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Abstract
Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., sub-

strates and inhibitors, represents an important task for predicting drug-drug interactions. A

quantitative assessment of the ligand binding affinity towards different CYPs can provide an

estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate

of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding

or inhibition based on traditional molecular descriptors can be limited, because of the lack of

information on the structure and flexibility of the catalytic site of CYPs. Here we describe the

application of a method that combines protein-ligand docking, Molecular Dynamics (MD)

simulations and Linear Interaction Energy (LIE) theory, to allow for quantitative CYP affinity

prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed

and evaluated, based on a structurally diverse dataset for which the estimated experimental

uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model

showed a root mean square error (RMSE) of 4.1 kJ mol-1 and a standard error in prediction

(SDEP) in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on

both structural ligand description and protein-ligand interaction was developed for estimat-

ing the reliability of predictions, and was able to identify compounds from an external test

set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units).

Introduction
Cytochrome P450s (CYPs) form a ubiquitous superfamily of monooxygenases characterized
by the presence of a heme cofactor, that in humans plays a crucial role in phase I drug metabo-
lism [1]. Besides being responsible for about 50% of drug clearance via metabolism, CYPs can
also be responsible for prodrug activation or metabolism-dependent toxicity [2]. Furthermore,
their inactivation or inhibition can alter the metabolic pathway of co-administered drugs,
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potentially leading to drug-drug interactions (DDI). In the past few years this has been the
cause of removal from the market of several drugs [1–3]. While in vitro screening for CYP
binders and inhibitors is well established as a mean for predicting potential (adverse) drug-
drug interactions in vivo [2,3], the interest for in silicomethods has recently increased as a fast
preliminary screening method in the drug discovery process [4]. However, these methods are
still challenged by the substrate promiscuity and large catalytic site malleability of many CYP
isoforms, including e.g. drug metabolizing CYP 3A4, 2D6 and 1A2 [4,5].

The broad substrate selectivity of CYPs is due to the large flexibility of their buried catalytic
site, which allows many isoforms both to interact with different classes of molecules and to
bind the same molecule in multiple orientations, thus enabling the formation of different
metabolites of a single compound [6]. Variation in available experimental data is often an
additional element of complexity in developing predictive models for binding of ligands (i.e.
substrates and/or inhibitors) to CYPs. Several assays have been developed for screening inhibi-
tory activity of small molecules toward CYPs, and use of different types of conditions (solvent
composition, substrate probe, expression system, etc.) has been demonstrated to affect the out-
come of the measurements [7,8]. Furthermore, CYP inhibitors can act via different mecha-
nisms, including (1) competitive and reversible inhibition, (2) quasi-irreversible inhibition due
to coordination with the heme iron, and (3) mechanism-based inhibition, in which an interme-
diate or product of the catalysis covalently modifies and inactivates the enzyme [9]. Experi-
ments that allow to identify the inhibition mechanism of a compound are not performed
routinely. Usually, relative IC50 values, measured under specific conditions, are reported in lit-
erature (instead of measuring absolute inhibition constants), and studies on the mechanism of
inhibition are mostly omitted.

Despite of the major challenges in modeling CYP binding introduced above, several compu-
tational models have been proposed to model inhibition data categorically or quantitatively, in
terms of IC50 values or inhibition constants (Ki) [4].

In this regard, quantitative structure-activity relationship (QSAR) models based on molecu-
lar descriptors typically can show predictivity for small series of structurally related molecules,
but are not suited for structurally diverse compounds. Using homogeneous experimental data
for ~1500 diverse compounds for the most relevant CYP isoforms, Gleeson et al. [10] showed
that the ability to describe the extent of CYP inhibition through traditional QSAR descriptors
was limited and poor, since the role played by the molecular recognition process was neglected.
Mathematical models including pharmacophore elements have been designed with higher pre-
dictivity. Similarly, 3D-QSAR and structure-based models that take into account direct infor-
mation about the active site were also proposed, resulting in predictive localmodels; exhaustive
reviews on QSAR models to predict inhibition of CYPs have been published [4,11].

Some years ago, efforts started in our laboratory to develop dynamical structural models for
the prediction of the free energy of binding (ΔGbind) as a measure for ligand binding affinity
and, therefore, the inhibitory potency, for series of small molecules toward specific CYP iso-
forms. In these models, molecular dynamics (MD) simulations are performed of the CYP-
ligand complex in different representative binding conformations obtained from molecular
docking. To obtain quantitative binding affinity prediction, we have applied an iterative version
of Linear Interaction Energy (LIE) theory [12] as introduced by Stjernschantz and Oostenbrink
[13]. The high level of detail offered by this approach clearly represents a trade-off in the accu-
racy of prediction versus computational time expended, for which accessibility has anyway
increased in the last years. Moreover, by combining and (re)weighting results from multiple
short simulations starting from different protein-ligand configurations, LIE predictions for
flexible proteins such as CYPs become not only more accurate but also faster [13–15].
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However, a general limitation to the extensive application of any structure-based model is
the difficulty in estimating the reliability of a prediction, which can be easier provided for pure
statistical models. In the case of ligand-based QSAR models, for instance, a prediction is con-
sidered reliable when the query compound falls within the area of multidimensional space
defined by the molecular descriptors employed by the model that has already been explored by
the training set. This evaluation can be carried out in different ways, according to the method
applied to interpolate the space defined by the descriptors [16]. In this context, Carriò et al.
[17] recently proposed an approach (ADAN) in which several similarity criteria are taken into
account to analyze this space, and a query compound can be classified in a reliability category
according to the number of the criteria for which the compound is considered outlier. In the
current work we introduce an approach to enable reliability estimation of LIE predictions, by
using criteria that involve not only the ligand description but also a comparison between pro-
tein-ligand interactions sampled by the training and query compounds during MD.

In humans, isoform CYP 1A2 represents approximately 15% of the total CYP liver content
and is responsible for 5% of CYP metabolism of the currently marketed drugs [2]. Further-
more, it is responsible for metabolism of many other exogenous and endogenous compounds,
such as caffeine, teophylline, steroids, aromatic and heterocyclic amines, and polycyclic aro-
matic hydrocarbons (PAHs). Inhibitors of CYP 1A2 are usually planar and lipophilic, and are
often small-volume molecules that are neutral or weakly basic with few hydrogen bonds donors
[18,19]. Consistently, the X-ray resolved structure of this enzyme [20] showed a narrow active
site in which residues of helix F and helix I form two parallel substrate binding platforms that
are able to allocate flat lipophilic molecules. Additionally, Thr118, Ser122, Thr124 and Asp321 on
one side of the active site, and Thr223 and Asp320 on the other, define two areas in which ligands
can undertake polar interactions.

Previously reported statistical models based on molecular descriptors gave good perfor-
mance in qualitative prediction of CYP 1A2 inhibition [21,22], or for quantitative estimation
of the inhibitory potency for local classes of compounds (flavonoids and polycyclic aromatic
compounds) [23,24]. CoMFA and GRID/GOLPE models have also been developed to enable
estimation of inhibitory potency estimation for sets of chemically related compounds [25,26].

In a previous study, a quantitative model for CYP 1A2 ligand-binding affinity prediction
was obtained using LIE and a training set of 8 structurally diverse compounds [27]. While the
choice of the initial pose in setting up the MD simulations and LIE calculations was knowledge
based, the result of the investigation indicated that such technique could be successfully applied
in the development of global quantitative models for prediction of CYP 1A2 binding affinities
and hence, inhibition.

Here we present a comprehensive quantitative model for the prediction of the affinity (free
energy) of (reversible) binding of drug-like compounds toward CYP 1A2. Our model is based
on the iterative LIE method [13–15] and does not require any a priori knowledge other than
the CYP 1A2 crystal structure [20] and IC50 (or Ki) data for calibration. For this purpose, a
database of (> 50) molecules was collected from literature and for several compounds from
each source, we experimentally determined CYP 1A2 inhibition in our laboratory to evaluate
the experimental uncertainty among the different sources used. The dataset was split in a train-
ing and test set, and a LIE affinity model was calibrated. Finally, we used our criteria driven
approach that accounts for both the nature of the ligands and the protein-ligand interactions,
in order to evaluate the quality of external LIE predictions. For that purpose, a set of analyses
was performed that was considered representative for the high number of factors playing a role
in the computation of LIE predictions. The results obtained suggest that this novel approach,
here applied to the CYP 1A2 affinity model, can also represent a general method for estimating
the reliability of predictions from other LIE models.

CYP 1A2 LIE Model with Reliability Estimation
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Methods

Chemicals
Mefenamic acid (�99%), tacrine (�99%), carvedilol (�98%), nifedipine (�98%), ellipticine,
α-naphthoflavone (�97%), ticlopidine (�99%), 1-naphtol (�99%), 2-naphtol (�98%),
4-methoxy-benzaldehyde (�98%), 2-(p-tolyl)ethylamine (�97%) were purchased from Sigma-
Aldrich (Schnelldorf, Germany); phenacetin was obtained from Brocades-ACF (Maarssen, the
Netherlands). 7-Methoxyresorufin was synthesized by the method of Burke and Mayer [28]
and final purity was assessed to be higher than 95%.

Enzyme expression
The plasmid containing the human CYP 1A2 cDNA and human NADPH CYP reductase was
transformed into Escherichia coli strain DH5α. CYPs were expressed in 3-L flasks containing
300 mL terrific broth (TB) with 1 mM δ-aminolevulinic acid, 0.5 mM thiamine, 400 μL/L trace
elements, 100 μg/mL ampicillin, 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG), and 0.5
mM FeCl3. The culture media was inoculated with 3 mL overnight culture. The cells were
allowed to grow for 40 h at 28°C and 125 rpm. E. coli’s were collected by centrifugation (4000 ×
g, 4°C, 15 min) and resuspended in 20 mL 0.1 M potassium phosphate (KPi) glycerol buffer at
pH 7.4 (containing 20% glycerol v/v, 0.25 mM ethylenediaminetetraacetic acid (EDTA), and
0.1 mM dithiothreitol (DTT)). Prior to cell disruption by emulsiflex (3 repeats), cells were
treated with 0.5 mg/mL lysozyme. The membranes containing the human CYP were isolated
by ultracentrifugation in a Beckmann 70Ti rotor (75 min, 40,000 rpm, 4°C), resuspended in
KPi-glycerol buffer, and subsequently homogenized by pottering. The CYP 1A2 concentration
was determined using the method of Omura and Sato [29] and the enzyme was stored at -80°C
until use.

Inhibition assay
The inhibitory activity of several compounds towards human CYP 1A2 was determined using
7-methoxyresorufin as a substrate. 7-Methoxyresorufin was used at its Km value, which was
determined to be 2.5 μM (data not shown). Incubations were carried out in a total volume of
200 μL and in the presence of an NADPH regenerating system (NRS) (final concentrations of
0.5 mMNADPH, 10 mM glucose 6-phosphate, and 0.4 unit/mL glucose-6-phosphate dehydro-
genase) in a black coaster 96-well plate. CYP 1A2 was pre-incubated for 5 minutes at 37°C with
0.1 M potassium phosphate buffer (pH 7.4), 7-methoxyresorufin and inhibitors, with DMSO at
a final concentration of 0.5% (v/v). For the IC50 determinations the inhibitor concentration
was varied between 10 pM and 10 mM, and NRS was added to start the reaction. Resorufin for-
mation was followed fluorimetrically in time for 10 minutes on a Victor2 1420 multilabel
counter with excitation at 530 nm and emission at 572 nm. A resorufin calibration curve was
used to quantify the amount of product formed. All measurements were performed in
triplicate.

Set-up of MD simulations and development of a CYP 1A2 LIE model
Using (iterative) LIE, affinity prediction requires preparation and selection of ligand poses, set-
ting up and running MD simulations, and model calibration and binding free energy calcula-
tions [15]. Computational settings and methodological details as applied in the current work
are given below, together with details for the criteria used to evaluate the predictive quality of
(iterative) LIE models.

CYP 1A2 LIE Model with Reliability Estimation
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Ligand preparation
For all training and test set compounds, inhibition constants Ki were derived from IC50 values
from literature according to the Cheng-Prusoff equation [30], and experimental values for the
free energy of binding ΔGbind were calculated as

DGbind ¼ RT lnðKiÞ: ð1Þ

The initial structure of each ligand was generated using Molecular Operating Environment
(MOE) 2012.10 [31] and subsequently neutralized and minimized in OpenBabel 2.3.2 [32]
using the MMFF94 force field [33]. The geometry was further optimized by the sqm module of
Ambertools [34] at the AM1-BCC [35] semi-empirical level of theory. Molecular structures
and literature IC50 values are reported in Table A in S1 File.

Docking and clustering
The crystal structure of CYP 1A2 was obtained from the Protein Data Bank (code: 2HI4) [20]
and refined as described in reference 27. Each ligand was docked into the active site of CYP
1A2 using PLANTS (Protein-Ligand Ant System) version 1.2 [36], and the ChemPLP [37]
scoring function. The center of the docking sphere was placed at a distance of 0.78 nm from Fe,
along the vector connecting the sulphur atom of the Fe-coordinated cysteine (Cys458) and the
heme iron, from which the radius was set to 1.2 nm to define the active site of the protein. Max-
imally 300 docked poses with mutual root-mean-square deviations (RMSDs) in atomic posi-
tions of> 0.2 nm were retained.

Coordinates of the heavy atoms were used as variables for a principal component analysis
(PCA) of the docked poses. After dimensionality reduction, the scores obtained were used for
subsequent k-means clustering [38]. During this analysis, an additional component or cluster
was taken into account in case it would have led to a further increment of at least 5% of the
explained variance in the space of the coordinates or scores, respectively. The medoids of the
clusters obtained (4 to 7 per ligand) were chosen as representative binding-conformations of
the ligand in the CYP 1A2 active site. These configurations were used to filter out potential
non-competitive inhibitors and as starting poses for the MD simulations used in the LIE
model, as described below.

Identification of (quasi-)irreversible binders
Mechanism-based inhibitors and heme coordinating agents are characterized by specific chem-
ical groups (Table B in S1 File) that can lead to (quasi-)irreversible inhibition in case they can
interact with or be activated by the heme iron [9]. The presence of these groups in the ligands
was evaluated and in case the corresponding reactive atom center was found closer than 0.6
nm from the heme iron in at least one of the representative poses, a ligand was considered a
quasi-irreversible or mechanism-based inhibitor and it was excluded from the dataset.

MD simulations
Every representative binding pose obtained from clustering was used as starting configuration
for use in MD. Simulations were carried out using the GROMACS 4.5.5 package [39]. Topolo-
gies of the ligands were automatically created by ACPYPE [40] using the General Amber Force
Field [41] as potential, while the Amber99SB [42] force field was applied to describe the pro-
tein. To model the heme group, force field parameters reported in reference [43] were used.
Each complex was solvated in a dodecahedral box filled with TIP3P water [44] (~20,000
solvent molecules), and 7 Cl- ions were added to neutralize the system. The system was energy
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minimized and gradually heated up to 300 K in three NVT simulations of 20 ps at 100K, 200K,
and 300 K, respectively, in which harmonic potentials were used to positionally restrain Cα

atoms (with force constants of 10000, 5000, and 50 kJ nm-2 mol-1, respectively) and other
heavy atoms (with force constants of 2000, 1000, and 10 kJ nm-2 mol-1, respectively). Subse-
quently, 2.5 ns of unrestrained NpT simulations were performed at 1.01325 bar and 300 K, of
which the first 0.5 ns were discarded in further analyses. A leap-frog algorithm was employed
for integrating the equations of motion [45]. Heavy hydrogens (with a mass of 4.032 amu) [46]
were used and all bonds were constrained using the LINCS algorithm [47], allowing a time-
step of 4 fs. A Berendsen thermostat [48] was employed to maintain the temperature of the sys-
tem close to its reference value, using separate temperature baths for the solvent and solute
degrees of freedom, with a coupling time of 0.1 ps. A Berendsen barostat [48] with a coupling
time of 0.5 ps and an isothermal compressibility of 4.5×10−5 bar-1 was used to maintain the
pressure close to its reference value during NpT simulations. Van der Waals and short-range
electrostatic interactions were explicitly evaluated every time step for pairs of atoms within a
0.9 nm cutoff, and a grid-based neighbor list was used and updated every 2 time steps. Long-
range electrostatic interactions were included by using the smooth particle mesh Ewald method
[49] with a maximum fast Fourier transform grid spacing of 0.125 nm for the reciprocal space
sum.

To evaluate average ligand interaction energies of the unbound ligands in water, each ligand
was solvated in a dodecahedral box filled with approximately 650 TIP3P water molecules, and
no counterions were added. The MD protocol was identical to the one described for the simula-
tions of the protein-ligand complex.

LIE model
According to LIE theory [12], ΔGbind can be calculated from differences (ΔVEle and ΔVVdW) in
the ensemble-averaged electrostatic hVEle

lig−surri and van der Waals interaction energies
hVVdW

lig−surri between the ligand and its surroundings when simulated in complex with the
protein, or in the free state (water). ΔGbind of the ligand to the protein can be calculated as [12]

DGbind ¼ aðhVVdW
lig�surriprotein � hVVdW

lig�surriwaterÞ þ bðhVEle
lig�surriprotein � hVEle

lig�surriwaterÞ
¼ a DVVdW þ b DVEle

ð2Þ

In Eq 2, α and β are empirical parameters for the van der Waals and electrostatic contribu-
tion of the nonbonded interactions to ΔGbind. An offset parameter (γ) might also be considered,
although not strictly required for calculation of relative binding affinities. The value of such
parameter has been related to the hydrophobicity of the binding site [50], and in any case it has
to be determined empirically as well.

When combining results from several MD simulations per ligand that start from different
protein-ligand configurations, a relative contributionWi of each simulation i to the total calcu-
lated interaction energies of the ligand can be determined as [13,51]

Wi ¼
e�DGi=kBTP
i e

�DGi=kBT
; ð3Þ

where ΔGi is the ΔGbind value for simulation i, obtained from Eq 2. Using theWi’s, ΔGbind of
the ligand averaged over the independent simulations, i can be calculated as

DGbind ¼ a
X

i
WiDV

VdW
i þ b

X
i
WiDV

Ele
i : ð4Þ
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During model training, theWi’s are obtained by applying an iterative scheme, as described
by Stjernschantz and Oostenbrink [13].

Chemical similarity analysis
For each compound, a molecular fingerprint was created according to the MACCS smart pat-
tern [52]. Similarity among the compounds was evaluated in terms of Tanimoto Scores (TSs)
between pairs of fingerprints [53] using RDKit release_2014.09.1 [54]. Every training com-
pound was compared with the other elements of the training set and the TS with the most simi-
lar compound was stored for every ligand. The lowest value was used as cut-off for the test
compounds when compared to the most similar molecule of the training set.

Nonbonded energy terms distribution analysis
The set of simulations employed in the LIE model were analyzed in terms of ΔVEle and ΔVVdW,
as described in reference 15. For each simulation of the test set compounds, the Mahalanobis
distance was computed from the center of the distribution of ΔVEle and ΔVVdW values obtained
for the simulations used to train the LIE model. Supposing a uniform distribution of the ener-
gies for the training set, a query compound was considered outlier within this analysis if at least
one simulation showed a squared distance higher than those expected for the 95 percentile of
the χ2 distribution for one degree of freedom (i.e., ΔVEle or ΔVVdW) [55].

Per-residue interaction energy decomposition
Nonbonded interaction energies of the ligand with specific residues surrounding the catalytic
site were analyzed during the simulations of the protein-ligand complexes. Residues included
in the analysis were selected on the basis of the distance of any of their atoms to the center of
the catalytic site. The center of the catalytic site was defined as the center for docking and the
cut-off radius to select relevant residues was 1.2 nm. Ensemble nonbonded energy contributes
for each residue over the MD simulations were scaled per simulation by the weightsWi

obtained from the reweighting scheme described above and summed, giving a single set of con-
tributions per residue for each ligand.

PCA was performed for the elements of the training set in the space of the residue-decom-
posed energy contributes, after preliminary centering of the variables. Components that explained
more than 5% of the variance in the original space were taken into account. Elements of the test
set were projected on the rotated space and evaluated for being score or orthogonal outliers. The
critical score distance (SDcrit) was calculated as square root of the 95 percentile of the χ

2 distribu-
tion for a degrees of freedom, corresponding to the number of principal components:

SDcrit ¼
ffiffiffiffiffiffiffiffiffiffi
w2a;0:95

q
ð5Þ

The orthogonal critical distance (ODcrit) was robustly measured as

ODcrit ¼ ðmedianðODÞ2=3 þMADðOD2=3Þ � z0:95Þ3=2 ð6Þ

whereMAD is the median absolute deviation and z the 95 percentile of the cumulative normal
distribution [56].

Results and Discussion

Assessing the experimental uncertainty
Inhibition studies in literature typically present data for relatively small sets of structurally
related compounds. To calibrate a model for the prediction of binding affinity for different
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classes of molecules, we gathered experimental data from three different literature sources, pro-
viding a dataset of 73 compounds. Source 1 presents IC50 data for 14 marketed drugs that have
been screened internally by Bayer HealthCare, according to FDA and UP guidelines, using
phenacetin as substrate probe on pooled human liver microsomes [57]. Source 2 consists of
eight drugs and common inhibitor probes of CYP 1A2, screened for the inhibitory activity
against phenacetin O-deethylation on recombinant CYPs [58]. In Source 3, 51 lactones or
substituted naphthalenes and quinolines were screened for their inhibitory potency in a
7-ethoxyresorufin O-dealkylation assay on recombinant CYP 1A2 [25,59]. A sample of four
compounds from each dataset was screened in-house, in order to estimate the expected error
for a computational model based on the experimental uncertainty. The results from this com-
parison between our IC50 data and data from Sources 1–3 are presented in Table 1, and show
that only for compounds 1 and 6–9 the difference in the values from the different assays was
within the experimental error. Representing the affinity as ΔGbind, the root mean square devia-
tion (RMSD) in experimental affinity is 3.3 kJ mol-1 over the full set of measurements, with
deviations spanning between 0.4 and 6.9 kJ mol-1.

The analysis presented here provides an estimate of the variability in measured IC50 values
under the different experimental conditions adopted in the studies from which CYP 1A2 inhi-
bition potencies have been gathered. Based on the fact that the uncertainty of any quantitative
model is dependent on the uncertainty of the experimental data on which it is based, the
observed experimental variability is used as a parameter to evaluate the quality of our model.
According to this, a non-overfitted reliable model is expected to show root mean regression
errors (RMSE) of at least 3.3 kJ mol-1 and maximum errors in regression of 6.9 kJ mol-1 (corre-
sponding to an error in pKi of approximatively 0.6 and 1.2, respectively, Eq 1).

Restriction of the dataset to competitive binders
Compounds from the data set were docked into the CYP 1A2 catalytic site and clustered in
order to obtain representative binding poses for each compound.

Table 1. Comparison of IC50 andΔGbind values for CYP 1A2 as determined in-house (inhouse) and gathered from literature sources (lit), expressed
in μM and kJmol-1, respectively. ΔΔGbind refers to the difference in ΔGbind between literature and in-house determined values.

ID Compound IC50 (inhouse) IC50 (lit) ΔGbind (inhouse) ΔGbind (lit) ΔΔGbind

1 Mefenamic acida 19 ± 7 13.98 -28.9 ± 1.0 -29.7 -0.8

2 Tacrinea 2.3 ± 1.0 5.2 -34.2 ± 1.2 -32.1 2.1

3 Carvedilola 5.0 ± 0.2 5.91 -32.2 ± 0.1 -31.8 0.4

4 Nifedipinea 0.7 ± 0.2 5.74 -37.2 ± 0.7 -31.9 5.3

5 Ellipticineb 0.007 ± 0.002 0.11 ± 0.01 -48.7 ± 0.7 -41.8 ± 0.2 6.9

6 Phenacetinb 24 ± 6 28.0 ± 0.46 -28.3 ± 0.6 -27.9 ± 0.0 0.4

7 α-Naphthoflavoneb 0.030 ± 0.026 0.08 ± 0.02 -45.0 ± 3.7 -42.6 ± 0.6 2.4

8 Ticlopidineb 12 ± 7 6.1 ± 0.45 -30.1 ± 1.7 -31.8 ± 0.2 -1.7

9 1-naphtholc 2.0 ± 0.7 3.2 ± 0.8 -34.5 ± 0.9 -33.3 ± 0.6 1.2

10 2-naphtholc 4.4 ± 1.2 17 ± 1.5 -32.6 ± 0.7 -29.1 ± 0.2 3.4

11 4-methoxy-benzaldehydec 410 ± 32 270 ± 85 -21.2 ± 0.2 -22.2 ± 0.8 -1.0

12 2-(p-tolyl)ethylaminec 120 ± 33 14 ± 2.5 -24.3 ± 0.7 -29.6 ± 0.5 -5.3

aLiterature data from Ref. 57;
bLiterature data from Ref. 58;
cLiterature data from Ref. 25.

doi:10.1371/journal.pone.0142232.t001
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It is known that several classes of CYP inhibitors can act in a (quasi-)irreversible manner:
aromatic nitrogens can coordinate the heme iron, while biotransformation by CYPs can lead to
reactive intermediates and subsequent covalent modification and inactivation of the enzyme
itself. In these cases, quantum-mechanic (QM) based corrections should be used to address all
the energetic contributes involved in bond breaking and formation. To exclude compounds
that would not be properly described by the molecular mechanics (MM) force fields used in
MD and LIE, a preliminary filter combining structural information from docking and knowl-
edge-based rules was developed.

The binding poses obtained from docking and clustering were inspected and compounds
were excluded from further analysis when bearing chemical groups that are known to lead to
quasi-irreversible or mechanism-based inhibition (Table B in S1 File), and when (any of) the
reactive atom(s) was within 0.6 nm from the heme iron.

Literature data [60–73] on the mechanism of inhibition are available for 14 compounds of
the dataset, Table 2. In case of discordant literature data, information from the most recent ref-
erence was taken into account. Compounds that were known from literature to be a substrate
were here considered as competitive inhibitors, since they can potentially compete for binding
to the CYP with other substrates. Our preliminary filter was able to correctly classify 10 of the
14 inhibitors considered (Table 2), while carvedilol, ticlopidine, clopidogrel, and riluzole were
wrongly classified as mechanism-based inhibitors. Both clopidogrel and riluzole are metabo-
lized by CYP 1A2 at a chemical position that is considered to lead to mechanism-based inhibi-
tion [69,73] representing exceptions to the general rule. Furthermore, our approach showed
high precision in detecting competitive inhibitors, since no false positives were detected
(Table 2).

While an extensive validation of our filtering approach is beyond the scope of this work, it
showed to be accurate enough to be employed as a preliminary filter for building a LIE-based
model. After refinement of the entire dataset, 57 compounds were predicted to be competitive
inhibitors of CYP 1A2 and subsequently simulated by MD in solvent and in complex with the
enzyme, starting from every of the representative binding modes obtained from docking
(Table C in S1 File).

Table 2. Comparison between predicted inhibition mechanisms and experimentally determined inhibition mechanisms reported in literature.

ID Compound Predicted Reported

1 Mefenamic acid Competitive Competitive60

2 Tacrine Competitive Substrate61

3 Carvedilol Quasi-irreversible Substrate62

4 Nifedipine Competitive Competitive63

6 Phenacetin Competitive Substrate64

7 α-Naphthoflavone Competitive Competitive/uncompetitive65

8 Ticlopidine Mechanism-based Competitive66

14 Quercetin Competitive Competitive67

17 Naringenin Competitive Substrate68

19 Clopidogrel Mechanism-based Substrate69

23 Mexiletine Competitive Competitive70

24 Furafylline Mechanism-based Mechanism-based71

25 Propranolol Competitive Substrate72

26 Riluzole Mechanism-based Substrate73

doi:10.1371/journal.pone.0142232.t002
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The LIE model
Compounds of the refined dataset of 57 compounds were split in a training and test set. In
order to ensure a broad chemical diversity within both data sets and a homogeneous represen-
tation of the different chemical classes, the compounds were classified according to their struc-
ture in naphthalenes/quinolines (compounds 9–10, 27–43), lactones (compounds 50–59) and
other small molecules (others). From the three classes 8, 8, and 19 compounds were randomly
selected to train the model (Table 3), respectively, while the other 22 compounds were used as
external test set. An increasing number of MD simulations per ligand was taken into account
to train several LIE models, using for each of them results from the simulations with the lowest
ΔGbind. Among these models, the model with lowest standard error in prediction (SDEP)
obtained during leave-one-out cross-validation (LOO-CV) was based on maximally 6 simula-
tions per compound, and showed values of 0.587 and 0.267 for α and β in Eq 4, respectively
(Fig 1). The RMSE and the SDEP for LOO-CV (SDEPCV) were 4.1 and 4.3 kJ mol-1, respec-
tively, and were close to our estimate for the uncertainty in the experimental data (3.3 kJ mol-
1). The 22 compounds that were not included in the training set were used to evaluate the pre-
dictive quality of the LIE model. The SDEP obtained for the 22 molecules of the test set was
5.8 kJ mol-1, with differences from experiments between 0.0 and 11.6 kJ mol-1 (Fig 1 and
Table 4).

Analysis of the relative weightWi for each protein-ligand binding pose (Eq 3, Table C in
S1 File) shows that most ligands present multiple binding conformations that significantly con-
tribute to the calculated binding free energy. It is interesting to note that for this dataset of
compounds and when not considering the physical meaning of including the contribution
from more than one ligand-protein binding conformation to ΔGbind, a model based on only the
binding conformation with lowest interaction energies displays RMSE and SDEPCV close to
the most predictive model (which includes maximally 6 poses per ligand, Table C in S1 File),
with values of 4.2 kJ mol-1 and 4.4 kJ mol-1, respectively. However, it should also be noted that
using a single binding pose will still require running multiple simulations to score and rank the
simulations based on MD. Therefore, the final model in Fig 1 is as compute-efficient as a
model based on a single highest-ranked pose only.

A previous CYP 1A2 LIE model was published by Vasanthanathan et al. using 8 compounds
as training set and a single protein simulation per ligand to evaluate ΔVEle and ΔVVdW in Eq 2
[27]. While this LIE model showed a comparable accuracy in reproducing ΔGbind (with a
reported RMSE of 3.7 kJ mol-1), Vasanthanathan found that differences in the electrostatic
contributes among the training set did not affect the affinity toward CYP 1A2 (β = 0) and an
offset parameter γ was introduced. Despite differences in electrostatic energy contributes, all
the eight ligands presented polar groups and were found to undertake hydrogen bonds with
water or amino acids within the catalytic site. In the current study the extension of the dataset
to lipophilic compounds with no hydrogen bond donors or acceptors allowed a more extensive
exploration of the ligand-protein interaction space, indicating a significant role for the electro-
static interactions to the binding affinity towards CYP 1A2 (β = 0.267, Fig 1) and leading to an
affinity model in which the offset parameter γ was set to zero.

Assessing the reliability of LIE predictions
The availability of a relatively large set of experimental inhibition data allows us to create a con-
sistent external test set. This makes it possible to perform a more extensive validation of the
model and to evaluate an approach to estimate the quality of predictions of a LIE model.
Because LIE models include empirically derived parameters, it is reasonable that a prediction
for a query compound can be considered reliable only if it is inferred from a region of
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information defined by the protein-ligand interactions that have been already explored during
training of the model. Analysis of this space is required to identify the sources for the relatively
large deviations of some of the predicted test-set affinities from experiment, and is performed
here subsequently in terms of (i) the chemical similarity between the test set and training com-
pounds, (ii) average protein-ligand interaction energies, and (iii) ligand-protein interactions
during simulation.

Table 3. Calculated (ΔGbind
Calc) and observed (ΔGbind

Obs) free energies of binding, and corresponding residuals (ΔGbind
Obs

—ΔGbind
Calc

) for the
training-set compounds (kJ mol-1).

ID Compound ΔGbind
Obs ΔGbind

Calc Residual

1 Mefenamic Acid -29.7 -34.0 4.3

2 Tacrine -32.2 -29.4 -2.8

4 Nifedipine -31.9 -29.0 -2.9

6 Phenacetin -27.9 -23.6 -4.3

7 α-naphthoflavon -42.6 -41.3 -1.3

13 HET-0016 -36.1 -36.4 0.3

16 Niflumic acid -30.2 -33.1 2.9

23 Mexiletine -34.8 -27.0 -7.8

25 Propranolol -32.9 -31.8 -1.1

27 Naphthalene -19.8 -17.6 -2.3

28 1-Methylnaphthalene -24.5 -22.3 -2.1

30 2-Methylnaphthalene -24.2 -20.9 -3.3

32 2-Fluoronaphthalene -26.5 -20.9 -5.6

35 1,3-Dimethylnaphthalene -31.0 -25.1 -5.9

36 1,4-Dimethylnaphthalene -33.0 -25.7 -7.4

38 1,5Dichloronaphthalene -29.6 -26.9 -2.7

42 2,6-Dimethylnaphthalen -26.3 -24.4 -1.9

50 ε-Caprolactone -9.7 -16.3 6.6

51 γ-Valerolactone -12.2 -15.8 3.6

52 γ-Caprolactone -13.2 -17.2 4.0

53 γ-Heptalactone -15.2 -20.2 5.0

54 γ-Nonanoic-lactone -21.9 -25.4 3.6

55 γ-Decanolactone -22.6 -25.9 3.3

56 γ-Undecanolactone -25.5 -29.9 4.4

58 δ-decanolactone -22.6 -26.3 3.6

60 2-Coumarone -22.3 -21.2 -1.1

61 2-Indanone -25.3 -18.4 -6.8

62 2,3-Dihydrobenzofuran -18.5 -18.1 -0.4

64 2-Benzoxalinone -21.4 -22.2 0.8

65 Biphenyl -23.5 -23.0 -0.5

67 4-Chlorobiphenyl -26.5 -26.6 0.1

68 Butylcyclohexane -26.2 -28.4 2.2

70 γ-Phenyl-γ-butyrolactone -16.9 -22.6 5.7

72 2-(p-tolyl)ethylamine -15.2 -19.6 4.4

73 Cotinine -14.7 -22.4 7.7

doi:10.1371/journal.pone.0142232.t003
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Chemical similarity analysis
Chemical similarity among the training set was evaluated as TS between each pair of molecules,
represented as molecular fingerprints (Fig 2). Average similarity scores among the elements of
the training set was between 0.32 (compound 72) and 0.50 (compound 27). Furthermore, every
training compound was found to have a TS higher than 0.45 with at least one of the other com-
pounds of the training set. Molecules from the test set were also compared to those of the train-
ing set. Average similarity scores ranged between 0.31 (compound 10) and 0.48 (compound
57), and only compounds 12 and 71 showed for all TSs values lower than 0.45 when compared
to the training set molecules.

The relatively low average TS obtained among the training set compounds confirmed a sig-
nificant diversity in terms of chemical structures. An analogous similarity/diversity can be
observed when comparing the test set to the training set compounds. Within the test set, com-
pounds 12 and 71 (Table A in S1 File) were considered to be outlier in this structural analysis

Fig 1. Correlation between calculated (ΔGbind
Calc) and observed (ΔGbind

Obs) binding free energies
obtained for the CYP 1A2 LIEmodel (Eq 4, α = 0.587 and β = 0.267). The solid line indicates ideal
correlation between ΔGbind

Obs and ΔGbind
Calc, and dashed lines represent deviations between calculated and

experimental values of ±5 kJ mol−1 (corresponding to an error well within 1.0 pKi units). Compounds from the
training set are represented in black. Test-set compounds that were found to be outlier in 0, 1, 2, and 3
analyses are represented in green, yellow, orange, and red, respectively.

doi:10.1371/journal.pone.0142232.g001
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because of their low TS obtained when compared to the most similar compound within the
training set.

The error in prediction for the two compounds was respectively -6.4 and 5.6 kJ mol-1

(Table 4), suggesting that structural analysis based on fingerprint distance is able to identify
few compounds with relatively high errors in prediction when compared to the SDEPCV. How-
ever, the chemical similarity analysis was not able to detect any of the other LIE predictions
with significant deviation from experiment (Fig 1).

Average interaction energy distributions
From a statistical point of view, LIE models can be considered as linear regressions in which
average ensemble interaction energies ΔVEle and ΔVVdW are used as variables (where ΔVEle and
ΔVVdW are obtained from MD simulations of the compounds in solvent and bound to the pro-
tein in the different binding configurations obtained from docking). With this in mind, it can
be assumed that a prediction will not be accurate if the MD-averaged (differences in) interac-
tion energies as obtained for a query compound do not belong to the distribution of the aver-
aged interaction energies employed to train the model (i.e., as obtained from the MD
simulations involving the training compounds) [15].

Table 4. Calculated (ΔGbind
Calc) and observed (ΔGbind

Obs) free energies of binding (kJ mol-1), and residuals (ΔGbind
Obs

–ΔGbind
Calc) for the test-set

compounds. Results from the reliability analyses are given as well, where a score 1 in columns (A)-(D) refers to the identification of outliers according to the
following analyses: (A) Chemical similarity analysis; (B) Average interaction energy distribution analysis; (C) Ligand-residue electrostatic interaction analysis;
(D) Ligand-residue van der Waals interaction analysis. In the last column (Total), the total sum of the number of analyses is reported in which a compound is
identified as an outlier.

Outlier identification

ID ΔGbind
Obs ΔGbind

Calc Residual A B C D Total

9 -33.3 -21.7 -11.6 0 0 1 0 1

10 -29.1 -22.6 -6.5 0 0 0 0 0

11 -22.2 -20.4 -1.8 0 0 0 0 0

12 -29.6 -23.2 -6.4 1 0 1 0 2

14 -32.0 -40.0 8.0 0 1 1 1 3

17 -30.0 -37.8 7.8 0 1 1 1 3

20 -28.1 -35.1 7.0 0 1 1 1 3

29 -26.4 -22.6 -3.9 0 0 0 0 0

31 -28.9 -25.6 -3.3 0 0 0 0 0

33 -29.8 -22.8 -7.0 0 0 0 0 0

34 -32.0 -26.7 -5.3 0 0 0 0 0

37 -34.1 -27.3 -6.8 0 0 0 0 0

39 -26.9 -24.9 -2.0 0 0 0 0 0

40 -28.2 -26.3 -1.9 0 0 0 0 0

41 -31.2 -25.1 -6.1 0 0 0 0 0

43 -25.8 -25.8 0.0 0 0 0 0 0

57 -26.1 -31.4 5.4 0 0 0 1 1

59 -25.5 -31.0 5.5 0 0 0 1 1

63 -20.4 -17.7 -2.8 0 0 0 0 0

66 -22.6 -25.5 2.8 0 0 0 0 0

69 -15.7 -21.7 6.0 0 0 0 0 0

71 -9.7 -15.3 5.6 1 0 0 0 1

doi:10.1371/journal.pone.0142232.t004
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The Mahalanobis distance from the center of the distribution of training set values for ΔVEle

and ΔVVdW was measured for each simulation of the test set. Compounds 14, 17, 20 were
found to show at least one simulation for which the Mahalanobis distance was larger than the
value expected for the 95 percentile of the distribution of the training set (Fig 3). Interestingly,
the three compounds showed errors in affinity prediction of 8.0, 7.8, and 7.0 kJ mol-1, respec-
tively (Table 4).

Whereas these three outliers were not identified by our chemical similarity analysis, the
evaluation of the distance of each simulation of the query compounds from the center of the
distribution of training set simulations, in the space provided by their MD-averaged interaction
energies, efficiently identified three LIE predictions with too large deviation from the observed
inhibitory potency. However, several other compounds with significant deviations between cal-
culated and observed values for ΔGbind were not detected (Fig 1 and Table 4).

Per-residue analysis of ligand-protein interactions
To evaluate the space of the electrostatic and steric interactions between the protein and com-
pounds of the training set simulations, a per-residue decomposition was performed of the aver-
age nonbonded interaction energies (hVVdW

lig-surri or hVEle
lig-surri) between the ligand and the

amino acids lining the active site.
A decomposition of the electrostatic energy contributes indicated that the main residues

involved in the interaction with the ligands were Thr118, Asn312, Asp313, Thr124, Asp320, and

Fig 2. Similarity matrix of the data set. Heat map of the compounds included in the training and test set, colored according to percent similarity expressed
in terms of Tanimoto scores (TSs) between pairs of structural fingerprints (white = 100% similarity (TS = 1.00); black = 0% similarity (TS = 0.00)).

doi:10.1371/journal.pone.0142232.g002
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the water molecules in the active site (Figure A in S1 File), while Phe226, Ala317, Gly316, Asp313,
Phe260, Ile117, Phe125, Leu497, and water represented the residues with the highest average van
der Waals interaction energies hVVdW

lig-surri contributes (Figure B in S1 File). These observa-
tions overlap with previous findings: analysis of the CYP 1A2 crystal structure [20] indicated
that Thr118 and Thr124 lie in a hydrophilic region that is considered important for the binding
of polar substrates, while Phe226, Ala317, and Gly316 form a planar surface that is important for
recognizing flat molecules. The crystal structure showed also that Phe125 contributes to tight
binding of the co-crystallized alpha-naphthoflavone [20]. Additionally, a recent computational
study by Yang et al. [74] suggested Asn312, Asp313, and Phe260 to be critical for binding of acet-
ominophen to CYP 1A2.

PCA on the decomposed electrostatic contributes for each compound of the training set led
to identification of two principal components. The first component accounted for 71.3% of the
per-residue energy contributes variability, and was dominated by the interaction with the
water molecules present in the catalytic site. Interactions with Asp313 and Thr118 dominated
the second component, which explains 15.2% of the overall variability (Fig 4, panels A and B).
The plot of the first two PC scores showed that the compounds are clustered in three groups:
(1) compounds with non-polar groups (compounds 27, 28, 30, 32, 35, 36, 38, 42, 62, 65, 67, 68,
29, 31, 33, 34, 37, 39, 40, 41, 43, 63, 66, 69) were clustered in a small region with positive scores
on the first component, and scores close to 0 on the second; (2) compounds 13, 14 and 17
(bearing a high number of hydrogen bond donor groups or acceptors) showed high scores on
both principal components; and (3) all other compounds were homogeneously distributed
around the origin (Fig 4, panel C). Score and orthogonal outliers in the test set were detected in
the rotated space (Fig 4, panels C and D). Compounds 9, 12 and 20 were orthogonal outliers,

Fig 3. Distribution ofΔVEle andΔVVdW values (Eq 2) for training-set (black circles) and test-set (white
squares) MD simulations. The dashed line represents the confidence for the 95 percentile of the training set
distribution. The simulations from the test set that are not comprised in this interval are labeled according to
the corresponding compound ID.

doi:10.1371/journal.pone.0142232.g003
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while 14 and 17 were both orthogonal and score outliers. Errors in prediction for these com-
pounds were respectively -11.6, -6.4, 7.0, 8.0, and 7.8 kJ mol-1 (Table 4).

In an analogue PCA performed on the per-residue decomposition of the average van der
Waals interaction energies hVVdW

lig-surri, 89.5% of the multivariate variability was accounted
by 4 principal components. High loading on the first principal component (45.7% of the overall
variability) was shown by the interaction with residues in the center of the catalytic site (Gly316
and Ala317 in helix I, Phe226 and Leu497 on the opposite side; Fig 5, panels A and B). On the sec-
ond principal component (21.6% of the overall variability), a positive loading was provided by
interaction with residues in the portion of the pocket delimited by the helices F, G, and I (resi-
dues Phe226, Phe260, Asp313, Thr118) while opposite contributes were provided by the interac-
tion with residues on the other side of the catalytic site (Water, Leu497, Ile386, Thr321; Fig 5,
panels A and B). Components 3 and 4 explained 13.2% and 9.0% of the multivariate variability,
respectively, but their meaning is more uncertain. Analysis of the scores showed a homoge-
neous distribution of the compounds, except for compounds 14 and 17, which were found to

Fig 4. Per-residue decomposition analysis of the electrostatic interaction energies between the ligand and its surrounding in the protein-ligand
simulations. (A) PCA loading plot for training-set electrostatic interaction energies; (B) Active site of CYP 1A2 from the crystallographic structure; heme
group (purple carbon atoms), co-crystallized ligand α-naphthoflavone (yellow carbon atoms), and amino acids with high loading on the first two PCs (in red)
are explicitly represented. (C) PCA score plot for the training-set (black circles) and test-set (white squares) compounds for the first two PCs. (D) Orthogonal
distance (OD) of the compounds of the training set (black circles) and test set (white squares) from the model with 2 PCs. The dashed horizontal line
represents the critical orthogonal distance, calculated for the training-set distribution.

doi:10.1371/journal.pone.0142232.g004
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be score outliers (Fig 5, panel C). Compounds 14 and 17 appeared to be also orthogonal outli-
ers in the evaluation of the residuals, together with compounds 20, 57, and 59 (Fig 5, panel D).
Errors in prediction for these compounds were 8.0, 7.8, 7.0, 5.4, and 5.5 kJ mol-1, respectively.

The interaction of a ligand with its (off-)target protein is depending on both steric and elec-
trostatic properties of the binding site. Within a large and malleable binding pocket such as the
catalytic site of several drug-metabolizing CYPs, a ligand can bind in different conformations
and in different topological parts of the pocket (i.e., with different electrostatic and steric prop-
erties). While the averaged electrostatic and van der Waals ensemble energies are typically
unable to give fine details about the topology of the interactions, analysis of the nonbonded
interaction energy contributes from each residue can provide more details about how ligands
interact with the catalytic site. The per-residue decomposition of the interaction energies was
used to identify different areas of the catalytic site that are considered important for the recog-
nition of CYP 1A2 substrates and inhibitors, and PCA on these data was able to characterize

Fig 5. Per-residue decomposition analysis of the van der Waals interaction energies between the ligand and its surrounding in the protein-ligand
simulations. (A) PCA loading plot for training-set van der Waals interaction energies; (B) Active site of CYP 1A2 from the crystallographic structure; heme
group (purple carbon atoms), the co-crystallized ligand α-naphthoflavone (yellow carbon atoms), and amino acids with high loadings in the PCA are explicitly
represented. Residues with high positive loadings on the first PC are depicted in green; Residues with high loadings on the second component are also
represented, both for positive (blue) and negative values (red). (C) PCA score plot for the training-set (black circles) and test-set (white squares) compounds
for the first two PCs. (D) Orthogonal distance (OD) of the compounds of the training set (black circles) and test set (white squares) from the model with 4 PCs.
The dashed horizontal line represents the critical orthogonal distance, calculated for the training-set distribution.

doi:10.1371/journal.pone.0142232.g005
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the regions of the catalytic site that are critical for binding of specific ligands. Moreover, we
could use this analysis to identify query compounds presenting a pattern of interactions that
was not properly sampled by the training set (orthogonal outliers), or for which the interac-
tions with single residues were unusually strong, as compared to what was observed within the
training set (score outliers). Both groups of molecules showed absolute errors in affinity predic-
tion between 5.4 and 11.6 kJ mol-1, which are considerably larger when compared to the errors
obtained for the training set (Table 3).

Combined approach to analyse the prediction reliability
Similar to the ADAN approach of Carrió et al. for traditional QSAR methods [17], we adopted
a combined approach in which the analyses presented above were used as criteria to assess the
reliability of LIE predictions. These criteria were based on (A) chemical similarity analysis, (B)
average interaction energy distribution analysis, (C) per-residue analysis of the ligand-protein
electrostatic interactions, and (D) per-residue analysis of the ligand-protein van der Waals
interactions. According to the total number of analyses (0 to 4) in which they were found to be
outliers, the query compounds were thus classified in 5 categories (Fig 6). 14 test set com-
pounds were found to be outlier in none of the analyses (category 0), and showed a SDEP of
4.6 kJ mol-1 between calculated and experimental ΔGbind, Fig 6. Four compounds (9, 57, 59, 71)
were outliers in one analysis (category 1), for which the SDEP was 7.5 kJ mol-1. One compound
(12), with an error in prediction of 6.4 kJ mol-1) was outlier in two analyses, while three com-
pounds were outlier in three analyses and showed the highest SDEP of 7.6 kJ mol-1 (14, 17, 20).
None of the compounds of the test set was found to be outlier in all analyses.

Considering the obtained results, compounds that were outlier in an increasing number of
analyses were found to show larger errors in prediction. Moreover, the compounds with no
deviations showed a SDEP similar to the one obtained during LOO-CV of the model (4.6 vs.
4.3 kJ mol-1), indicating that our combined analysis on the nature of the ligands and their inter-
actions with the protein of interest can be used for assessing the reliability of predictions by
protein-structural and -dynamical based models.

Fig 6. Prediction errors obtained for the external test set compounds. The compounds were grouped in
a category according to the number of occurrences in which they were found to be an outlier according to
analyses (A)-(D) in Table 4. Horizontal lines represent the standard error (SDEP) for a given category, while
the boxes represent the standard deviation around this average.

doi:10.1371/journal.pone.0142232.g006
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Conclusions
An iterative LIE model for predicting CYP 1A2 binding affinities was presented. A dataset of
IC50 values for 73 compounds characterized by a large chemical diversity was collected from
three different literature sources, and the experimental uncertainty was estimated by measuring
the inhibitory potency in-house for a sample of compounds from each source under the same
conditions. The RMSD between in-house measured IC50 values and literature values of 3.3 kJ
mol-1 (with a maximum variation of 6.9 kJ mol-1) was used as limit to identify possibly over-
fitted models.

From the dataset, 35 compounds that covered a broad range of chemical diversity (with an
average Tanimoto Score among pairs of compounds of 0.39) were used to calibrate our LIE
model, which showed high correlation between calculated and observed values for the binding
free energy (r2 = 0.68; q2CV = 0.66). Errors in regression (RMSE) and in prediction in cross vali-
dation (SDEPCV) were comparable to the uncertainty in the experimental data (RMSE = 4.1 kJ
mol-1; SDEPCV = 4.3 kJ mol-1), indicating that the MD-based approach was able to properly
address the protein and ligand flexibility that are crucial in modeling CYP450-ligand
interactions.

Compounds that were not included in the training set were used to evaluate the predictivity
of the model. Since we provided a parameterized model, the inhibitory potency for a query
(test-set) compound can only be accurately predicted if it shows sufficient similarity with the
elements of the training set that determine the model. Assuming that such similarity within a
structure-based model depends on both the compound and the specific interactions it under-
takes with the (off-)target protein, we proposed a set of analyses to evaluate the different ele-
ments playing a role in determining a LIE-based prediction. Analysis of the chemical structure
of the ligands only was very limited in detecting test-set compounds with large deviations in
prediction. By also taking into account the protein-ligand interactions and by combining
results from multiple analyses in a single score, it was possible to obtain good estimation of the
prediction reliability. Predictions that were found to be most reliable (i.e., for which the com-
pounds were not found to be outlier in any of the applied analyses) showed a SDEP of 4.6 kJ
mol-1, which is comparable to the SDEPCV obtained, while predictions for groups of com-
pounds with decreasing level of reliability showed a SDEP of 7.5, 6.4, and 7.6 kJ mol-1,
respectively.

In this work we presented a model for CYP 1A2 binding affinity calculation using an
approach based on a highly automatable and scalable protocol that has proved to be applicable
in predicting binding affinities for compounds characterized by broad chemical diversity.
Additionally, we provided an innovative method that was able to estimate the reliability of sin-
gle MD-based predictions, thereby efficiently including information on the ligand-protein
interactions. Considering the continuous increment in accessibility of computational power,
the comprehensive method we proposed here represents a promising alternative to traditional
quantitative structure-activity(/property) relationship models for a vast range of biological
(off-)targets for which a 3D structure is available and in which protein structural and/or
dynamical information is crucial to model the interaction with ligands and predict the property
or properties of interest.
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