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Abstract
Breast cancer has various molecular subtypes and displays high heterogeneity. Aberrant

DNA methylation is involved in tumor origin, development and progression. Moreover, dis-

tinct DNA methylation patterns are associated with specific breast cancer subtypes. We

explored DNA methylation patterns in association with gene expression to assess their

impact on the prognosis of breast cancer based on Infinium 450K arrays (training set) from

The Cancer Genome Atlas (TCGA). The DNA methylation patterns of 12 featured genes

that had a high correlation with gene expression were identified through univariate and mul-

tivariable Cox proportional hazards models and used to define the methylation risk score

(MRS). An improved ability to distinguish the power of the DNA methylation pattern from the

12 featured genes (p = 0.00103) was observed compared with the average methylation lev-

els (p = 0.956) or gene expression (p = 0.909). Furthermore, MRS provided a good prognos-

tic value for breast cancers even when the patients had the same receptor status. We found

that ER-, PR- or Her2- samples with high-MRS had the worst 5-year survival rate and over-

all survival time. An independent test set including 28 patients with death as an outcome

was used to test the validity of the MRS of the 12 featured genes; this analysis obtained a

prognostic value equivalent to the training set. The predict power was validated through two

independent datasets from the GEO database. The DNA methylation pattern is a powerful

predictor of breast cancer survival, and can predict outcomes of the same breast cancer

molecular subtypes.

Introduction
Breast cancer is the second largest cause of morbidity worldwide, the first cause of tumors in
women [1], and the leading cause of cancer death in women. Moreover, the incidence rates of
breast cancer are continuing increase [2]. Breast cancer has multiple molecular subtypes that
are classified using tumor biomarkers, such as hormone receptors (HR) (i.e., estrogen receptor
(ER) and progesterone receptor (PR)) and human epidermal growth factor receptor 2 (Her2)
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[3]. Four clinical subtypes of breast cancer can be separated according to HR expression and
the epithelial cell of origin (luminal or basal): Luminal A (HR+/Her2-), Luminal B (HR+/Her2
+), Her2-enriched (HR-/Her2+), and triple-negative (HR-/Her2-) [4–7]. Breast cancer is a
highly heterogeneous disease between and within tumors as well as among cancer-bearing indi-
viduals, which is a challenge for the diagnosis, treatment and prognosis [8].

DNA methylation is an epigenetic modification that plays important roles in gene expres-
sion regulation, cellular differentiation, development and even tumorigenesis. DNA methyla-
tion often occurs at the C-5 position of cytosine, especially cystonsines located in C-phosphate-
G (CpG) sites. DNA hypermethylation in gene promoter or CpG islands can result in tumor
suppressor silencing, leading to tumorigenesis. Therefore, a large number of differentially
methylated regions in cancer have been identified to explore the epigenetic regulation mecha-
nisms underlying oncogenesis [9]. Recently, DNA methylation biomarkers for the diagnosis,
molecular typing and prognosis of breast cancer were identified. For example, hypermethyla-
tion of RASSF1A can be used to detect breast cancer during the early stages using a CpG island
that is hypermethylated in 60–70% of breast cancers [10, 11] or a promoter that is hypermethy-
lated in 70% of breast cancer individuals [12]. Methylated RASSF1A is strongly associated with
metastasis, tumor size, and an increased risk of death [13]. BRCA is a well known tumor sup-
pressor for both breast and ovarian cancer whose mutations are more likely to be higher grade,
poorly differentiated, highly proliferative, ER negative, PR negative and harbor p53 mutations
[14, 15]. However, Xu et al. found that although methylation of the BRCA1 promoter was
more prevalent in cancers with tumors size greater than 2 cm, hypermethylation of BRCA1
from breast cancers with BRCA1 mutations had no overall correlation with ER, PR or grade
[16]. Aberrant DNAmethylation may be correlated with more advanced tumor stages at the
time of diagnosis, but it is independent of BRCA1 mutation. Furthermore, DNAmethylation
has several advantages over sequence mutations as a cancer biomarker [17]. First, the aberrant
methylation of specific CpG islands or gene promoters is more frequent than mutations. Sec-
ond, aberrant methylation patterns can be detected even when they are embedded in an excess
amount of normal DNAmolecules. Third, techniques for the detection of methylation patterns
are relatively simple [18].

Breast cancers can have different treatment responses and overall outcomes even when they
are at the same stage of the disease or have the same subtype. Therefore, a good prognostic bio-
marker of breast cancer can not only contribute to the accurate classification of the subtype but
also guide clinical treatment and improve breast cancer outcomes. Signatures predicting the
clinical outcomes of breast cancer based on gene expression profiling have been identified and
will provide benefits for adjuvant therapy [19]. However, the identification of prognostic pre-
dictors in breast cancer that regulate gene expression may have more benefits than unstable
gene expression. For example, aberrant methylation of the TSC [20], SFRP1 [21], and
RASSF1A [22] genes was associated with an unfavorable prognosis of breast cancer and could
be regarded as independent predictors. Although several methylation biomarkers have been
identified to predict breast cancer survival, they are usually limited to average methylation lev-
els of several genes based on experiential knowledge. However, there is a weak correlation
between the average DNA methylation levels of gene promoter and gene expressions in
genome wide [23]. This finding prompted us to hypothesize that methylated CpGs in promot-
ers might be not have equivalent regulatory effects on gene expression. Here, we used canonical
correlation analysis to obtain the methylation patterns of CpGs with the strongest correlation
with gene expression, and identified predictors of breast cancer prognosis based on high
throughput DNA methylation data. The methylated features showed a good distinction of
breast cancer outcomes even in samples with the same receptor status.
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Materials and Methods

Data downloading and processing
DNAmethylation data sets of breast cancers based on Human Infinium 450K arrays were
obtained from TCGA (http://cancergenome.nih.gov/). Gene expression data sets of breast can-
cers based on AgilentG4502A_07 were also downloaded from TCGA. Breast cancer samples
that had both DNAmethylation and gene expression information were retained as the training
set. Other samples with only DNA methylation and patient outcome information were
regarded as the test set. Samples or CpG sites missing data in the training set were filtered in
the following analysis. Additionally, two DNA methylation datasets based on Human Infinium
450K arrays (GSE37754) and Human Infinium 27K arrays (GSE20712) were downloaded from
GEO database (http://www.ncbi.nlm.nih.gov/geo/) as independent test sets to assess the pre-
dictive power of the DNA methylation biomarkers.

Canonical correlation analysis
Due to the multiple CpGs located in the gene promoters and the variability of the DNAmeth-
ylation levels of multiple CpGs located in the same gene, canonical correlation analysis was
used to estimate the correlation between gene expression and DNAmethylation levels from
multiple CpGs. Let Yi ¼ fyi1; yi2; . . . ; ying denote the expression levels of the ith gene among n
samples, and Xi ¼ fXi

1;X
i
2; . . . ;X

i
pg denote the DNA methylation levels of p CpGs from the ith

gene, where Xi
j ¼ fxi1j; xi2j; . . . ; xinjgt is the methylation levels of the jth CpG among n samples.

For each gene, we can describe the methylation and expression data using the following matrix.

D ¼
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Assuming the mean and covariance of X and Y were

EðXÞ ¼ �X and CovðXÞ ¼ SXX

EðYÞ ¼ �Y and CovðYÞ ¼ SYY

The corresponding covariance matrix was S.

P ¼ SXX SXY

SYX SYY

" #

U and V were the linear combination of Xj and Y respectively.

U ¼ a1 � X1 þ a2 � X2 þ � � � ap � Xp ¼ a0 � X
V ¼ b � Y

Thus

EðUÞ ¼ a0 � �X
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The objective function that obtained the maximum correlation between U and V was solved
based on the Lagrange multiplier method.
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The estimated value â and b̂ constituted the canonical variables U and V that obtained the
maximum correlation. Therefore, the methylation pattern of multiple CpGs located in the gene
promoter was represented by U which was estimated through the following equation.

U ¼ â1 � X1 þ â2 � X2 þ � � � âp � Xp

The expression pattern was represented by V which was estimated through the following
equation.

V ¼ b̂ � Y

where b̂ denoted the regulatory direction of methylation on expression. A b̂ less than 0 indi-

cated negative regulation; conversely, a b̂ greater than 0 indicated positive regulation. Addi-
tionally, r(U,V) was the correlation degree between the methylation pattern and expression
pattern.

For each gene, the methylation pattern score (MPS) was defined as

MPSk ¼ â1 � xk1 þ â2 � xk2 þ � � � âp � xkp
where, xkj was the DNAmethylation levels of the jth CpG in the kth sample.

Survival analysis
The log-rank test was used to identify a subset of genes whose MPS showed significant differ-
ences between the high and low groups and to obtain a p value. Univariate and multivariable
analyses were performed using Cox proportional hazards models incorporating MPS and
known prognostic clinical factors, including age at diagnosis (�55 vs�56 years), tumor patho-
logical stage (I & II vs III & IV), and tumor size (1–2 vs 3–4) as categorical variables. Univariate
Cox regression analysis was performed to assess the survival prognosis capabilities of the
selected gene set using the overall survival time as a dependent variable. To create an optimal
feature for genes based on methylation patterns to assess breast cancer outcomes, the methyla-
tion risk score (MRS) was defined through featured genes identified based on multivariable
Cox proportional hazards models with the MPS as a continuous variable.

MRSk ¼ c1 � gene1k þ � � � þ cm � genemk
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where k was the kth sample.m was the number of feature genes filtered by the multivariable
Cox proportional hazards models and cj (j = 1, 2, . . ., m) was the coefficient estimated by the
multivariable Cox proportional hazards models. The 5-year overall survival for each MRS scor-
ing group (high vs low) was calculated using the Kaplan–Meier method, and the statistical sig-
nificance was assessed using the log-rank test. The significance level of all statistical tests was
0.05.

Multiple test correction
To control the false discover rate (FDR) of the featured genes, we adopted two methods to cor-
rect the p value of the statistical test. For the identification of the gene subset based on MPS
through the log-rank test, sample labels were permutated 100 times and the log-rank test was
re-performed. Empirical p values were calculated according to the order of the observed p
value among the 100 permutations. If the empirical p value was less than 0.01, the gene was
retained. Thus, all p values from the 100 permutations were larger than the observed p value.
To obtain the significant candidate gene set with the univariate Cox proportional hazards mod-
els, we again permuted the sample labels 100 times. In each permutation, we obtained the p-
value of the univariate Cox proportional hazards models. According to the FDR equation, the
cutoff of p (p0) was determined through FDR = 0.01.

FDR ¼
1
n �
Xn
i¼1

#ðp < p0Þpermutationi

#ðp < p0Þobserved
where the numerator was the expected number of genes whose p value from the univariate Cox
proportional hazards models was random less than cut off p0 in random and the denominator
was the number of genes whose p value was less than p0 in the real situation.

Results

Identification of featured biomarkers based on the effect of DNA
methylation regulatory patterns of CpGs on expression
The gene expression and DNA methylation data from 209 breast cancer patients were obtained
after processing the missing data from TCGA, which included 15,801 genes and 281,066 CpGs
located in gene promoters. The breast cancer details are shown in S1 Table. The methylation
patterns of CpGs in gene promoters that showed the maximum correlation with the gene
expression patterns were obtained through canonical correlation analysis, which measured the
maximum regulatory effect of DNA methylation on gene expression. Pearson's correlation
analysis was performed between the average methylation of CpGs and gene expression. How-
ever, the canonical correlation degree was significantly higher than the Pearson's correlation
degree (Wilcoxon p value< 2.2 × 10−16, S1A Fig). Moreover, we found that DNAmethylation
had a negative regulatory effect on the expression of some genes and a positive regulatory effect
on others (S1B Fig).

The MPS was calculated through the canonical variable from the canonical correlation anal-
ysis to estimate the methylation patterns of CpGs. High- and low-MPS groups were classified
based on the median MPS among the samples. The log-rank test was used to identify genes
that showed significant difference in outcomes between the high- and low-MPS groups. The p
value of the log-rank test of these genes was less than 0.05 and the lowest of 100 permutations.
A gene subset including 151 genes was identified. Furthermore, 38 genes were retained through
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univariate Cox proportional hazards models with p< 0.05 and FDR = 0.01 among 100 permu-
tations (S2 Table).

The methylation prognostic biomarkers of breast cancer were identified through multivari-
able Cox proportional hazards models based on 38 genes with p< 0.01. The methylation prog-
nostic biomarkers consisted of 7 protective genes with negative Cox proportional hazard
model regression coefficient, indicating that the survival time increased as the MPS increased,
and 5 risk genes with positive coefficients, indicating that the MPS increased as the survival
time decreased (Table 1).

Estimating breast cancer outcomes according to the methylation risk
score
We assessed the MRS of each sample based on the 12 methylation biomarkers described as fol-
lows to predict the breast cancer outcomes.

MRS ¼ 51:36 � ZNF536þ 53:32 � NARSþ 30:54 � ZNF592þ 51:58 � SLC25A21þ 27:91 � HERPUD2
�53:98 � PFN1� 45:85 � ZFAND5� 40:55 � NRIP2� 29:21 � HPX � 34:23 � DPAGT1
�42:54 � TMEM184B� 41:23 � PPP1E12C

The Kaplan–Meier method was used to estimate the 5-year overall survival rate between the
high- and low-MRS groups classified through the median MRS among the samples. As shown
in Fig 1A, the high-MRS group had a significantly shorter 5-year overall survival rate than the
low-MRS group (68.5% vs 94.1%, log-rank p = 0.00103). The average methylation and expres-
sion levels of 12 featured genes were adopted to perform survival analysis. No significant differ-
ence were detected between the high and low groups classified through the median
methylation or expression levels (Fig 1B and 1C). Additionally, we used the 7 protective and 5
risk genes for the survival analysis. The overall survival time and 5-year survival rates were sig-
nificant different between the high and low groups; the 7 protective genes especially allowed
more distinct estimations (S2 Fig).

MRS had a significant association with hazard ratio (HR) of death in both the univariate
and multivariable Cox proportional hazards models compared with the prognostic clinical

Table 1. Multivariate Cox proportional hazardmodel of risk gene set.

Gene Coef HR p value 95% CI

PFN1 -54.0 3.60×10−24 0.002025 [4.67×10−39, 2.78×10−9]

ZFAND5 -45.9 1.23×10−20 0.002271 [2.01×10−33, 7.48×10−8]

TMEM184B -42.5 3.35×10−19 0.008188 [6.76×10−33, 1.66×10−5]

PPP1R12C -41.2 1.24×10−18 0.000633 [6.64×10−29, 2.31×10−8]

NRIP2 -40.6 2.45×10−18 0.000455 [3.50×10−28, 1.71×10−8]

DPAGT1 -34.2 1.36×10−15 0.001741 [6.71×10−25, 2.75×10−6]

HPX -29.2 2.06×10−13 0.002975 [8.77×10−22, 4.84×10−5]

HERPUD2 27.9 1.32×1012 0.009686 [8.65×102, 2.01×1021]

ZNF592 30.5 1.83×1013 0.00128 [1.55×105, 2.17×1021]

ZNF536 51.4 2.03×1022 0.000563 [4.27×109, 9.60×1034]

SLC25A21 51.6 2.52×1022 0.008259 [6.01×105, 1.06×1039]

NARS 53.3 1.44×1023 0.004414 [1.64×107, 1.26×1039]

Abbreviations: Coef is the Cox proportional hazard model regression coefficient. HR: hazard ratio; CI: confidence interval; p value: cox regression model p

value.

doi:10.1371/journal.pone.0142279.t001
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factors, including age at diagnosis (�55 vs�56 years), tumor pathological stage (I & II vs III &
IV), and TNM (1–2 vs 3–4) (S3 Table). This result suggested that the regulatory effect of the
DNAmethylation pattern on expression might be better able to predict the outcome of breast
cancer than depending on methylation or expression alone.

Differential outcomes of receptor states with differential MRS
High heterogeneity and differential outcomes of breast cancer were found among patients
from the same subtype or receptor status. However, no significant differences in the overall
survival time and 5-year survival rate were found between ER+ and ER-, PR+ and PR-, Her2
+ and Her2- patients (Fig 2A–2C). When we combined these factors with the MRS, found a
significant difference between the positive and negative receptor status and the breast cancer
outcome. For example, ER- & high-MRS samples resulted in the lowest 5-year survival rat,
whereas ER+ & low-MRS samples had the highest 5-year survival rate (Fig 2D). Similarly, PR-
& high-MRS and Her2- & high-MRS samples exhibited the lowest 5-year survival rates,
whereas PR+ & low-MRS and Her2+ & low-MRS samples reached the highest 5-year survival
rates (Fig 2E and 2F). Significantly differential outcomes were observed between the high- and
low-MRS groups, although the patients had the same receptor state (Fig 2G–2L). In conclusion,
differential outcomes were observed when the MRS and receptor status were combined, even
when the patients had the same receptor state. We found that ER-, PR- or Her2- patients with
high-MRS had the worst outcomes, which was consistent with the known conclusion.

Application of the methylation risk feature on breast cancers that
resulted in death state and independent test datasets
To validate the prognostic value of DNAmethylation biomarkers on other breast samples, the
MRS of 12 featured genes were applied to 28 breast samples from patients with a death out-
come from the TCGA dataset that only had DNAmethylation information and were not
included in the previous dataset. We found a significantly differential survival time between
the low- and high-MRS groups (Fig 3A). Moreover, the overall survival time of the high-MRS
group was less than 5 years. MRS showed a good ability to distinguish outcomes between ER
+ and ER-, PR+ and PR-, and Her2+ and Her2- samples (Fig 3B–3D). We observed similar
results with the training set, with ER-, PR- or Her2- samples with high-MRS showing the worst
prognosis; indeed, less than one year of survival was estimated for the Her2- & high-MRS
group. The effect of the prognostic outcome in the independent samples suggested that a DNA

Fig 1. Kaplan-Meier survival analysis of overall survival of 209 breast patients based on feature genes. (A) MRS. (B) Average DNAmethylation levels.
(C) Average gene expression levels.

doi:10.1371/journal.pone.0142279.g001
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methylation biomarker identified through the regulation of gene expression by DNA methyla-
tion patterns in CpGs, is believable and has good predictive value for breast cancer outcomes.

Additionally, we evaluated the performance of 12 featured genes using two independent
breast cancer datasets (GSE37754 and GSE20712). NARS and SLC25A21 were not included in
the 27K DNAmethylation dataset (GSE20712), and an additional 10 featured genes were used.
All 12 featured genes were used in the 450K dataset (GSE37754). Using two independent
cohorts, we found differential outcomes between the high- and low-MRS groups (Fig 4); p val-
ues of the log-rank test were especially significant in GSE20712 (Fig 4B). MRS showed a prefer-
able distinguishing power between the high- and low-MRS groups. This finding suggested that
DNAmethylation biomarkers might be robust factors for the prediction of breast cancer
outcomes.

Fig 2. Kaplan-Meier survival analysis of overall survival for receptor status. (A) Survival comparison between ER+ and ER- patients. (B) Survival
comparison between PR+ and PR- patients. (C) Survival comparison between Her2+ and Her2- patients. (D) Survival comparison through combination of ER
states and MRS. (E) Survival comparison through combination of PR states and MRS. (F) Survival comparison through combination of Her2 states and MRS.
(G) Survival comparison between high-MRS and low-MRS from ER+. (H) Survival comparison between high-MRS and low-MRS from PR+. (I) Survival
comparison between high-MRS and low-MRS groups from Her2+. (J) Survival comparison between high-MRS and low-MRS groups from ER-. (K) Survival
comparison between high-MRS and low-MRS groups from PR-. (L) Survival comparison between high-MRS and low-MRS groups from Her2-.

doi:10.1371/journal.pone.0142279.g002

Fig 3. Kaplan-Meier survival analysis of overall survival on 28 patients with death outcome. (A) Survival comparison between High-MRS and Low-
MRS groups. (B) Survival comparison among ER+/- patients. (C) Survival comparison among PR+/- patients. (D) Survival comparison among Her2+/-
patients.

doi:10.1371/journal.pone.0142279.g003
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Discussion
Breast cancer is a heterogeneous tumor. Molecular classification has been successfully used to
design individualized therapies, leading to significant improvements in disease-specific survival
[24]. Recently, breast cancer was classified into three major subtypes based on luminal, Her2
+ and basal-like based gene expression profiling [25, 26]. Moreover, DNAmethylation showed
distinct patterns among subtypes of breast cancer (especially between luminal B and basal-like)
[27]. Each of the breast cancer subtypes has different risk factors for incidence, response to
treatment, risk of disease progression and outcomes. For example, triple negative breast cancer
which usually includes basal-like tumors that lack HR and Her2, has a worse outcomes than
the other subtypes because no specific molecular targets have been identified [28]. Recently,
the identification of differential methylated regions of triple-negative breast cancer based on
whole-genome methylation sequencing has provided diagnostic and prognostic value for per-
sonalized management [29].

We identified DNA methylation patterns of CpGs located within gene promoters that had a
maximal regulatory effect on gene expression based on canonical correlation analysis to define
the methylation pattern score of adjacent CpGs. DNAmethylation featured genes associated
with breast cancer outcomes that were obtained according to the DNA methylation patterns,
which contributed to the construction of the methylation risk score. The methylation risk score
of the featured genes showed the best ability to estimate the survival time between the high and
low-risk groups compared to average DNA methylation or gene expression. Moreover, we
found significant differential outcomes between the high- and low-MRS groups even though
the breast samples had the same HR or Her2 status (especially ER-, PR- or Her2-), with the
high-MRS group having the worst outcomes. A similar conclusion was supported using 28
breast samples with death as an outcome. We evaluated the estimation ability of the DNA
methylation pattern of featured genes in other breast cancers based on Human Infinium 450K
and 27K arrays from the GEO database. Due to the absence of some CpGs and genes in the
27K arrays compared with the 450K arrays, we used shared featured genes and CpGs between
the 450K and 27K datasets to measure the MRS. Only 10 featured genes were found (excluding
NARS and SLC25A21) in the 27K datasets; these genes were used to predict breast cancer

Fig 4. The Kaplan-Meier survival analysis of overall survival on four independent dataset fromGEO database. (A) GSE37754 from 450K arrays. (B)
GSE20712 from 27K arrays.

doi:10.1371/journal.pone.0142279.g004
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outcomes. We also found differential outcomes between the high- and low-MRS groups in two
independent cohorts. However, the p values of the log-rank test from the 450K test sets were
not significant. We speculate that the high heterogeneity in cancer may lead to differential out-
comes. Notably, the breast samples from GSE37754 (450K arrays) were in the early stages of
cancer with tumor pathological stages I or II, which might have caused the non-significant p-
value. Although differences in the platform between the 27K and 450K arrays led to the
absence of some featured genes and CpGs, the p value of the log-rank test was significant and
the breast cancer outcomes were clearly distinguished between the high- and low-MRS groups.
This finding implied that the survival model based on the methylation patterns of featured
genes showed a good survival prognostic capability in breast cancer.

The DNA methylation featured genes we identified were ZNF536, ZNF592, NARS,
SLC25A21, HERPUD2, NRIP2, PPP1R12C, DPAGT1, PFN1, ZFAND5, HPX and
TMEM184B. ZNF536, ZNF592 and ZFAND5 were zinc finger proteins that had important
roles in transcript regulation, embryonic development and cell differentiation. Several studies
reported that SLC25A21 [30], PFN1 [31], HPX [32]and TMEM184B [33] were associated with
a risk of breast cancer. Additionally, other genes were associated with the risk of other diseases,
such as NARS, which causes nonsyndromic hearing loss, Leigh syndrome [34] and Alpers syn-
drome [35], and DPAGT1, which is involved in the pathogenesis of oral cancer [36]. The meth-
ylation featured genes did not include the BRCA gene. This finding was consistent with the
conclusion of Xu et al, who reported that the methylation of BRCA had no overall correlation
with ER, PR or grade. These results suggest that DNA methylation is an independent predictor
of breast cancer prognosis and is independent of BRCA1 mutation. We attempted to compare
the survival time between the BRCA mutation and non-mutation samples through MRS, but
the analysis was limited by the small sample number with BRCA mutations. The good prog-
nostic power of DNAmethylation biomarkers can help guide clinical treatment and predict
the outcome of breast cancer.
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