationship between features and concepts in each visual area. 

A node in the MRF is a continuous variable which has to be represented by a population of 

neurons. Each is a binary unit tuned to a particular range of the stimulus space. The 

Boltzmann machine is a form of MRF with binary variables, which are closest to a neural 

implementation. When we trained a Boltzmann machine using disparity signals derived 

from 3D natural scenes, we found that the Boltzmann machine learns a neural circuit that is 

very similar to the neural circuit inferred from our neurophysiological experiments [78], 

with cooperation between similarly disparity-tuned neurons across space and competition 

between different disparity-tuned neurons at the same location [39], [38]. In addition, we 

found in scene statistical analysis that there is a strong spatial correlation in disparity signals 

along the cardinal direction than along the oblique, which can be traced to the prevalence of 

vertical and horizontal structures in natural scenes and a cardinal effect in surface tilt. We 

found that this characteristic signature in natural scene statistics manifests in a stronger 

observed functional connectivity among similarly disparity tuned V1 neurons along the 
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cardinal direction than along the oblique [104]. This observation further supports the idea 

that neural circuitry is shaped by the statistical structures in the environment [104]. These 

findings suggest that either the Markov random field or the Boltzmann machine is a viable 

model for conceptualizing the computation and predicting the circuitry in the visual cortex’s 

internal models.

Association field, in the form of a pairwise horizontal connection, is capable of encoding 

primarily pairwise or second order correlation in the feature responses in each particular 

visual area. Thus, first order correlations are encoded in neuronal tunings, and second order 

correlations in the signals are captured by pairwise connections. MRF with only pairwise 

connections, however, cannot capture the higher order correlations in natural images. Higher 

order correlations can potentially be encoded by higher order cliques, i.e., potentials that 

constrain the simultaneous co-activation of multiple neurons [74], [107], or encoded in the 

feedforward/feedback recurrent connections to a downstream unit along the hierarchy. It is 

important for the horizontal connections to capture the pairwise correlation. Factoring out 

the second order statistics allows the more expensive vertical connections to focus their 

learning on the higher order correlational structures in the signals [41].

Traditionally, the horizontal pairwise connections encode the pairwise “smoothness 

constraints” in Markov random field for contour and surface interpolation. However, given 

the sophisticated neural circuits and the great variety of interneurons within each columnar 

modules in each visual area, it is very likely more sophisticated contextual information can 

be encoded in the neurons within each visual area to implement higher order constraints or 

higher order priors [74].

A case in point is a recent module model we developed [40], called the contextual predictive 

encoding model, which attempts to integrate sparse coding, predictive coding and 

associative coding strategies into a unified framework to perform non-trivial computation 

(Figure 8). This model proposes a generalization of the predictive coding principle, and is 

also related to Memisevic and Hinton’s gated Boltzmann machine [34]. The idea is to 

introduce a set of contextual latent variables in an autoencoder framework to encodes local 

spatial temporal contextual constraints that allow the mutual prediction of visual events 

across space and across time. These local contextual constraints, implementing the mutual 

predictability principle, allow the system to fill in missing details in space and time 

(interpolation) as well as to extrapolate and to predict the future. The model learns a set of 

feedforward receptive fields encoding local visual patterns (Figure 10) and a set of latent 

contextual variables to encode temporal transformations observed in the training sequences. 

These latent variables serve to modulate the synthesis process by scaling the importance 

(weights) of the learned basis functions (see Figure 8). The inference of these latent 

variables is nonlinear, based on an iterative EM-like procedure and is driven by prediction 

error minimization. The distinction between this “predictive encoding” model and other 

predictive coding models [26] is that the prediction is generated by local contextual and 

transformational priors, rather than higher order dictionaries in a downstream area, and that 

the residue signals update the context but are not necessarily the only signals being fed 

forward to downstream neurons. Thus, this model should be considered as a module in a 

hierarchy, and can be stacked up together to form a new kind of hierarchical deep network. 
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We [40] found this model capable of interesting computation such as interpolating missing 

frames, and predicting future frames in a movie (see Figure 8).

IV. Models, Mechanisms and Algorithms

A. Varieties of Inference Algorithms

We know little about the computational algorithms the brain uses to exploit the internal 

models to make perceptual inference. But decades of algorithmic developments in computer 

vision could potentially delineate the scope of the possible neural algorithms. In computer 

vision, there are four major classes of optimization algorithms that have been used with a 

certain degree of success for performing statistical visual inference in probabilistic graphical 

models: mean field approximation, Markov chain Monte Carlo (MCMC) sampling, graph 

cut and belief propagation. These are approximation methods because exact inference is 

possible only for a small set of problems. All these methods have certain biologically 

plausible elements, and have implications on how internal models are encoded and used.

Neurons and neuronal networks have typically been modeled in terms of dynamic systems 

that follow a gradient descent dynamic to minimize energy functions which specify the 

constraints for solving a problem. As energy functions for vision problems tend to be highly 

non-convex, gradient descent on such an energy landscape invariably will be trapped in 

local minima. Computation in dynamical systems can be considered as performing a mean-

field approximation of the computation in a stochastic system. There are a number of 

strategies that might allow a neural system to escape the curse of local minima. One 

potential strategy is to introduce stochastic noise to the system, which in some balanced 

networks could allow different clusters of neurons to become active at different times [108]. 

Such a model can provide a good account of the recently observed persistent slow-dynamics 

of cortical state fluctuation over time in the cortex, and can potentially enable stochastic 

computation in a dynamical system.

Sampling approaches such as MCMC are widely used in machine learning and computer 

vision. If time is not an issue, sampling can produce very robust results for both learning and 

inference. In some cases, when the energy function is too non-convex, sampling is often the 

only method that works. Gibbs sampling is a Markov chain Monte Carlo (MCMC) 

algorithm for obtaining a sequence of samples from a probability distribution that can be 

used to approximate the joint distribution in graphical models such as Markov random field 

or deep belief nets. It generates a sample from the distribution of each variable in turn, 

conditional on the current values of the other variables. The sequence of the samples 

constitutes a Markov chain, and the stationary distribution of that Markov chain is the joint 

distribution. When a graph can be factorized as in a modular hierarchy network such as a 

Bayesian network or a Markov random field, Gibbs sampling can be particularly effective.

Hoyer and Hyvärinen [80] had suggested earlier that the variability in neural response could 

reflect a Monte Carlo sampling of the posterior distribution. It has also been recently 

suggested [81], [82] that the spontaneous population spike patterns might represent the 

priors, as “samples” drawn from a distribution defined by network connections that encode 

the statistical priors of the natural scenes. During inference, the spontaneous activity or 
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priors’ samples interact with “likelihood” samples elicited by the input to produce samples 

for the posterior distributions. Thus, the sampling approach potentially can provide a natural 

explanation for spiking variability of individual neurons, as well as co-variability between 

neurons, and might be related to the ongoing activities that reflect the large fluctuations in 

cortical states. The problem with the sampling approach, particularly in a hierarchy with 

many loops, is that it might be too slow to be practical for inference. Drawing samples in the 

brain is limited by the duration of an action potential, which is in the order of a few 

milliseconds if the refractory period is included.

Dynamical system is fast but not accurate. Sampling is robust but too slow. Mumford and I 

[30] observed that belief propagation potentially offers a good compromise, particularly 

when the internal models can be factorized into a product of potential functions. BP 

computes by passing and weighting messages and beliefs, and can naturally keep multiple 

hypotheses alive, yet it can still be fast and parallelizable. When the probability distribution 

is represented non-parametrically using particles, a variant of belief propagation is called 

particle filtering.

Belief propagation has been successfully applied to a wide variety of computer vision 

problems with impressive results [109], [75], [74].

The algorithm proceeds forward in time, and information from many observations is 

integrated into the current set of particles and their weights. One can also go backward in 

time and reinterpret earlier evidence i.e., using current data to clear up ambiguities in past 

interpretations. This is exactly the way the forward/backward algorithm works in speech 

recognition, except that using particles allows one to overcome explosions in the number of 

states of the system. In the vision situation, information flow progresses both along the time 

axis and along the visual hierarchy, starting with local elementary image features and 

progressing to more global and more abstract features in the higher areas. The recurrent 

interaction across the hierarchy helps to collapse the hypothesis space over time [30]. Figure 

11 shows how an efficient belief propagation [110], [107] my student Brian Potetz 

developed that finally solve the shape from shading problem as defined by Horn. The 

analysis path inferred the underlying 3D shape; the synthesis path renders the image based 

on the inferred 3D shape, the internal model of reflectance map and the lighting direction.

The efficient belief propagation algorithms [111], [74] typically exploit a coarse-to-fine 

strategy to speed up computation. For example, the hypothesis space is initially coarsely 

partitioned to represent the beliefs in a histogram or a finite set of states. Over time, the 

belief space is more finely partitioned to allow successive convergence of the beliefs. This is 

similar to particle filtering. What exact strategy the brain uses remains to be elucidated. A 

number of researchers have seriously explored the plausible neural implementation of BBP 

algorithms [42], [43], [72], [44], [73]. Neural implementation of exact belief propagation 

usually requires more elaborate dendritic computations [73], [107].

Figure 12 shows another example from neural decoding to help illustrate the general 

concept. Here, the task is to decode the movement of a sinewave grating seen by a neuron 

with local receptive field [112]. At a given moment in time, when an input signal is 
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measured or sampled, the system has a set of hypotheses over the possible trajectory in the 

last 200–300 ms. The hypothesis particles are indicated by the different trajectories radiating 

from the right (most recent past) to the left (more distant past) in the “pre-resampling stage” 

block, with the more probable hypothesis represented by thicker trajectories. There are many 

equally likely hypotheses on the right because inference is made based on the most recent, 

temporally local information, which is inherently ambiguous and uncertain. On the left, 

when a more global “historical” view is available, the hypothesis space has collapsed into 2–

3 important hypotheses.

In this example, as a new measurement comes in, the new evidence “resamples” the 

particles, reevaluating the importance of each of the probable hypotheses. The “post-

sampling stage” block shows that the most important hypothesis in the pre-sampling stage 

has become less important, while the runner-up hypothesis in the pre-sampling stage now 

becomes the most probable or important hypothesis. Thus, new information that comes in 

over time or across space can drastically change the system’s interpretation of the visual 

scene.

As discussed earlier, the information flow along the time axis here is very similar to the 

information flow up and down the hierarchy over time. When the inference reaches the top 

of the hierarchy, the recurrent interaction across the hierarchy helps to collapse the 

hypothesis space over time. In the context of the AND/OR graph of a clock (Figure 4), each 

of this particle will link the concept of the clock at the top of the hierarchy to its parts, down 

to the image represented in V1. The images of two different clocks trigger two different 

parsing graphs, selecting different parts in the AND/OR graph as illustrated in Figure 13.

B. Binding and Grouping Mechanism

The concept of a particle in the form of a parsing graph might also be related to the idea of 

binding of the neuronal ensemble representing different visual concepts at different levels 

along the visual hierarchy. When lower order concepts are exciting a higher order concept, 

and the higher order concepts feed back to reinforce the lower order concepts, this 

interaction, as in the interactive activation, will increase the functional connectivity of the 

involved neurons, leading the neurons to fire synchronously or oscillate together. This is 

related to the controversial binding by synchrony hypothesis [113], [114], [115], [63], [116]. 

Neurons that fire together synchronously or in oscillation together are said to be “bound” 

together as a group. This can be seen as a mass-spring model, with neurons as masses, and 

their connections as springs. The strength of the neuronal connectivity is dynamically set 

based on the priors and the visual input. Each parsing graph will fire synchronously and 

exhibit oscillation, segmented from other parsing graphs or hypotheses. This is very similar 

to the computer vision grouping and segmentation algorithms based on spectral graph 

partitioning [117], [118], [119]. It is important to note that from our perspective, binding 

simply means the different parts of a hypothesis particle are hand-shaking and dynamically 

coupled together. Synchronous activity is more of a reflection of interaction, rather than a 

“code” to be read. This allows the visual system to couple the concepts from the most 

abstract level down to V1 or even the LGN level, producing a coherent holistic perception of 

the object or the scene. Perception of a face is not simply the activation of a “face neuron” in 
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IT, but the holistic activation of the entire chain of neurons involved in the parsing graph, 

coding a nose with its wrinkles, and the eyes with their sparkles. The co-activation or 

synchrony of relevant neurons along the hierarchy corresponds to the coupling of nodes in a 

parsing tree in a AND/OR graph (thicker line in Figure 4, and red lines in Figure 5).

Mumford and I [30] have argued that the particle itself might need to be represented by the 

concerted activity of an ensemble of neurons, which could be bound by timing (e.g., 

synchrony or by synaptic weights after short-term facilitation). Note that the top-down 

messages can utilize the same recurrent excitatory mechanism that has been proposed for 

implementing biased competition for attentional selection. In fact, visual attention itself 

could be considered a special case in this framework. The recurrent excitatory connections 

across the multiple modules in the visual hierarchy allow the neurons in different areas to 

link together to form a larger hypothesis particle by firing concurrently and/or 

synchronously. Since its implementation requires that groupings of mutually reinforcing 

alternative values of features in different areas be formed, this algorithm might be linked to 

the solution of the binding problem.

Sometimes, it is possible that a particular concept in the middle of the hierarchy can be 

shared by a few particles. In this event, those particles need to be entertained 

simultaneously; the visual concept will need to participate in multiple hypotheses at the 

same time. This might not be a serious issue, as each visual concept might be redundantly 

represented by multiple identical or similar neurons, and these neurons can be coupled with 

different hypothesis particles, each participating in only one particle. Alternatively, a neuron 

representing a visual concept can hand shake with multiple higher order neurons by firing 

synchronously.

Lamme’s figure enhancement effect or the enhancement of neuronal activities inside a 

figure relative to the background observed in V1 [63], [120], [64], [129] can be considered a 

consequence of a higher order concept feeding back to the early visual areas in the 

hierarchy. This enhances the activities of those neurons that have contributed to this higher 

order concept, resulting in an increase in firing rates of these neurons. Recently, it has been 

observed that this enhancement effect appears first in higher areas such as V4 before 

appearing in V1 [62]. This phenomenon is consistent with the general picture that neurons in 

the same parsing graph will interactively activate one another through recurrent feedback 

connections, establishing stronger functional connectivity or coupling. Such interaction 

could cause neurons along the parsing tree to be more synchronous and exhibit oscillation 

phenomena. This might be more appropriately called synchrony by binding, rather than 

binding by synchrony, as suggested by Pascal Fries.

Pascal Fries [121] further proposed that the various rhythms well known in the brain might 

not simply be an epiphenomenon of interaction, but a way to shape the communication 

between the different brain areas by changing the excitability of a neuronal population. This 

Communication through Coherence (CTC) theory argues that the rhythmic changes in 

neuronal populations’ excitability can open and close the communication channels between 

populations of neurons. This might provide a flexible communication structure and 

mechanism to couple visual concepts together as a particle along the hierarchy, creating and 
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selecting the appropriate parsing graph in visual scene analysis. There is some evidence, 

particularly based on the simultaneous analysis of spikes and local field potentials, in 

support of such a hypothesis. Salazar et al. [122] found that neuronal synchronization across 

the fronto-parietal network carries content-specific information, i.e., what objects are being 

held in the visual working memory of monkeys.

V. Conclusions

In this paper I have discussed some observations on the computational principles governing 

the construction and the representation of the internal models of the world in the visual 

cortex. These observations can be summarized into the following five major computational 

principles, which are by no means exhaustive.

1) Principle of statistical inference

The stream of visual sensory signals of the world coming into the visual cortex through the 

retina are inherently ambiguous because of the stochastic nature of spike messages, noises, 

the constant jitters of the eyes, and the locality of the sensors in the early visual system. To 

resolve this ambiguity, the brain has to make statistical inferences using internal models that 

encode the prior knowledge of the world that it constructs from experience [1]. From our 

current conceptualization, these internal models can best be expressed in terms of 

probabilistic graphical models that are structured and compositional. The nodes in these 

graphical models represent visual concepts. The probability and importance of these 

concepts are represented non-parametrically by neural activities as particle samples [30]. An 

ensemble of neurons representing concepts at different levels of scale and abstraction form a 

macro-particle as a coherent hypothesis of the visual scene.

2) Principle of compositional hierarchy

The visual world is extremely complex. The only way to scale up an internal model to deal 

with this complexity is to use a compositional model to exploit the fact that images 

themselves are generated by composing objects [2], [123]. A compositional internal model 

allows information to be decomposed and represented in parts, allowing whole concepts to 

be constructed and represented using flexible recombination and reconfigurations of these 

reusable part concepts [5]. A compositional system might also offer a nearly decomposable 

system to allow parallel and distributed processing of information [2]. We conjecture that 

this hierarchy can be organized conceptually with the AND/OR graph architecture [45], 

[124], which is very much in the spirit of the alternating simple cell/complex cell 

architecture of the Neocognitron [4]. A node in such a graph represents a concept as a 

flexible template, which is activated by “pooling” [8] or “routing” [125] during feedforward 

inference to achieve invariance. It can also be steered by “memorized switches or routing 

signals” to reconstruct by the input precisely, as in the deconvolutional network [126] to 

instantiate the parsing graph of an object, and more generally of a whole scene (Figure 13).

3) Principle of efficient and associative coding

There are two important aspects to the encoding of the internal model: visual concepts that 

are encoded in the tunings of the neurons, and the relationship among the concepts encoded 
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in the functional connectivity of the neurons. Visual concepts are learned based on the 

detection of suspicious coincidence of conjunctive simpler visual concepts through Hebbian 

learning. The representation is made efficient by a variety of local competitive mechanisms: 

(1) local competition between neurons with similar tunings at the same location to remove 

redundancy (e.g. sparse coding) [55], [53]; (2) local competition across space of similar 

tuned neurons to achieve invariance, as a form of max-pooling [8]; (2) local competition 

between neurons of different tunings, coding distinct visual concepts at the same locations 

during inference to implement the uniqueness constraint [67], [38] or to normalize the 

probability distribution of the visual concept hypotheses for explaining the images [30], 

[83]. The second order relationship between the visual concepts can be modeled by pairwise 

horizontal connections [127], [78]. Higher order relationships among visual concepts can be 

encoded by the feedforward/feedback vertical connections as well as interneurons [19], 

[128], [40]. The learning of the relationships among visual concepts is governed by Hebbian 

rule-based associative coding principle [18].

4) Principle of generative inference and learning

Predictive coding is an extension of the efficient coding principle to the hierarchical system 

to minimize the redundancy of the visual concepts at different levels of the hierarchy [24]

[26]. However, apart from efficiency in representation, predictive coding mechanism might 

serve a more important functional role: validating the correctness of the internal model. The 

validity of an internal model can be confirmed by the system’s performance. Organisms 

with false internal models will have poor performance and will likely be eliminated by 

natural selection. The difficulty with such validation approach is the lack of immediate 

teaching signals or labels. It might be more advantageous to use the reality or the visual 

input as the teaching signal. The hierarchical visual system can use its internal model to 

generate an explanation or expectation of what we are seeing and will see. The residue 

errors between the model’s prediction and the input signals at each level can be used to 

validate, update and refine the internal model’s states during inference and the model itself 

at a longer time scale as learning [40]. In essence, comparing predictions of our internal 

models with the stream of incoming data allows us to continuously update and validate our 

internal model of the world.

5) Principle of exploration and robustness

The brain needs to constantly adapt its internal models to the changing environment to 

ensure their predictions can produce effective behaviors and an accurate representation of 

reality. This means that neurons and neural circuits have to constantly explore the space of 

internal models by modifying their tunings to come up with better visual concepts, and 

modifying existing connections to encode new relationships, in a manner similar to particle 

filtering [30], [129]. The external environment is constantly changing and full of “noises” 

and there are always events that we don’t fully understand. Thus, the neural system might 

have to explicitly generate stochastic noise and random fluctuations [130], [108] to 

encourage exploration of the hypothesis space during learning and inference to increase the 

adaptability and robustness of the system.
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These principles have been useful in our conceptualization of the computational 

organization of the primate’s hierarchical visual system. The last principle has not received 

much attention but is particularly important. Indeed, vision, through our incessant eye 

movements, is an active process of constant exploration and search. The brain is always 

looking for useful clues to build a better internal model of the world. Imagination, 

exploration and experimentation are critical processes that allow the brain to search through 

the fitness landscape rapidly to ensure the survival of the species. From this perspective, the 

other principles related to attention selection, motor action and planning, and sensory-motor 

integration, which we have not discussed, should also be important for understanding the 

visual system. Ultimately, the usefulness of the internal models in the visual system must 

rest on the usefulness and effectiveness of their predictions for generating appropriate and 

rewarding behaviors.
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Figure 1. 
The visual cortex is arranged in a hierarchy of different visual areas (modules), starting from 

V1 that receives retinal-thalamic input, flowing to V2, V4, TEO, and AIT (anterior 

inferotemporal cortex). These areas form the ventral (WHAT) stream processing object 

forms, colored in violet. The dorsal stream, (WHERE) colored green, is associated with the 

parietal cortex, processing information about space and motion. The receptive fields of the 

neurons, indicated by the accompanying image patches, become progressively larger as the 

information propagates up the hierarchy, allowing the neurons to process and encode more 

global and abstract aspects of the input images.
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Figure 2. 
Schematics of the first four classes of models. Note that for class III, a DBN (deep belief 

net) uses a restricted Boltzmann machine with top-down inference and bottom-up fantasy to 

learn the internal model (dotted block). But once learned, inference is performed simply by 

feedforward computation.
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Figure 3. 
Schematic of the class V hierarchical Bayes model. Beliefs are passed bottom-up and top-

down across modules (layers) via different paths. Within each module (layer), neurons are 

modulated by competitive mechanisms and facilitatory association field mechanisms.
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Figure 4. 
An example of an AND/OR graph that encodes the concept of a clock [45]. The graph 

encodes all varieties of clocks. The thick dark lines indicate a particular parsing tree related 

to the clock displayed at the top, which is also the input image tied to the leave nodes at the 

bottom. Reprinted from [45] with permission from authors.
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Figure 5. 
Relating the neural circuit to the theoretical AND/OR graph (Figure 4). Local competition 

between simple cells coding similar features (tinted blue) at the same location implements 

redundancy reduction, similar to the OR operation. Local competition between complex 

cells coding distinct concepts at the same receptive field location (tinted green) normalizes 

the probability of the different hypotheses. Surround suppression (tinted gray) computes 

Bayesian surprise based on the predictive coding principle. The association field is learned 

based on stimulus correlation, linking co-occurring visual events to model relationships 

between parts. The C1 complex cells converge to form a higher order S2 simple cell (coding 

for a triangle in this example) using an AND operator, and the competitions start at this level 

again. The up-down red lines dynamically “bind” together feature detectors across the 

different levels of the hierarchy during perception, relating parts to the whole shape. 

Neurons linked together by the red lines will show enhanced firing activities [62], [63], [64] 

and/or enhanced synchronous activity [65]. This linking implements the parsing tree in an 

AND/OR graph shown in Figure 4.

Lee Page 35

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Top left panel: samples of disparity-tuning curves recorded simultaneously using a Utah 

array in primate V1. Top right panel: the distribution of the preferred disparity tunings (peak 

of the tuning curves) match the distribution of the occurrence frequency of disparity signals 

in 3D natural scenes [77], as in a particle filter code. Bottom panel: The probabilistic 

population code was based on the spike counts of a population of 248 neurons, obtained for 

each of the 11 disparities. Each was indicated by the dotted lines, and tested in a stereo 

experiment. Data from [79], [39]. Each color curve indicates the geometric mean of 

posterior p(s|r) computed from the spike counts in 1 s (with 30 repeats) of the neuronal 

population [77]. Note the posteriors near 0 are sharper, while more distant disparities have a 

broader posterior, corresponding to higher uncertainty, as in human perception.
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Figure 7. 
Left panel: A Boltzmann machine with 13 hypercolumns, each with 16 neurons tuned to 

different disparities, is trained with 3D natural scene data. The spiking activities of the 

neurons are determined by the disparity signals at each location during training. The 

Boltzmann machine learns connections that can spontaneously generate the same statistical 

distribution of population spike patterns during spontaneous activities as those observed 

during training by 3D natural scenes. This implements the encoding of stimulus correlations 

in natural scenes in neuronal connectivity by Hebbian learning mechanisms. The right panel 

shows the connectivity matrix of one neuron, tuned to 0 disparity at location 7, to all the 

other neurons in the other hypercolumns. The resulting connections show cooperation 

between similarly disparity-tuned neurons across spatial locations (rows 8, 9, 10) and 

competition between neurons with distinct disparity tunings at the same location (center 

column) and across columns [78], as predicted in [67] based on computational 

considerations.
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Figure 8. 
(A) Latent contextual variables z learn the spatiotemporal context. The activation of a set of 

contextual variables z by the input frames feeds back to scale the basis function during the 

synthesis process to maximize the predictability of the frames from one another in that 

spatial temporal context. Prediction error signals update z in a EM like process. (B) 

Interpolation results: second row shows the interpolated images for the missing frames, 

given the first and the third frames. (C) Prediction results: third row shows the predicted 

images for the future frames, given the first and the second frames.
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Figure 9. 
The neural model in Figure 8 is in fact the realization of a graphical model with factors (f’s) 

and a set of latent variables (h) depicted here. The latent variables h are connected to the 

weighted sum of the output of f. f are related to y, and h to z in the neural circuit model in 

Figure 8. The learning of the weights in the network is driven by the prediction error signals.
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Figure 10. 
Spatiotemporal receptive fields of neurons trained by natural movies. Gabor-like 

spatiotemporal filters are learned as efficient codes (“sparse codes” because L1 norm is 

used).
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Figure 11. 
The results of inferring the 3D shape of a penny given its 2D optical image (shown on the 

left) using an efficient Belief Propgation algorithm. Top: the inferred 3D shape, a rendering 

based on the inferred latent surface orientation (p,q) variables at each location. Right: The 

image synthesized from the inferred latent (p,q) variables match almost perfectly the input 

image. This illustrates analysis by synthesis in perceptual inference [110], [107].
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Figure 12. 
Dynamics of a particle filtering algorithm. Data input and the different predictions of the 

internal model are compared at the comparator at each point in time. The hypothesis that 

generates the prediction that best matches the observation is given stronger weight 

(importance), as indicated by the thickness of the line in the stimulus trajectory hypothesis. 

The beliefs at the post-resampling stage could become substantially different from that the 

pre-resampling stage. Observe the change of the favored hypothesis.
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Figure 13. 
Two parsing graphs or selection paths in the AND/OR graph in response to the images of 

two different clocks [45]. Neurons coding the different visual concepts along the parsing 

graph will be functionally coupled together through their interaction. Reprinted from [45] 

with permission from authors.
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