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Abstract

Although considerable progress has been made toward understanding glioblastoma biology 

through large-scale genetic and protein expression analyses, little is known about the underlying 

metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic 

profiling on patient-derived glioma specimens and identified specific metabolic programs 
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differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting 

accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the 

metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic 

intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical 

clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, 

and phospholipid catabolism with prognostic relevance. These studies represent the first global 

metabolomic profiling of glioma, offering a previously undescribed window into their metabolic 

heterogeneity, and provide the requisite framework for strategies designed to target metabolism in 

this rapidly fatal malignancy.

Introduction

The World Health Organization (WHO) classifies glioma into grades 1 to 4, based on 

abundance of atypical cells, mitoses, endothelial proliferation, and necrosis. Tumor grade 

plays a central role in prognosis and guides clinical management. For example, patients with 

grade 1 tumors are typically cured following surgical resection, whereas patients diagnosed 

with grade 4 tumors, termed glioblastoma, have a median survival of approximately 1 year 

despite aggressive multimodality treatment consisting of surgery, radiotherapy, and 

chemotherapy. Although grade 2 gliomas typically have a better prognosis than higher 

grader tumors and are often categorized as benign, this is somewhat of a misnomer, as these 

tumors are rarely cured and typically transform to higher grade tumors (1).

Considerable progress has been made in understanding the underlying biology of gliomas. 

For example, common molecular alterations identified in low-grade oligodendrogliomas and 

astrocytomas are allelic loss of 1p and 19q and mutations in p53, respectively, whereas 

grade 3 and 4 tumors typically are driven by alterations in phosphoinositide 3-kinase (PI3K), 

EGF receptors (EGFR), VEGF, and PTEN signaling (1). Furthermore, through whole 

genome sequencing, recent data presented by The Cancer Genome Atlas Research Network 

both reinforced these previously identified mutations and highlighted tumor heterogeneity, 

identifying aberrant signaling through the RTK/RAS/PI3K, p53, and retinoblastoma (RB) 

pathways being central for glioblastoma development (2).

Despite these advancements in our understanding of the upstream events signaling 

tumorigenesis, relationships between underlying metabolic alterations and mechanisms 

promoting the observed aggressive phenotype in these tumors remain unclear. The seminal 

observation made by Otto Warburg nearly a century ago (3, 4), described aerobic glycolysis, 

that is, a high fermentative metabolism of glucose resulting in production and release of 

lactic acid, even in the presence of adequate oxygen. We have proposed that acid production 

provides a competitive advantage for invasive cancers (5), yet a definitive explanation for 

why tumor cells metabolize glucose through the seemingly inefficient process of aerobic 

glycolysis continues to be elusive. Nonetheless, its clear relevance to cancer biology is 

evident with the widespread application of 2[18F]fluoro-2-deoxy-D-glucose–positron 

emission tomography (18-FDG-PET) imaging, which can predict histologic grade in glioma 

with relatively high accuracy. Grade 2 tumors typically show low specific uptake values 

(SUV), whereas high-grade tumors (grade 3 and 4) show high SUVs (6). Hence, there are 
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grade-associated changes in glioma metabolism, yet these have not been extensively 

characterized.

Metabolomics is the global quantitative assessment of endogenous metabolites within a 

biologic system, taking into account genetic regulation, altered kinetic activity of enzymes, 

and changes in metabolic reactions. Thus, compared with genomics and proteomics, 

metabolomics reflects changes in phenotype, and therefore function (7, 8). On the basis of 

the clear metabolic shift between low-grade and high-grade tumors, we evaluated global 

metabolomic profiles in grade 2, 3, and 4 gliomas to comprehensively evaluate metabolic 

underpinnings of grade-specific changes in glioma beyond that of glucose consumption. 

Furthermore, metabolomic signatures were coupled with gene expression profiles to 

evaluate for subtype specific changes in tumor metabolism and provide insight into 

upstream signaling networks that may be driving the observed metabolic alterations.

Materials and Methods

Tumor samples and patient characteristics

A summary of all glioma cases studied is included in Supplementary Table S1. All surgeries 

were conducted at the H. Lee Moffitt Cancer Center and Research Institute (Tampa, FL), 

and tissue was obtained from the Moffitt Cancer Center Tissue Core Facility. All of the 

grade 3 and 4 tumors used in this analysis were newly diagnosed malignancies. Tumors 

were fresh-frozen and their integrity and histology confirmed by a staff pathologist before 

aliquoting samples. Clinical outcomes were obtained through the Cancer Center Tumor 

Registry. Institutional Review Board/Human Subjects approval was obtained for this 

retrospective study.

Sample preparation and metabolic profiling

Metabolomic studies were conducted at Metabolon Inc. using a nontargeted platform that 

enables relative quantitative analysis of a broad spectrum of molecules with a high degree of 

confidence (9). The metabolic profiling analysis combined 3 independent platforms, 

ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS-

MS2) optimized for basic species, UHPLC/MS-MS2 optimized for acidic species, and gas 

chromatography/mass spectrometry (GC/MS). Samples were processed essentially as 

described previously (9, 10). Tissue samples were homogenized in a minimum volume of 

water and 100 μL withdrawn for subsequent analyses. Using an automated liquid handler 

(Hamilton LabStar), protein was precipitated from the homogenate with methanol that 

contained 4 standards to report on extraction efficiency. The resulting supernatant was split 

into equal aliquots for analysis on the 3 platforms. Experimental samples and controls were 

randomized across platform run days. For UHPLC/MS/MS2 analysis, aliquots were 

separated using a Waters Acquity UPLC (Waters) and analyzed using an LTQ mass 

spectrometer (Thermo Fisher Scientific, Inc.), which consisted of an electrospray ionization 

(ESI) source and linear ion-trap (LIT) mass analyzer. The MS instrument scanned 99 to 

1,000 m/z and alternated between MS and MS2 scans using dynamic exclusion with 

approximately 6 scans per second. Derivatized samples for GC/MS were separated on a 5% 

phenyldimethyl silicone column with helium as the carrier gas and a temperature ramp from 
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60°C to 340°C and then analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo Fisher 

Scientific, Inc.) operated at unit mass resolving power with electron impact ionization and a 

50 to 750 atomic mass unit scan range. Metabolites were identified by automated 

comparison of the ion features in the experimental samples with a reference library of 

chemical standard entries that included retention time, molecular weight (m/z), preferred 

adducts, and in-source fragments as well as associated MS spectra, and were curated by 

visual inspection for quality control using software developed at Metabolon (11). 

Metabolomic subtypes were generated using unsupervised hierarchical clustering on 

GeneCluster 3.0. Metabolite concentrations (excluding xenobiotics) were log transformed 

and clustering was conducted with uncentered correlation and single linkage metrics, and 

visualized using Java TreeView.

For statistical analyses and data display purposes, any missing values were assumed to be 

below the limits of detection, and these values were imputed with the compound minimum 

(minimum value imputation). Statistical analysis of log-transformed data was conducted 

using “R” (http://cran.r-project.org/), which is a freely available, open-source software 

package. Welch t tests were conducted to compare data between experimental groups. 

Multiple comparisons were accounted for by estimating the false discovery rate (FDR) using 

q values (12). Random forest (RF) analysis (13) was carried out on untransformed data. 

When data from the glioblastoma grade categories were used in comparisons for 

classification by RF, the number of in-bag samples was set to 50% of smallest subgroup to 

account for unbalanced group sizes, with 50,000 trees. RF analysis was conducted using the 

R-package “randomForest” (14).

Expression transcriptional subtyping

Total RNA was extracted from snap-frozen malignant glioma tissue using magnetic binding 

beads for cDNA and Qiagen RNeasy kits for cRNA purification. The final in vitro 

transcription incorporated biotin moieties that were later labeled with phycoerythrin. 

Samples were fragmented to improve hybridization sensitivity and consistency. The labeled 

molecules were biotinylated-cRNA. GeneChipmicroarrays were loaded with the fragmented 

target sample/hybridization buffer mix using standard techniques. Arrays were hybridized 

for 18 hours at 45°C with vigorous mixing. Unbound sample was removed and staining was 

accomplished through the binding of streptavidin-conjugated phycoerythrin to the 

hybridized target. Excess label was removed. Washing and staining steps were carried out 

by the Affymetrix FS450 fluidics station using standard protocols. Arrays were scanned 

using a GeneChip Scanner 3000 7G with a 48 array autoloader. Samples were hybridized to 

a Affymetrix-based chip designed by Merck. A total of 35 probesets from the Merck chip 

that most closely matched the signature genes described by Phillips and colleagues (15) 

were clustered using GeneCluster 3.0 and visualized by Java Tree-View 1.1.6. The 3 distinct 

clusters were evaluated for sample membership with respect to 3 glioma subtypes; defined 

as proliferative, mesenchymal, or proneural. Selection of differentially expressed genes was 

done using significance analysis of microarrays (SAM; 16). Principal component analysis 

(PCA) was conducted in the Evince software package. GeneGO Meta-Core was used to 

identify significant biologic pathways.
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Pyruvate kinase activity assay

Pyruvate kinase (PK) activity was measured using a commercially available kit according to 

the manufacturer recommendations (BioVision). Briefly, tissues were homogenized and 

extracted with assay buffer. Three microgram of protein was used to ensure that the reading 

was within the linear range of the standard curve. For the colorimetric assay, optical density 

(OD) was measured at 570 nm at T1 to read A1 and measured again at T2 after incubating 

the reaction at 25°C for 10 and 20 minutes. PK activity was calculated by applying the ΔA 

(A2 – A1) to the standard curve to yield nmol of pyruvate generated between T1 and T2 by 

PK in the reaction wells and expressed in mU/mL.

Western blot analysis

Western blot analyses were conducted as previously described (17) using antibodies against 

PKM2 (Cell Signaling; 1:3,000) and β-actin (Sigma-Aldrich; 1:20,000). Blots were 

quantified using ImageJ (NIH), and the PKM2 expression of individual samples were 

normalized to loading control (β-actin).

Statistics

Statistics involved with metabolomic profiling are as described earlier. Estimates of overall 

survival were evaluated using the Kaplan–Meier product limit method and compared using a 

Wilcoxon log-rank test with SAS version 9.1.3 (SAS Institute). Student t test was used for 

box-plot comparisons.

Results

Global metabolic profiles distinguish glioma tumor grades

Global metabolomic profiling was conducted using a combination of high-throughput LC- 

and GC–based MS on a total of 69 fresh-frozen glioma specimens surgically resected at the 

H. Lee Moffitt Cancer Center (18 grade 2, 18 grade 3, and 33 grade 4; specific histologies 

are provided in Supplementary Table S1). From a metabolomic library consisting of more 

than 2,000 purified standards, a total of 308 named biochemicals were detected. The 

distribution of metabolic pathways identified is presented in Fig. 1A, with a majority of 

metabolites involved in lipid, amino acid, and carbohydrate metabolism. Following log 

transformation and imputation with minimum observed values for each compound, Welch 2-

sample t tests were used to identify biochemicals that differed significantly between 

histologic grades. Summaries of the numbers of biochemicals that achieve statistical 

significance (P ≤ 0.05) are provided in Fig. 1B, with the largest number of significant 

metabolic changes observed between grade 2 and grade 4 gliomas. A summary of the 

metabolic pathways differentiating grade 4 and 2 tumors is presented in Fig. 1C. There was 

a significant increase in several metabolites involved in amino acid metabolism in grade 4 

tumors, including glutathione and tryptophan. In addition, a decrease in creatine was also 

shown, which is consistent with magnetic resonance spectroscopy data for these highly 

proliferating tumors (18). There seemed to be a significant change in lipid metabolism in 

grade 4 tumors, with notable decreases in glycolipids, lysoplipids (which include derivatives 

of phosphocholine and phosphoethanolamine), and sterols, and increases in essential and 
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medium chain fatty acids and metabolites associated with carnitine metabolism. Although 

grade 4 tumors seem to show a global decrease in carbohydrate metabolites, significant 

increases in key metabolic intermediaries phosphoenolpyruvate (PEP) and 3-

phosphoglycerate (3-PG) were observed. In addition, a signature of increasingly altered 

nucleotide metabolism was also evident in grade 4 tumors, primarily involving pyrimidine 

catabolism.

RF classifier models were developed to determine the capacity of global metabolic profiles 

to differentiate between tumor grades and to identify biochemicals important to the 

classification. The RF analyses yielded an overall predictive accuracy of 71% for classifying 

samples among groups (Supplementary Fig. S1). By this method, grade 3 tumors were 

poorly distinguished from both grade 2 and 4 tumors, suggesting progressive and 

overlapping metabolic changes during glioma tumorigenesis, whereas grade 2 and 4 tumors 

were best distinguished in the RF, reinforcing the important role altered metabolism plays in 

the aggressive phenotype associated with glioblastoma. In addition to producing a metric of 

predictive accuracy, RF analyses produced a prioritized list of biochemicals ranked in order 

of their importance to the classification scheme. To provide insight into grade-associated 

differences in global metabolism, the top 30 biochemicals for the RF classification scheme 

are provided in Fig. 2. In this analysis, 2-hydroxyglutarate (2-HG) emerged as the top-

ranked biochemical for tumor grade classification. Several recent seminal studies have 

identified mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) unique to 

low-grade glioma, resulting in structural changes allowing a new ability of the enzyme to 

catalyze the NADPH-dependent reduction of α-ketoglutarate to 2-HG (19–22). In addition 

to validating our described methodologies, identifying a significant accumulation of 2-HG in 

low-grade glioma specimens relative to its global metabolic profile further supports its 

potential role as an oncometabolite in this tumor.

The metabolic signature of glioblastoma reflects accelerated anabolic metabolism

As the majority of our understanding of aberrant metabolism associated with tumorigenesis 

involves altered carbohydrate metabolism, we focused on alterations in glucose metabolism 

as a function of tumor grade. An evaluation of metabolites involved in glycolysis and the 

oxidative energy metabolism of the tricarboxylic acid (TCA) cycle/oxidative 

phosphorylation (23), provided in Fig. 3, identified accumulation of glycolytic intermediates 

as a key metabolic alteration in high-grade glioma. As glucose is taken up by cells, it is 

phosphorylated by hexokinase to glucose-6-phosphate (G6P), which is metabolized via 

either the Embden–Meyerhof (E–M; glycolysis or conversion of glucose to pyruvate) or the 

pentose phosphate pathways. In our analysis, progressively higher levels of triose phosphate 

glycolytic intermediates, including 3-PG and the penultimate intermediate, PEP, are more 

than 7-fold higher in grade 4 tumors over grade 2 and were among the top biochemicals in 

the RF importance plot for classification by tumor grade. To more definitively determine if 

these concerted changes represented a biologically relevant alteration in the metabolic 

pathway rather than independent events, we evaluated the concordance of 3-PG and PEP 

within individual samples. This analysis resulted in a Pearson’s r correlation coefficient of 

0.96 (Supplementary Fig. S2), supporting the conclusion that increased levels of these 2 

metabolites represent a clear metabolic shift in high-grade glioma and the implicit strength 
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of global pathway analysis offered by metabolomics. Although absolute flux of metabolites 

cannot be definitively made from single steady-state measurements, the accumulation of 

PEP and 3-PG in grade 4 tumors does suggest the potential for diversion of glycolytic 

carbon from the E–M mediated generation of ATP into alternate pathways for 

macromolecule biosynthesis. Two important glycolytic shunts are through the pentose 

phosphate pathway and serine metabolism. The pentose phosphate shunt, by production of 

NADPH and ribose-5-phosphate (R5P) contributes to nucleotide biosynthesis, generates 

reducing equivalents essential to anabolic metabolism, and modulates DNA methylation 

(24–28). Accordingly, the metabolomic signature of grade 4 tumors consisted of an 

accumulation of key metabolites in these pathways (Fig. 3), including 6PG (3.84-fold 

increase), R5P (5.78-fold increase), serine (1.55-fold increase), and glycine (2.23-fold 

increase).

The metabolic phenotype of the mesenchymal subtype involves PEP accumulation and 
decreased PK activity

Although malignant glioma is defined as grade 3 or 4 based on histopathologic criteria, clear 

molecular heterogeneity has been uncovered within these tumor grades. Phillips and 

colleagues recently described 3 specific subtypes of malignant glioma based on expression 

profiles associated with distinct molecular signatures and clinical outcome, termed proneural 

(PN), proliferative (PR), and mesenchymal (15). To determine if metabolic phenotypes were 

associated with specific molecular subtypes in malignant glioma, global expression profiling 

followed by subtype designation was conducted on glioma samples. A majority of the grade 

3 tumors were PN (67%), whereas the distribution of glioblastoma subtypes were 50% 

mesenchymal, 20% PR, and 30% PN, which was consistent with previous reports (15; 

Supplementary Fig. S3). Coupling metabolomic data with expression profiles revealed that 

the accumulation of PEP strongly correlated with the mesenchymal subtype (P = 6.3 × 10−7; 

Fig. 4A). Notably, 3 of the 4 grade 3 tumors that were molecularly classified as 

mesenchymal had significantly elevated PEP. In all, any tumor with a 4-fold or greater 

accumulation of PEP was invariably mesenchymal (n = 10).

Accumulation of PEP could occur through reduced activity of PK. Isoenzyme variations of 

PK have been documented to play a role in the diversion of glycolytic metabolites. 

Specifically, there are 4 PK isoenzymes (M1, M2, L, and R) that differ in their kinetic 

properties and distribution among cells and tissues. PKM1 is found in the vast majority of 

cells, whereas PKM2 is abundant during embryogenesis, in selected differentiated tissues, 

and is the predominant form found in cancer cells (24, 29, 30). PKM2 can be further 

regulated by tyrosine kinase phosphorylation, which can switch PKM2 from its more active 

tetrameric form with high affinity toward its substrate PEP, to a less active dimer form, 

which favors the diversion of trioses toward synthetic processes, such as lipid and amino 

acid biosynthesis (24, 27, 30, 31). Hence, we determined if PK activity was correlated with 

increased PEP accumulation associated with the mesenchymal subtype. Of the initial tumor 

specimens evaluated, 26 had tissue evaluable for enzyme analysis. Of these, only 3 tumors 

clustered in the proliferative subtype; therefore, further analysis on this subtype was not 

conducted. As shown in Fig. 4B, the mesenchymal subtype had a significantly decreased PK 

activity (P = 0.0205) compared with the proneural group, suggesting a mechanism for the 
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observed metabolic phenotype of PEP accumulation. Interestingly, although PK activity was 

observed to be lower in the mesenchymal subtype, overall expression of PKM2 was 

significantly increased (P = 0.0005) when compared with malignant gliomas clustering in 

the proneural subtype (Fig. 4C).

Global metabolism reveals metabolic signatures in malignant glioma

To determine if specific malignant glioma subtypes could be identified on the basis of the 

global metabolomic profiles, unbiased hierarchical clustering was conducted. Three distinct 

subgroups (A, B, and C) were identified (Fig. 5A), which were defined by 3 unique 

metabolomic signatures. Metabolites comprising the individual profiles that showed 

statistical significance in malignant glioma are provided in Supplementary Table S2. 

Although each profile consisted of a diverse set of metabolites, we applied the terms 

energetic, anabolic, and phospholipid catabolism to describe the individual profiles based on 

the characteristics of specific metabolites found therein. Specifically, subgroup B was 

defined by a classic glycolytic or energetic profile that consisted of an accumulation of 

upstream intermediates of glycolysis, including G6P and fructose-6-phosphate. Subgroup A 

was mutually exclusive to subgroup B, with decreases in these glycolytic metabolites, and 

elevated levels of metabolites typically associated with diverted glycolytic intermediates and 

anabolic metabolism, including PEP, 3-PG, and 6-PG. Notably, these also represent key 

metabolites differentiating grade 4 and 2 tumors, as described in Fig. 3. Other interesting 

metabolites in this list included those involved in serine, carnitine, tryptophan, and essential 

and long-chain fatty acid metabolism. Subgroup C had a similar profile as subgroup A, with 

the additional metabolites of long-chain fatty acid and lysolipid catabolism. Hence, this 

subtype was denoted as phospholipid catabolism. Both subgroups A and C primarily 

consisted of grade 4 (n = 30/33) tumors, whereas the majority of tumors that clustered in 

subgroup B (n = 7/9) were grade 3 gliomas, further supporting that divergence of glycolytic 

carbons plays an important role in the metabolic switch involved in glioblastoma. Although 

subgroup B consisted largely of tumors clustering to the PN subtype, these metabolic 

profiles were otherwise largely independent from the transcriptional signatures (Fig. 5B).

We then investigated whether these identified metabolic subtypes were clinically relevant by 

evaluating the outcome of patients from individual subgroups. As grade is a clear prognostic 

factor in malignant glioma, grade 3 and grade 4 tumors were evaluated independently. Our 

initial evaluation compared grade 3 tumors with subgroups B and C (n = 7 and 8, 

respectively). Subgroup A was not analyzed because of low incidence (n = 3). We 

hypothesized that grade 3 patients with subgroup C metabolic profiles would have a worse 

outcome, because it is more consistent with the profile observed in grade 4 tumors. 

Consistent with our predictions, patients with grade 3 tumors that clustered in subgroup B 

had a significantly improved overall survival (Fig. 5C; P = 0.0104), with median survival 

not being reached, compared with a median survival of approximately 28 months for grade 3 

tumors clustered in subgroup C. We next compared grade 4 tumors that clustered in 

subgroup A (n = 13) with C (n = 17). Interestingly, in contrast to transcriptional subtypes, 

metabolomic subtypes identified prognostic relevance in grade 4 tumors, with tumors 

clustering in subgroup A showing a significantly improved median survival of 24.4 months 
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versus 14.7 months in tumors clustering to subgroup C (P = 0.0165). Notably, subgroup C 

had the worst outcome, independent of grade.

We then investigated whether specific signaling networks driving individual metabolomic 

subtypes could be identified. Using transcriptional profiles from individual tumors, glioma 

grade–specific comparisons were made similar to those conducted in the survival analysis, 

including comparisons between grade 3 tumors clustering in subgroups B and C and grade 4 

tumors clustering between A and C. Interestingly, statistical analysis of microarrays (SAM) 

analysis of global transcriptional profiles for all of these groupings identified no apparent 

genes that were significantly differentially expressed within a reasonable FDR (5%). As a 

proof-of-concept, we conducted similar analyses using SAM comparing transcriptional 

profiles between grade 2 and grade 4 tumors. These studies identified several thousand 

probesets at a low FDR (specifically 1,970 genes at a 2-fold or more change and a 0% FDR), 

which encompassed several well-known pathways differentiating grade 2 and 4 tumors, 

including anti-apoptotic, signal transducer and activator of transcription (STAT), 

extracellular signal–regulated kinase (ERK), endoplasmic reticulum (ER) stress, WNT, and 

hedgehog signaling pathways.

Further analysis was conducted to examine the relationship between the 3 identified 

metabolic profiles (anabolic, energetic, and phospholipid catabolism) and the existing 

transcriptional subtypes. By using PCA on each metabolic profile and plotting the first 2 

components, there was no discernable separation between transcriptional subtypes or grade 

(Supplementary Fig. S4). To determine if any genes were correlated to metabolic profiles, 

we examined the correlation between the first PC of each metabolic profile and individual 

gene expression. Only weak correlation was observed (max R2; anabolic = 0.53; energetic = 

0.53; phospholipid catabolism = 0.31). Finally, we asked if there were gene expression 

differences among the 3 metabolic subtypes identified. Using the Kruskal–Wallis test for 

differences among the 3 subtypes and applying a FDR filter of 5%, we identified 2,510 

probesets (representing 1,605 genes) significantly different (Supplementary Table S3). Post 

hoc tests for pair-wise differences indicate that 85% of the differences are driven by cluster 

B (Supplementary Table S3). Mapping these genes onto biologic pathways using GeneGO 

MetaCore, we identified several significant pathways including cell adhesion and 

cytoskeleton remodeling (see Supplementary Table S4 for full list of pathways identified). 

Taken together, this cross-platform analysis supports the concept that metabolomic profiles 

may provide a unique insight into the underlying biology of brain tumors beyond that 

recognized from traditional transcriptional signatures.

Discussion

Here, we describe, for the first time, global metabolomic signatures in glioma, which 

provide insight into their underlying biology that seems to have prognostic significance. An 

enhanced biosynthetic capacity from divergence of glycolytic carbons has been proposed as 

an important metabolic phenotype associated with tumorigenesis to provide the requisite 

genome, proteins, and lipids for these rapidly dividing cells, however, this study represents 

one of the first to provide support for this adaptive process in human tumors. One important 

mechanism tumors have adapted to allow for glycolytic shunting involves modulation of 
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PKM2 activity. By converting from its highly active tetramer form that favors the 

conversion of PEP to pyruvate, to its less active dimer, upstream intermediates including 

PEP and 3-PG accumulate, increasing substrate availability for alternate pathways important 

for rapidly dividing cells (24, 27, 28, 31). Here, we identify some of the highest ranking 

metabolites differentiating grade 4 from grade 2 gliomas to be accumulation of PEP and 3-

PG. Interestingly, within high-grade gliomas, integrative metabolomic, genomic, and 

enzyme affinity assays identified PEP accumulation and decreased PK activity highly 

correlated with the mesenchymal subtype, representing a particularly aggressive subgroup in 

this malignancy. It should be noted that extrapolations of absolute flux cannot be made from 

single steady-state measurements, although inferences about relative flux can be made using 

the cross-over theorem. Notably, this is complicated by the observation that the rate of 

feeding carbons into these pathways is highly variable, as measured with FDG-PET, and 

correlates with grade and survival. Nonetheless, our kinetic measurements revealed 

decreased PK activity in the “shunted” phenotype, suggesting that these metabolic profiles 

can be generated, in part, by modulation of PK activity. Another limitation is that, although 

tissue obtained in this study was rapidly frozen following excision, the resulting ischemia 

and hypoxia contributing to anaerobic metabolism within a specimen is difficult to control in 

the context of a resection. Therefore, the concentrations of specific metabolites may be 

affected by the unknown state of metabolic degradation during this period of ischemia 

and/or hypoxia. However, since comparisons made herein are between glioma grades, 

including the identified anabolic phenotype and altered phospholipid metabolism, we 

postulate that these same inconsistencies involving anaerobic glycolysis associated with 

surgery-related ischemia occur at a similar rate between the low- and high-grade lesions, 

essentially normalizing this effect. This limitation extends to the inability in determining 

grade-specific differences in pyruvate metabolism into lactate, which may not be accurately 

recapitulated in these studies based on the accelerated anaerobic metabolism following 

resection.

Although previously identified malignant glioma subtypes based on transcriptional 

signatures provide insight into underlying molecular heterogeneity, their biologic relevance 

still remains unclear. Identifying the accumulation of PEP in mesenchymal malignant 

glioma represents a previously unrecognized phenotype that may contribute to the 

aggressive nature of this subtype and be subsequently modulated as a form of metabolism-

based cancer therapy. Furthermore, recent findings identified transcriptional networks 

regulated by C/EBPβ and STAT3 are central to mesechymal transformation in glioblastoma 

(32); therefore, further work linking these pathways to modulation of PKM2 activity are 

warranted. In addition, despite lower PK activity in the mesenchymal subtype, there seemed 

to be higher overall expression of this enzyme when compared with tumors clustering into 

the proneural subtype, suggesting the potential for alternate functions of this enzyme. This is 

supported by recent work of Yang and colleagues showing the nonmetabolic role of PKM2, 

involving translocation to the nucleus and EGFR-promoted β-catenin transactivation (33). 

Another possibility may involve PKM2 phosphorylation, and subsequent inactivation in this 

subtype (31), which was not evaluated in this study.

One important pathway in which cells divert carbon from glycolysis is through the pentose 

phosphate pathway. This shunting allows for both the generation of 6-phosphogluconate and 
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R5P, which is used for nucleotide biosynthesis, and generates sufficient reducing potential 

for detoxification of reactive oxidative species (23, 26, 28). Here, we observed accumulation 

of both these intermediates, along with a 3.2-fold increase in reduced glutathione in grade 4 

glioma, supporting this potential. In contrast, several pentitols, polyols derived from pentose 

phosphate pathway intermediates, including ribitol and arabitol, as well as the precursor 

arabinose, showed significantly decreasing levels with increasing tumor grade. Moreover, 

arabitol and arabinose, as well as additional, related small sugar derivatives were among the 

top 30 biochemicals in the RF-generated importance plot. The prevalence of this metabolite 

class among top RF biochemicals suggests that they provide robust indication of tumor 

grade progression. Although the metabolic pathways for many of these biochemicals in 

humans are not well understood, because several of these biochemicals are found elevated in 

certain human metabolic disorders with pentose phosphate enzyme deficiencies, this pattern 

of decreased levels for these pentose phosphate pathway side-products may serve as a 

further indication of an activated pentose phosphate pathway and heightened anabolic 

metabolism.

Another avenue for diversion of glycolytic flux is through de novo synthesis of serine and 

glycine, which represent precursors for a variety of biosynthetic pathways and epigenetic 

modulation through DNA methylation. The importance of this shift has been highlighted in 

2 recent reports, identifying amplification in the gene phosphoglycerate dehydrogenase 

(PHGDH), the enzyme whose substrate is 3-PG, in a subset melanomas and breast cancers 

(25, 34, 35). Our study identified accumulation of both serine and glycine in grade 4 tumors, 

suggesting activity of this pathway may also be relevant in glioblastoma biology. In addition 

to serine and glycine, other exogenous essential and nonessential amino acids are required to 

maintain such processes as protein synthesis, anapleurosis, and nucleotide biosynthesis 

during tumorigenesis. Accordingly, in our study, the accumulation of amino acid 

metabolites played a significant role in distinguishing grade 2 and 4 tumors, with 54% of the 

86 amino acid metabolites identified showing statistically significant differences. One of the 

amino acids that have been most extensively implicated in tumorigenesis is glutamine, 

which contributes toward the core metabolic needs of proliferating tumor cells, including 

providing bioenergetics, relieving oxidative stress, and complementing glucose metabolism 

through macromolecule production (36). Interestingly, increased accumulation of 

metabolites associated with glutamine metabolism was not associated with higher grade 

glioma. Although glutamine may certainly still be an essential component of glioma 

metabolism, our findings suggest its metabolism does not seem to be altered between tumor 

grades.

This report has identified 3 unique subtypes in malignant glioma based on their metabolomic 

signatures. Through unbiased, hierarchical clustering of the glioma metabolome, metabolites 

associated with divergence of glycolytic flux, characterized by accumulation of PEP and 3-

PG, seemed to play an important role in the biology of a subset of these tumors. These 

analyses identified a unique, particularly aggressive metabolic subgroup defined by high 

PEP combined with a signature suggestive of lipid catabolism; mainly consisting of 

decreased accumulation of several glycerophosphocholines (GPCs) with no associated 

increase in phosphocholine. Several of these were among the top 30 biochemicals in the RF-
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generated importance plot. Interestingly, altered phospholipid catabolism has been 

previously described in glioma, with higher phosphocholine (PCHo)/GPC ratios found in 

the 1H spectra of human glioblastoma when compared with lower grade tumors (37). 

Altered phospholipid catabolism has also been observed in breast, prostate, and ovarian 

cancer (38–41). Furthermore, recent studies suggest that in addition to serving as a “passive” 

structural building block, phospholipids also have the capacity of “actively” regulating 

cellular function (42).

In addition to insight into the underlying biology of glioma, the identified metabolic 

subtypes seem to also provide information on the aggressiveness of an individual tumor. 

Although limited by the number of samples analyzed and inability to account for known 

prognostic factors in glioma, including RPA: Recursive partitioning analysis class, 1p/19q 

status, and promoter methylation of MGMT: O(6)-methylguanine-DNA methyl transferase, 

these profiles do suggest potential prognostic relevance with potential application for future 

trial stratification. Additional work will be required to confirm these findings in an expanded 

cohort accounting for these know prognostic factors. In addition, although names of specific 

signatures were coined (e.g., energetic, anabolic, and phospholipid catabolism), it is 

important to note that these were based on selected metabolites from an extensive list 

(Supplementary Table S2) that clustered individual subtypes. Continued investigations will 

be required to determine the relative importance of these other metabolites in subtype 

designation and their overall influence on malignant glioma metabolism. Surprisingly, these 

identified metabolomic subgroups seemed to be independent from both previously 

recognized malignant glioma subgroups and transcriptional profiles. This suggests that other 

global processes as genomic and/or epigenetic regulation, including EGFR amplification or 

mutation and PTEN activation, may be driving the observed metabolomic subtypes and that 

integrating these platforms may provide further insight into the signaling processes driving 

the observed metabolic phenotype.

Although these findings still require validation in an independent dataset, understanding the 

glioma metabolome offers the potential for several levels of clinical application. In addition 

to serving as a prognostic factor, subtype designation may allow to personalize therapy 

toward an individual tumor’s metabolic phenotype. For example, therapies designed to 

target the energetic subtype may involve Akt inhibitors, hexokinase inhibitors (43), or the 

metabolic modulator dichloroacetate (44), whereas a therapeutic regimen designed to target 

the anabolic phenotype of glioblastoma may involve agents designed to modulate PEP 

accumulation or shunting into the PPP, including such agents as transketolase inhibitors 

(43).

In conclusion, metabolomics provides a unique window into the phenotype of glioma that, 

when integrated with other platforms, may provide a more comprehensive understanding of 

the complex biology associated with glioma tumorigenesis and malignant transformation. 

These findings underscore a previously unrecognized metabolic heterogeneity in glioma 

with both biologic and clinical relevance. A richer understanding of aberrant metabolism 

will provide a framework for the design and implementation of a personalized approach to 

malignant glioma therapy through metabolic modulation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Global metabolomic profiling in glioma identifies grade specific metabolic changes. A, a 

combination of high-throughput LC- and GC–based MS was conducted on a total of 69 

fresh-frozen glioma specimens (grades and histologies are provided in Supplementary Table 

S1). From a metabolomic library consisting of more than 2,000 purified standards, a total of 

308 named biochemicals were detected, and the metabolic pathways that the identified 

metabolites reside in are presented. B, following log transformation and imputation with 

minimum observed values for each compound, Welch 2-sample t tests were used to identify 

biochemicals that differed significantly between histologic grades. Summaries of the 

numbers of biochemicals that achieve statistical significance (P ≤ 0.05) are provided. C, a 

summary of the metabolic pathways differentiating grade 4 and 2 tumors, with red and green 

indicating a statistically significant increase and decrease in identified metabolic pathways, 

respectively. Gly, glycine; Ser, serine; Thr, threonine; Ala, alanine; Asp, aspartate; Lys, 

lysine; Phe, phenylalanine, Trp, tryptophan; Val, valine; Leu, leucine; Ile, isoleucine; Cys, 

cysteine; GSH, glutathione; FA, fatty acids.
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Figure 2. 
RF analysis identifies key metabolites differentiating glioma grade. RF analysis was 

conducted to determine the capacity of global metabolic profiles to classify samples between 

tumor grades and to identify biochemicals important to the classification; the top 30 

biochemicals for the RF classification scheme are provided.

Chinnaiyan et al. Page 17

Cancer Res. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The metabolic signature of glioblastoma reflects accelerated anabolic metabolism. 

Schematic of metabolites involved in carbohydrate metabolism, comparing grade 4 with 

grade 2 glioma. Metabolites in red reflect an increase accumulation in grade 4 tumors; 

green, decrease; black, no change; and gray, not identified in this analysis. Ratios were 

generated (in parenthesis) by normalizing the individual metabolite concentration to the 

median concentration of the respective metabolite obtained from all samples.
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Figure 4. 
The mesenchymal subtype of malignant glioma is characterized by PEP accumulation and 

altered PKM2 expression and activity. Malignant glioma tumors (n = 51) were classified as 

mesenchymal (mes; n = 20), proneural (PN; n = 22), and proliferative (PR; n = 9) based on 

their transcriptional profiles (Supplementary Fig. S3). A, box-plots were generated from the 

PEP ratios of tumor clustering to individual subtypes. Band C, of the initial 51 malignant 

glioma samples used for global metabolomic and transcriptional profiling, 23 samples had 

sufficient tissue remaining to evaluate for differential PK activity and PKM2 expression 

between subtypes (mes, n = 8; PN, n = 15). PK activity was determined using a calorimetric-

based assay and PKM2 expression was determined by Western blot analysis, with 

expression quantified relative to β-actin.
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Figure 5. 
Global metabolism reveals metabolic signatures in malignant glioma. A, unsupervised, 

hierarchical clustering was conducted on global metabolomic profiles generated in 

malignant glioma (n = 51). B, glioma grade and transcriptional subtypes of tumors clustering 

to the identified metabolomic subtypes. C, Kaplan–Meier estimates for overall survival 

based on metabolomic subtype.
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