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Abstract

Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis 

of complex traits, discovering >6000 variants associated with >500 quantitative traits and common 

complex diseases in humans. The associations identified so far represent only a fraction of those 

which influence phenotype, as there are likely to be very many variants across the entire frequency 

spectrum, each of which influences multiple traits, with only a small average contribution to the 

phenotypic variance. This presents a considerable challenge to further dissection of the remaining 

unexplained genetic variance within populations, which limits our ability to predict disease risk, 

identify new drug targets, improve and maintain food sources, and understand natural diversity. 

This challenge will be met within the current framework through larger sample size, better 

phenotyping including recording of non-genetic risk factors, focused study designs, and an 

integration of multiple sources of phenotypic and genetic information. The current evidence 

supports the application of quantitative genetic approaches, and we argue that one should retain 

simpler theories until simplicity can be traded for greater explanatory power.

The search for genetic variants

The majority of biological phenotypes and many of the characters of interest to humans are 

complex in that they are determined by many mutations at multiple loci [1–8], as well as by 

many non-genetic factors. Some phenotypes show classical Mendelian patterns of 

inheritance and segregate within families [9–12]. However, for most traits, there is evidence 

that rare Mendelian mutations, low frequency segregating variants, copy number variants, 

and common variants all contribute toward complex phenotypes. Furthermore, across all 

species there is evidence of widespread pleiotropy across common diseases [13], 

quantitative phenotypes and Mendelian traits [14], meaning that each variant is likely to 

influence multiple phenotypes. The majority of current evidence is from humans (but see [8] 

for stature across a number of organisms), where the data for psychiatric disorders [4,15–

18], diabetes [5], cardiovascular disease [19,20], obesity [21,22], and height [1] are 

consistent with a model where a large number of loci contribute predominantly additively to 

the phenotypic variation observed within populations [23–29].
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Such a large mutational target in the genome has consequences for identifying new variants 

and for explaining the heritable genetic effects observed for the majority of phenotypes. As a 

large number of loci are likely to influence complex traits, then on average their contribution 

to the population-level variance will be small. The associations identified so far represent 

only a small fraction of those that influence a given phenotype, as evidenced by the fact that 

studies of increased range of allele frequency and sample size continue to detect additional 

variants, i.e. [4]. Here, we discuss how further dissection of the genetic variation for many 

complex traits will require larger sample size, better phenotyping including recording of 

non-genetic risk factors, focused study designs, and an integration of multiple sources of 

phenotypic and genetic information. Rather than continuing to evoke ever more complex 

esoteric arguments for the as yet unexplained heritable effects, we believe that current 

approaches in quantitative genetics coupled with gathering adequate data will dissect 

additional genetic variance within populations. The goal of explaining heritable effects is not 

purely academic. Until more of the variation expected from family studies is explained by 

direct analysis of the genome, there remains the possibility that we have a fundamental 

misunderstanding in our knowledge and conceptual framework. Identification of specific 

genomic variants that underpin individual differences provides the foundation for prediction, 

risk profiling and personalized medicine; for identifying pathways and new potential drug 

targets; for classifying disease subtypes; for improving and maintaining food sources; and 

for understanding the influence of selection and the maintenance of diversity in the natural 

world.

Complex trait variation

The genomic variation that we observe within a population is the result of the evolutionary 

forces of mutation, genetic drift, recombination, and natural selection in the evolutionary 

past [24], which is something that we do not know, particularly given the extent of 

pleiotropy across traits (Box 1). A wide range of genetic architectures, in terms of the exact 

number, effect size and frequency of causal variants may be consistent with current findings 

in humans [30]. Linkage studies and GWAS have identified many thousands of significant 

associations across more than 500 human phenotypes (Box 1), and it is clear that for any 

given trait, genetic variance is likely contributed from a large number of loci across the 

entire allele frequency spectrum.

BOX 1

The distribution of genetic variants across allele frequency

The variance explained by a single causal variant depends upon its effect size and its 

frequency within the population. Under neutrality and random mating, the allele 

frequency distribution is approximately proportional to 1/[p(1−p)] [23] and the genetic 

variance contributed by a single variant is 2p(1−p)a2, where p is the frequency of the 

causal variant and a is the effect size on an arbitrary scale. Under a neutral model, this 

implies that most variants are rare, but most of the genetic variance is due to common 

variants [24].
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The effect of directional selection is to increase the amount of variation explained by rare 

variants, because natural selection should minimize the frequency of deleterious variants 

in the population [24]. Therefore, for any phenotype, many causal variants will be rare, 

and the proportion of population-level genetic variance in complex phenotypes 

attributable to variants across the allele frequency spectrum will depend upon the strength 

of selection in our evolutionary past. The problem is that this is something that we do not 

know. Additionally, newly arising mutations can have pleiotropic effects on multiple 

phenotypes and the effect (size and / or direction) of a given mutation may not be the 

same for all traits. Moreover, each of the traits affected may be associated with fitness in 

different ways, and thus held at frequencies that are intermediate between two 

phenotypes (e.g. balancing selection).

The distribution of GWAS findings to date, obtained from the Published GWAS 

Catalogue, across allele frequency is shown below for studies from 2008 on a selection of 

traits each of which is given a different color. For quantitative traits (Figure Ia) the 

absolute effect is plotted against the minor allele frequency, and for complex common 

diseases (Figure Ib) the odds ratio is plotted against the risk allele frequency. Each of the 

38 quantitative traits and 43 disease traits are represented by different colors. There an 

ascertainment bias in that the power of detection is proportional to pa2, but it is clear that 

for each complex trait variance is contributed from the entire allele frequency spectrum. 

This highlights the scarcity of low frequency variants identified by GWAS for 

quantitative traits and complex disease in humans. Detecting these variants will require a 

combination of greater sample size, better genotyping and improved phenotyping.

BOX FIGURE I. 
For quantitative traits (a) the absolute effect is plotted against the minor allele frequency, 

and for complex common diseases (b) the odds ratio is plotted against the risk allele 
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frequency. Each of the 38 quantitative traits and 43 disease traits are represented by 

different colors.

Some researchers suggest that ‘synthetic associations’, where associations at common SNPs 

reflect LD with multiple rare variants, underlie many GWAS results and that drawing 

conclusions regarding genetic architecture from GWAS is not justified [31,32]. Although 

there are examples of ‘synthetic associations’ [33], they cannot explain all GWAS results 

[3,34,35]. Converging lines of evidence suggest a contribution from variants of >5% 

frequency: (i) conditional and joint analyses dissect allelic heterogeneity and distinguish 

among independent association signals at common SNPs [1,33,35–38]; (ii) common variants 

have been functionally validated [39]; (iii) associations have been replicated across distinct 

populations [40]; and (iv) there is some evidence for polygenic adaptation, meaning that 

selection has acted to alter the frequency of many common variants [41]. As sample sizes 

increase, the number of identified genomic regions and the amount of variation explained by 

association studies has increased. For example, a recent GWAS meta-analysis for 

rheumatoid arthritis (RA) in a total of >100,000 subjects discovered 42 novel risk loci 

bringing the total at the time of writing to 101 [42]. Functional annotation, the overlapping 

of GWAS hits and cis-action eQTL, and pathway analysis identified 98 biological candidate 

genes at the 101 risk loci. This GWAS study, as well as others, identifies a myriad of drug 

targets, which if verified, may be hugely effective because these regions are associated with 

RA across the majority of cases, rather than just a small number of families. GWAS has also 

identified new mechanisms involved in a range of diseases, such as autophagy of Crohn’s 

disease [43] and the role of lipid metabolism in Alzheimer’s [44]. It is clear that with 

sufficient sample size, large-scale association studies will shed light on fundamental genes, 

pathways and cell types involved in disease, and provides important information for drug 

discovery for treatments that are likely to be effective across many cases.

For common disorders and complex phenotypes, variation will be attributable to both rare 

and commonly varying regions of the genome. Individual effect sizes at common loci are 

modest and each SNP explains little of the phenotypic variance (Box 1). When we take the 

effects of all common SNPs collectively, the narrow sense heritability expected from family 

studies is not captured through linkage disequilibrium (LD) with currently tagged common 

SNPs [28]. For height, where 45% phenotypic variance is tagged by common SNPs, ~30% 

of genetic variation is still unexplained, and for many complex traits and diseases it appears 

that ½ to ⅔ of the genetic variance is not tagged by current and past SNP chips [1– 3,28,45]. 

These findings suggest that very many lower frequency variants are also needed to explain 

the genetic variance that is not tagged by current SNP chips. Using height as an example, we 

can model the expected number of variants that would be required to explain the remaining 

30% of genetic variation, across a spectrum of low allele frequency and a range of effect 

sizes. Figure 1a shows that if the unexplained genetic variation for height can be attributed 

to low frequency variants, then a large number of segregating variants will exist even if their 

effect sizes on average are large.

The combined contribution of multiple rare loci to the population-level genetic variance 

remains an open question because association studies that focus on rare (<1% MAF) variants 
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remain underpowered. Mutation rates have been estimated as ~1.2 × 10−8 bp−1 generation−1 

in humans [46–49], meaning that individuals will posses ~60–70 novel SNP alleles, one of 

which (on average) will be a coding variant. Therefore, within an expanding human 

population most segregating variants will be rare [50]. Lower frequency coding variants that 

have yet to be identified are predicted to include functional variants with larger effects on 

risk (Box 1) and may also be key targets for new drug therapies, such as with LDL 

cholesterol [51,52]. Rare mutations have been identified which influence complex traits [53–

57]. For example, mutations in the FBN1 gene gives a 10–20cm increase in height [58], and 

for schizophrenia a deletion at chr22q11 give an odds ratio of ~20 [59,60]. However, large 

effect sizes or odds ratios do not equate to a large contribution to the variance explained at 

the population-level. Even at a frequency of 10−4 (1 in 10,000) a mutation within a gene that 

has a large effect size of 2SD will only explain 8 × 10−4 of the phenotypic variance of a 

complex trait within a population. Correspondingly, FBN1 and the chr22q11 deletion 

explain 0.2 and 0.1% of the variation of height and schizophrenia respectively. Even more 

powerful recent whole exome sequencing (WES) studies of schizophrenia at the population-

level [61], and Alzheimer’s disease within families [62], identified enrichment for rare 

variants, but this early work suggests a large polygenic burden of rare coding variants which 

alone may not account for the unexplained variation. Generally, rare variant association 

studies have found variants with large odds ratios which each explain only a tiny proportion 

of the phenotypic variance [63,64].

Given the likely large mutational target size for complex traits, with variation contributed 

across the entire allele frequency spectrum, it will be a significant challenge to identify all of 

the variants involved. Many researchers have questioned the need to explain genetic 

variation at the population-level, debated the usefulness of association studies, or even 

challenged the general application of quantitative genetic approaches to understanding 

complex trait variation [31,54,65–67], which is in our view is unjustified. Firstly, with the 

exception of very rare Mendelian traits, it makes little sense to focus only on affected 

families. The majority of complex traits will have a highly polygenic architecture which is 

consistent with (i) the existence of Mendelian forms in a small number of cases within a 

population, (ii) with common occurrences in families with no previous history [68], and (iii) 

with any two individuals carrying different sets of risk alleles (often termed ‘genetic 

heterogeneity’). High polygenicity and a large number of non-Mendelian mutations imply 

that variants segregate across families and thus nuclear families are no longer a natural unit. 

Family studies will compliment GWAS and will identify rare and de novo mutations in 

specific cases, but they will explain little of the variation in cases across the population as a 

whole, because there will be very many rare variants involved. Secondly, quantitative 

genetic theory does not make any assumptions about genetic architecture, which makes it a 

useful statistical description of the phenotypic data in pedigrees and populations. The 

evidence supports its application, it can accommodate non-additive effects, estimate 

interactions of higher orders, and it makes predictions that can be tested empirically (Box 2). 

Therefore this is not an either-or debate [69], and advocating a focus on solely rare or 

common variants will not be a productive way forward. Explaining genetic variance for 

complex traits will require a combination of large-scale GWAS and large-scale more 
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targeted approaches at both the population and family-level to identify the remaining genetic 

variants.

Box 2

Do we need a new paradigm to dissect complex trait variation?

“We consider it a good principle to explain the phenomena by the simplest hypothesis 

possible.” – Ptolemy circa AD 90

Simpler explanations are, other things being equal, generally better than more complex 

ones. The field of quantitative genetics uses a long-standing polygenic model. Fisher’s 

infinitesimal model is, per definition, a simplification because there are not an infinite 

number of loci, each with a small effect. However, it allows a statistical treatment and 

description of the resemblance between relatives, partitioning of sources of variation and 

the response to natural or artificial selection. It may be a century after Fischer, but this 

paradigm has stood the test of time. Predictions from this statistical model can be tested 

empirically and, by-and-large empirical data are remarkably consistent with this model 

[25,106,107].

We do wish to know the genotypic values at interacting loci (termed by some the 

genotype-phenotype map [67]), the differences they create in environmental variance, 

and the influence of dominance and epistasis. However, while this ‘genotype-phenotype 

map’ is conceptually tractable, statistically determining these effects within a population 

at thousands of loci is a far from trivial task. Trading the GWAS assumptions of 

additivity for more complex assumptions worsens the problem, as interactive models lose 

power and there will be a huge sampling variance on the interactive effects of multiple 

loci. Most gene-gene and gene-environment interactions are undetected, but this is a 

limitation of sample size rather than the method of analysis. For example, for two loci of 

MAF 0.2, one homozygote has a frequency of 16 in 10,000 so estimating its effects 

relative to other genotypes will require large sample sizes. Given the large mutational 

target for complex traits, suggestions for the collection of datasets that “contain 

phenotypes associated with as many genotype combinations from the common and/or 

known allele variants as possible” [67], would likely require greater sample size than the 

entire planet to estimate all possible two and higher order interaction terms, be 

computationally non-trivial given a finite data set, and would be an impractical task for 

gaining conclusions.

More tractable are the improvements that we outline here, which will then enable 

identified regions and their potential pathways to be studied in further depth. Statistical 

methods fitting multiple markers [99], gene-set analyses [98], and machine learning 

approaches [108] will all complement GWAS findings. Through fine mapping, target 

gene identification, and functional identification in laboratory models [91] we can then 

better understand the underlying biology of complex phenotypes.
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Dissecting more of the genetic variance

Epistasis, de novo mutations, or epigenetic effects are unlikely to be the explanation for the 

‘missing heritability’. Appreciable epistatic variance is unlikely because most alleles will be 

rare and allelic substitutions have near additive effects, meaning that additivity in 

quantitative genetic statistical models is not inconsistent with epistasis commonly observed 

at the functional cellular level [25,70]. De novo mutations are not inherited by definition and 

so do not contribute to heritability [71] - in family studies their effects would be partitioned 

into a unique environmental variance component. Finally, inherited epigenetic effects would 

behave the same as a SNP in GWAS. Thus, a number of alternative explanations are more 

likely.

Firstly, as we have seen with rare variants, although effect sizes may be larger than for 

common variants, the variance explained at the population level by alleles of frequency <5% 

will be small, meaning that very large sample sizes are likely to be needed. Even when 

considering transmission within-families, which are likely to complement association 

studies, large numbers of families will be required [72]. Second, these variants are less likely 

to be in strong LD with common variants that are tagged on current SNP chips because (i) 

they may be under stronger selection and therefore be younger polymorphisms with lower 

minor allele frequency; and (ii) many may be deletions or duplications (i.e. CNVs) which 

interfere with the ability to assay SNPs near enough to be in strong LD [73]. Third, our 

phenotyping may be inaccurate such that we are combining phenotypes or diseases that have 

partially or even completely distinct underlying causal variants. This will average effect 

sizes across groups of individuals, who could be better separated on the basis of better 

phenotyping or a combination of information from different sources. Addressing these three 

issues is a far more pragmatic approach that will contribute significantly to identifying 

additional variants and explaining a larger portion of the genetic variance.

Power, sample size, and study design

The first step is increasing the number of individuals within a sample. The number of well-

characterized phenotypic samples often limits sample sizes in GWAS. Power to link 

genotype to phenotype is a function of the set of SNPs on a chip, effect size, and sample 

size, and can be assessed analytically or through simulation. For ascertained case control 

disease studies, under a liability threshold model the expected chi-squared test statistic χ2 

has a known analytic relationship [χ2] ∝ Nγ2 p(1 − p)r2 where N is the sample size, γ is the 

effect size, p is the allele frequency, and r2 is the correlation between the marker and the 

causal SNP [30]. Given the potentially large number of causal variants of frequency <5% 

that each explain little of the variance, then even if the variant is in complete LD with a 

genotyped SNP, and sample sizes are large there is currently low power to dissect additional 

genetic variation (Fig 1b). Figure 1b shows the power to detect variants that explain a small 

percentage of disease liability, which decreases rapidly for variants that explain <0.2% of 

the variance even with 10,000 cases and 10,000 matched controls.

Increasing sample size will have the greatest effect on power. Replacing high density SNP 

chips with full sequencing will tag low frequency loci, but it will not be enough alone to 

capture the effects of rare variants, because many rare variants will be at such low number 
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that very large data-sets are is required for their detection. A recent whole-exome 

sequencing study for schizophrenia [61] provides an example, as it suggests evidence for a 

polygenic burden of rare variants, but was not successful in identifying individually 

significantly enriched genes. As large-scale parallel-sequencing studies of many thousands 

of individuals becomes common-place then sufficient power is likely to be gained, allowing 

both rare and common variants to be dissected to a far greater extent. This leaves only a 

choice of experimental design. Focused study designs will help in the identification of 

additional variants; using densely affected families will identify additional rare variants 

which can be followed-up with a combination of genotyping and deep re-sequencing of the 

variants or genes of interest in large numbers of cases and controls. However, as evidence by 

a recent Alzheimer’s study which identified only a single region [62], this study design also 

requires large sample size to distinguish signal from chance co-segregation.

Improvements to phenotyping

For all genetic studies, more samples have to go hand-in-hand with better phenotyping, but 

this is easier said than done. In general, genome analyses of a wider range of phenotypes 

across a wide range of species is required if we are to improve our understanding of the 

relationship between selection and genetic architecture. Many of our current phenotypes are 

subjectively measured and may represent many underlying biological processes. For 

example, many psychiatric disorders are diagnosed on a complex range of overlapping 

clinical characteristics [74], type-2 diabetes is diagnosed using a blood glucose threshold 

[75], metabolic syndrome is based on observing three of five criteria [76], and even many 

quantitative traits are arbitrary metrics or defined as functions of other characters. 

Misclassifying a phenotype, especially when multiple distinct phenotypes are influenced by 

different sets of underlying causal variants, can reduce power in GWAS relative to 

expectation based on power calculations of idealized homogeneous populations. Strong 

genotypic effects important in a small homogeneous sub-group could have a very small or 

even negligible effect within an entire population. These effects are prominent in cancers in 

which molecular subtypes have been identified such as ER +ve/−ve status HER2 expression 

in breast-cancer [77,78], or K-ras mutations in colorectal cancer and EGFR mutations in 

lung cancer, reviewed in [79]. If true for other complex phenotypes, then a single univariate 

measure may be unrepresentative of the biological etiology, and breaking the phenotype 

down into sub-phenotypes may reveal additional variants.

One approach to this may be to use additional phenotypic information collected on the same 

subjects. For many disease phenotypes, age-at-onset varies across subjects and could be 

used as a classifying term. Modeling can then be done by dividing cases into sub-groups, or 

by estimating genetic effects as a function across age-at-onset (for an example see [80]). 

Additionally, phenotypes could be stratified across the values of another associated 

phenotype, as has been done with T2D and BMI [81]. Insight may also be gained from 

adopting a multivariate approach, where jointly modeling multiple traits can give higher 

power than standard univariate GWAS [82]. There may be differing underlying effect sizes, 

or even different causal variants, depending upon the onset of a disease, or upon the values 

of another component of phenotype, which are more likely to be detected with these 

approaches. When only a single phenotypic measure is available for a given sample, mixture 
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models may enable causal variants associated with phenotypic heterogeneity to be identified 

[83], but these models remain little explored and have yet to be applied in any great detail in 

GWAS.

Using clinical classifications and finer scale diagnoses rather than a simple case-control 

status can also serve the same purpose, as reviewed in [84]. The use of endophenotypes - 

intermediate or underlying phenotypic components that form the expression of a trait or 

disorder - may also be useful for dissecting additional genetic variation. For example in 

psychiatric disorders, different causal variants may influence multiple neural systems 

differentially [85–87]. Provided these endophenotypes are heritable, numerous, vary 

continuously, and are associated with the cause rather than the effect of the disease, GWAS 

on these more direct physiological or anatomical assessments may dissect additional genetic 

variation (for example [88]). Endophenotypes may be equally as complex as the complex 

traits they aim to reflect, but the use of endophenotypes within a multivariate analysis 

framework may enable genetic covariance to be partitioned across different shared and 

independent underlying pathways as a mechanism to dissect the etiology of complex 

diseases. Functional genomic profiling of serum or tissue, etiology-specific functional 

assays, and improved phenotypic assays maximizing information content will enable more 

rigorous genetics provided that candidate phenotypes are readily scalable and robust enough 

to provide accurate measures under routine data collection. There is a general perception 

that the study of endophenotypes has delivered less than it promised, but this may be 

because samples sizes are often very limited. As larger samples are collected it seems 

inappropriate to not accompany this with more detailed phenotyping to allow fully powered 

interrogation of clinical phenotypic heterogeneity.

Linking component information together

Overlapping GWAS results with other genomic sources of information is likely to explain 

additional variation and identify novel pathways. Studies have shown that ‘all SNPs are not 

created equal’, with functional SNPs being more frequently associated with phenotypes [89]. 

For example, chromatin marks (modifications of proteins that package DNA) were once 

dismissed as ‘junk DNA’, but are now thought to fulfill regulatory functions. GWAS results 

cluster near chromatin marks more frequently in certain cell types, enabling genetic 

variation to be apportioned to different cell types and regulatory pathways involved in 

disease expression [90]. The targeting of expression SNPs and the linking of GWAS, gene 

expression, and methylation data has uncovered additional variants and provided direct 

information on the underlying biology of complex phenotypes [91].

These approaches may also help us to understand whether genetic associations among traits 

represents gene expression that is shared, or whether the same variant contributes to 

variation in expression in different tissues that affect different traits. Additionally, 

leveraging this information to inform prior probability of SNP association within a Bayesian 

GWAS framework may also enable additional variants to be detected [92]. Thus far, 

integrative analyses within a systems genetics approach have largely focused on validated 

SNPs. Using a broader set of variants by integrating genome sequencing and cellular 
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phenotype data will help to pinpoint putative causal genetic variants underlying GWAS 

associations and enable a better understanding of the biological basis of phenotype.

Using additional genomic variation

Copy number variations (CNVs) represent a significant source of genetic variation affecting 

~12% of the human genome. CNVs may influence gene function and thus complex 

phenotypes through gene dosage imbalances, altered messenger RNA (mRNA) expression 

levels, or through the expression of truncated proteins [93]. Studies have demonstrated 

associations with both rare and common CNVs with several complex phenotypes including 

schizophrenia and autism [94,95] and a focus on intermediate frequency CNVs may yield 

additional associations.

In most GWAS, analysis is also largely confined to the nuclear genome, with much less 

attention paid to the organellar genome (mitochondrial DNA). This is in contrast to the 

central role that the organellar genome plays in controlling organismal metabolism and 

function, and increasing evidence from other non-human organisms that mitochondrial 

genomic variation can modulate the effects of nuclear genomic variation (although see [96]). 

Genomic variation in human mitochondria has been linked to several severe diseases, and 

more recently quantitative studies of common human diseases have suggested that genetic 

variation in organellar genomes may modify the effects of nuclear loci [97]. Including 

imputed mtDNA in GWAS may also yield additional variants especially if interactions 

between nuclear and cytoplasmic effects are estimated.

Improved analysis methods

In standard analysis of GWAS effects are estimated one marker at a time, but fitting 

multiple SNPs together may improve ability to dissect additive genetic variation across the 

genome. Multiple SNP effects can be fitted at the discovery stage to estimate genome-wide 

heritability across SNPs of different frequency, across segments of the genome (termed 

‘regional heritability’), or in gene sets [98], and these methods have been shown to capture 

additional genetic variance [2,13,29], and even multiple independent variants within 

genomic regions [99]. At the meta-analysis stage, conditional analyses and multi-SNP 

association methods can also be used [100,101]. There are many known examples of 

multiple semi-independent associations at individual loci; such associations might arise 

either because of true allelic heterogeneity or because of imperfect tagging of an unobserved 

causal variant, and these approaches have used GWAS summary statistics to estimate the 

effect of loci harboring multiple association signals [100,101], which has explained 

additional genetic variation for many phenotypes.

In additional to the power gained [82], adopting a multivariate approach allows an 

estimation of the amount co-heritability, or pleiotropy across traits. Associations among 

multiple morphological phenotypes and among psychiatric diseases at common SNPs have 

been identified which further supports the role of common SNPs in complex trait variation 

[13,27]. At the phenotypic level there is evidence of associations between Mendelian 

disorders and between Mendelian and complex diseases [14], which can be better 

understood by examining genetic correlations among phenotypes across the genome.
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Additional extensions to current models may also include the estimation of non-additive 

effects such as dominance and epistasis [102]; estimation of maternal effects in data where 

maternal genotypes are known [103]; and genotype-environment interactions [104]. 

Although each of these sources may only contribute to the variance of complex traits to a 

small degree, the variance attributed to these effects across all SNPs can be estimated. 

Ultimately with the plummeting costs of DNA sequencing, GWAS will employ direct DNA 

sequencing. Even though this will allow tests of association for low frequency variants, rare 

variants occur too infrequently to allow for individual associations to be tested and require 

aggregating variants into sets and comparing frequencies [105]. All genetic studies, whether 

common and rare variant association studies, or within family studies, require large samples 

size and well-defined phenotypes if we are to fully dissect heritable genetic variation.

Concluding remarks

The evidence to date shows that complex trait variation is due to very many loci contributed 

throughout the genome and across the allele frequency spectrum, each of which influences 

multiple phenotypes, and makes a small average contribution to the variance. Many authors, 

both in the early days of GWAS and more recently, have argued that GWAS has yet to 

dissect all of the expected genetic variance and that because many genes in a large number 

of distinct genomic regions have been detected, which are likely to show functional 

epistasis, a paradigm shift is required in order to link genotype to phenotype and dissect 

genetic variation. We feel that this is unnecessary (Box 2), and we believe that in humans, as 

well as in other species, the current framework, coupled with studies designed to identify 

rare variants will dissect the genetic variation of a wide range of complex traits. These steps 

will improve our ability to predict disease risk, identify new drug targets, improve and 

maintain food sources, and to understand diversity of the natural world.

Acknowledgments

We acknowledge support from the Australian Research Council (FT0991360, DP130102666), the Australian 
National Health and Medical Research Council (APP1011506, APP1047956, APP1048853, APP1050218, 
APP1047956, APP613601 APP613602) and the National Institutes of Health (GM099568, GM075091, 
MH100141).

Glossary

Additive genetic 
variance

the total variance contributed by the additive effects of each 

causal variant

Copy number 
variant (CNV)

a form of structural variation where there are alteration in the 

genome that result in variation in the number of copies of one or 

more sections of DNA

De novo mutation a genetic mutation that neither parent possessed nor transmitted

Epigenetic 
inheritance

mitotically or meiotically heritable changes in gene expression or 

cellular phenotype caused by mechanisms other than changes in 

DNA sequence
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Epistasis the interaction of genes, where the expression of one gene 

depends on the presence of one or more other genes

Fitness an organism’s ability to survive and reproduce in a particular 

environment

Genetic drift variation in the frequency of genotypes within a population due to 

chance events

Heritability proportion of observable differences in a trait among individuals 

within a population that is due to genetic differences

Linkage 
disequilibrium (LD)

the occurrence in members of a population of combinations of 

linked loci in non-random proportions

Minor allele 
frequency (MAF)

the frequency at which the least common allele occurs within a 

given population

Mutation the changing of the structure of a gene, resulting in a variant form 

which may be transmitted to subsequent generations, that is 

created by the alteration of a single base unit of DNA

Odds ratio Ratio of the odds of an event occurring in one group to the odds 

of it occurring in another group, i.e. the joint probability 

distribution of two binary random variables

Pleiotropy the production by a single gene of two or more apparently 

unrelated effects

Single nucleotide 
polymorphism 
(SNP)

a DNA sequence variation occurring when a single nucleotide in 

the genome differs between members of a species
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FIGURE 1. 
(a) The number of low frequency variants required to explain the remaining missing 

heritability for human height and (b) the power to detect variants that underlie complex 

common disease with 10,000 cases and 10,000 matched controls. For (a) the heritability 

remaining  for human height that is not explained by associations with common SNPs was 

taken to be 30% and the number of variants was estimated by , where a is the effect 

size in SD (0.15, 0.25, 0.5, or 1) and p is the minor allele frequency of the causal variants. 

For (b) the power to detect variants for complex diseases of different prevalence with 10,000 

cases and 10,000 matched controls.

Robinson et al. Page 19

Trends Genet. Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. Identifying additional causal variants and dissecting additional genetic variation for 
complex traits
Current limitations (outer circle) and potential solutions (inner circle) to targeting additional 

causal variants using whole genome studies.
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