
Robust Scoring Functions for Protein-Ligand Interactions with 
Quantum Chemical Charge Models

Jui-Chih Wanga, Jung-Hsin Linb,c,d,*, Chung-Ming Chena, Alex L. Perrymane, and Arthur J. 
Olsone

aInstitute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

bDivision of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taiwan

cSchool of Pharmacy, National Taiwan University, Taipei, Taiwan

dInstitute of Biomedical Sciences, Academia Sinica, Taiwan

eDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, USA

Abstract

Ordinary least square (OLS) regression has been used widely for constructing the free scoring 

functions for protein-ligand interaction. However, OLS is very sensitive to the existence of 

outliers, and models constructed using it are easily affected by the outliers or even the choice of 

the dataset. On the other hand, determination of atomic charges is regarded as of central 

importance, because the electrostatic interaction is known to be a key contributing factor for 

biomolecular association. In the development of the AutoDock4 scoring function, only OLS was 

conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to 

see whether more rigorous charge models could improve the statistical performance of the 

AutoDock4 scoring function. In this study, we have employed two well-established quantum 

chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-Model 

1-Bond Charge Correction (AM1-BCC) methods, to obtain atomic partial charges, and we have 

compared how different charge models affect the performance of AutoDock4 scoring functions. In 

combination with robust regression analysis and outlier exclusion, our new protein-ligand free 

energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins 

achieve lowest root-mean squared error of 1.637 kcal/mol for the training set of 147 complexes 

and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose 

prediction with the 100 external decoy sets indicates very high success rate of 87% with the 

criteria of predicted RMSD less than 2 Å. The success rates and statistical performance of our 

robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).
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INTRODUCTION

Evaluation of the binding affinities of drug-like molecules with the target proteins is crucial 

for discriminating drug candidates from weak-binding or even non-binding small molecules. 

Most, if not all, computational docking methods rely greatly on empirical or semi-empirical 

scoring functions to evaluate protein-ligand interactions. Rigorous statistical mechanical 

approaches for evaluation of binding free energies are theoretically most satisfactory,1, 2 but 

such approaches are computationally too demanding for virtual screening. The simplest 

forms of evaluating protein-ligand binding affinity are empirical scoring functions3–6 based 

on the quantitative structure-activity relationships (QSAR) approach pioneered by Hansch,7 

or semi-empirical models with molecular mechanics-based energetics.8–11 Common in these 

approaches is multivariate regression. Semi-empirical models based on molecular mechanics 

have the advantages of easier rational interpretation of binding modes, and they are more 

sensitive to protein conformational changes. This is particularly important when protein 

dynamics and flexibility are to be accommodated.12–14 Frequently used energetic terms 

include dispersion/repulsion (i.e. van der Waals energy), electrostatic energy, hydrogen 

bond energy, desolvation energy, hydrophobic interaction, torsional entropy, etc.8, 9 Among 

these terms, the atomic partial charges of biomolecules is considered of central importance, 

because they are crucial for evaluation of the long-ranged electrostatic interaction, which is 

known to be a key contributing factor for biomolecular association. Due to the extremely 

low computational cost, especially when facilitated with pre-calculated grid maps, current 

molecular docking programs often use regression models with distance-dependent molecular 

descriptors or energy terms to predict the possible binding poses of a small molecule, to 

evaluate its binding affinity, or to use for large scale virtual chemical library screening for 

rapidly limiting the chemical space and for subsequent identification of potential drugs.

Intuitively, inclusion of more energetic terms or molecular descriptors in a scoring function 

may provide a more complete description of protein-ligand interactions and a more accurate 

binding free energy model. However, the introduction of many variables in a regression 

model can often lead to the over-fitting problem,15 which is caused by the vast emptiness of 

high dimensional multivariate space. On the other hand, the selection of molecular 

descriptors or energetic terms will also dictate the performance and applicability of such free 

energy models.16

The AutoDock4 scoring function9 is a semi-empirical scoring function that is embedded in 

the automated molecular docking software package, AutoDock, and has been widely 

adopted in virtual screening of drug candidates and prediction of ligand binding poses in 

protein pockets. The energetic terms in the AutoDock4 scoring function include van der 

Waals interaction, electrostatic interactions, hydrogen bonding interactions, desolvation free 

energy, and loss of ligand torsional entropy upon binding. The atomic charges used to 

evaluate the electrostatics energy term of the AutoDock4 were prepared using the Gasteiger 

charge model,17 whose primary advantages lie in its simplicity and speed. However, such 

charge calculations can generate atomic charges that are less accurate than those determined 

by quantum chemical methods. For example, the dipole moment of the well-known polar 

molecule dimethyl sulfoxide (DMSO) calculated by the Gasteiger model is only 2.96 Debye 

(D), which is quite different from the results of RESP (4.61 D) and AM1-BCC (4.57 D). 
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(The dipole moment of DMSO in solution can be estimated18 from its measured dipole 

moment in vacuum (3.96 D19) to be about 4.7 D) Due to the increase of computing power, 

ab initio quantum mechanical calculations can now be performed routinely, and some recent 

studies have indicated that docking calculations using more accurate atomic charges can 

indeed predict binding poses more accurately.20–22 However, in these studies the more 

advanced charge models were not employed to construct new scoring functions, which may 

weaken the assertion that the more advanced charge models have superior predictive power. 

If a charge model is qualitatively and quantitatively different from the charge model used to 

develop a scoring function, one can expect large prediction errors. In other words, simply 

employing more accurate atomic charge models should not generally lead to better 

predictions of binding poses and binding affinities. Weighting coefficients of scoring 

functions in the empirical QSAR models need to be recalibrated.

In this study, we report our investigation of the influence of different charge models on the 

AutoDock4 scoring function, in order to see how different charge models affect the 

performance of the same functional form of the AutoDock4 scoring function. Our ordinary 

least square regression analyses indicated that AM1-BCC or RESP charges for ligands in 

combination with Amber99SB charges for proteins yielded lower root-mean-squared errors 

(RMSE). Because proper outlier exclusion is also important for calibration of empirical 

scoring functions, we have performed robust regressions and analyzed outliers. The 

performances of robust regression in several QSAR modeling tasks have been reported, 23 

and it was concluded that robust regression is always better than ordinary least square 

regression. Recently, we performed robust regression to delineate the influence of the data 

set on the calibration of empirical scoring functions for protein-ligand interactions.24 Here 

we compare the statistical performance of the new robust regression models with different 

charge combinations on both the training set and a large external test set. We have also 

tested the performance of binding pose prediction of the new robust models on the 100 

external decoy sets25 that have been widely used in the assessment of protein-ligand scoring 

functions,26, 27 as well as on a new decoy set of 195 complexes.28

METHODS

Functional form of AutoDock4 Scoring function

Improvements of the AutoDock4 (AD4) scoring function9 over its predecessor, 

AutoDock3,8 include a refined functional form of the desolvation energy, more atom types, 

and a significantly larger training dataset. The AD4 scoring function comprises five 

energetic terms: the van der Waals interaction, hydrogen bonding, electrostatic interaction, 

desolvation energy, and torsional entropy. The AD4 scoring function predicts the binding 

free energy with the following formula:
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The weighting coefficients Wi were obtained by regression analysis of the experimental 

binding affinity information collected in Ligand Protein Database (LPDB).29 The van der 

Waals potential energy is a typical 12-6 form, where parameter Aij and Bij were adopted 

from the ’84 Amber force field.30 The hydrogen bonding term is based on a 12-10 potential, 

weighted by a directional term, E(t). The electrostatic interaction is calculated with a 

screened Coulomb potential.31 The desolvation term is included by calculating the 

surrounding volume of an atom (Vi), weighted by the atomic solvation parameter (Si) and an 

exponential term with a distance weighting factor σ (0.35 Å in AutoDock4). The final term 

represents the torsional entropy term, which is calculated simply by counting the number of 

rotatable bonds of a ligand.32

Charge models

In this work, we focus on the two charge models, RESP33 and AM1-BCC,34 that have been 

used widely in molecular dynamics simulations with the AMBER force field. RESP 

(Restrained ElectroStatic Potential)33 is a two-stage restrained electrostatic fit charge model. 

While the geometry of the molecule was taken from experimental structures, the quantum 

mechanical electrostatic potentials (ESP) based on the 6-31G* basis set were evaluated at 

the shells of points with the density of one point/Å2 at each of 1.4, 1.6, 1.8 and 2.0 times the 

van der Waals radii of the molecule. Then, atom-centered model charges were derived by 

minimizing the differences between the reproduced ESP and the original QM ESP plus the 

deviation from the minimum of a hyperbolic restraint function. In the first stage of the fitting 

process, no forced symmetry is applied, and a weak restraint is used. In the second stage, the 

charges on equivalent atoms are forced to be the same, and a strong restraint is used. 

Quantum mechanical calculations were performed by GAUSSIAN 0935 at the Hartree-Fock 

(HF) level with the 6-31G* basis set.36 The RESP atomic charges were computed by using 

Antechamber of the AMBER 11 suite based on the GAUSSIAN output file and were saved 

as the Tripos Mol2 format. Subsequently, the ADT program (prepare_ligand4.py) enables 

the conversion from the mol2 file to the pdbqt file format with the RESP atomic charges 

obtained.
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As a semi-empirical approach, AM1-BCC is a quick and efficient atomic charge model that 

aims to achieve the accuracy of RESP.34, 37 The AM1 charges were first calculated from the 

MOPAC 6 program for the individual molecule. The “am1bcc” program of the Antechamber 

package assigned bond type and atom type, and then performed bond charge corrections 

(BCCs) that were parameterized against the HF/6-31G* electrostatic potentials of a set of 

training compounds. The Tripos mol2 file with AM1-BCC atomic charges was saved by the 

Antechamber program and then converted to the ligand pdbqt file by the ADT program 

(prepare_ligand4.py).

The atomic charges of proteins were retrieved from the AMBER parm99SB force field 

parameters, which were mainly derived by the RESP methodology.18, 38, 39 The residue 

name was assigned to comply with the Amber naming scheme, e.g. histidine with hydrogens 

on both nitrogens (HIP), histidine with hydrogen on the epsilon nitrogen (HIE), histidine 

with hydrogen on the delta nitrogen (HID), disulfide bonded cysteine (CYX) and so on. 

Subsequently, the LEaP program of AMBER 11 was employed to produce the coordinates 

and parameter/topology files, which were used to generate the “pqr” files with atomic 

charges and radii with the “ambpdb” program. These atomic charges then substituted the 

charges in the original “pdbqt” files that were generated by the ADT program 

(prepare_receptor4.py) with default settings.

Preparation of protein and ligand structural files

Before the calculations of atomic charges for the ligands, first, hydrogen atoms need to be 

added and the net charges of the molecules should be determined. The ligand structural 

information was extracted from a complex with the form of biological assembly in Protein 

Data Bank, and then hydrogen atoms were added by OpenBabel,40 net charges calculated by 

the “estimateFormalCharge” function in Chimera.41 Because OpenBabel does not always 

assign correct protonation states, we further checked the protonation assignment of each 

ligand carefully and correct its mistakes by our in-house scripts

The protonated states of receptors and ligands were obtained from a previous preparation of 

Huey et al.9 Similarly, ligands were optimized by using local search capability of 

AutoDock8 to avoid too close contact in the crystallographic atomic structural model.

It should be noted that many cofactors exist in several complexes of LPDB. These cofactors 

are neither amino acids nor parts of ligands, but they are often required for biological 

activity. Occasionally, these cofactors are located near ligands and are also inside the grid 

box of pre-calculated protein-ligand interactions. In the original version of AutoDock4 

scoring function, the atomic charges of cofactors were also determined by the Gasteiger 

method.9 To be consistent in the charge models of ligands in this work, the RESP and AM1-

BCC models were also utilized on these cofactors. Some of the RESP charges of the 

cofactors can be retrieved from the literature: the charges of heme group were obtained from 

Autenrieth et al.42 (for cytochrome c) and Oda et al.43 (for cytochrome P450).

Because the AutoDock4 scoring function was calibrated for united atom models, the 

nonpolar hydrogen atoms were merged and united atom charges calculated by the ADT 

program (prepare_ligand4.py or prepare_receptor4.py). In the next sections of this article, 
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the abbreviations “AP” for AM1-BCC (Ligand)/Amber PARM99SB (Protein); “RP” for 

RESP (Ligand)/Amber PARM99SB (Protein) have been adopted.

Calculation of energetic terms

To evaluate the various energetic terms, the grid maps of different atom types of ligand were 

constructed by the “autogrid4” programs, with a grid spacing of 0.375Å. The grid center was 

positioned at the geometrical center of a ligand, and the grid box was adjusted according to 

the size of a ligand, plus 22.5 Å. Subsequently, the “autodock4” program was used to 

calculate the energetic terms of protein-ligand interactions by setting the parameter as 

“epdb” in the AutoDock parameter file (dpf).

Adjustment of atomic solvation parameters

The atomic charges are related to both the electrostatics term and the desolvation term, and 

the latter term in AutoDock4 was developed along the lines of Wesson et al.44 and Stouten 

et al.45 The atomic solvation parameter and the amount of desolvation are required for 

evaluating the energetic term of desolvation. The atomic solvation parameter (Si) in AD4 

was determined by a simple linear model:

where ASPk and QSAP are the intercept and the regression coefficient, respectively; qi is the 

atomic charge. In this work, we adopt the approach of Bikadi et al.46 to tune the QASP 

values for different atomic charge models and retain other calibrated parameters in the 

original desolvation function of AutoDock4. The new QASP parameters were adopted as 

0.006393 and 0.006383 for RP and AP, respectively.

Robust regression with the FAST-LTS algorithm

We performed robust regression analyses with the least trimmed squares (LTS) estimator,47 

which has high breakdown point, and the influence of the outliers can be mitigated. The 

computational cost of LTS regression for systems in this study (dataset size < 200; the 

number of variables < 6) is a few minutes using a single core Xeon X5690 core.

Instead of minimizing the sum square of all residuals of a data set with size n, as in OLS 

regression, the LTS regression minimizes the sum of squared residuals over a subset of h 

samples:

In calculating the LTS estimator, first all the squared residuals ri‘s are sorted, and the h 

smallest squared residuals are selected to calculate the estimator. The absolute residual |ri| 

of a sample point i can be considered as its distance to the constructed hyperplane, i.e., the 

multivariate linear regression model. The detailed analysis of LTS has been described by 

Rousseeuw et al.48, 49 The FAST-LTS algorithm49 implemented as “ltsReg” in the 
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“robustbase” package50 of R (http://www.r-project.org/) was used in this work. The FAST-

LTS algorithm starts with randomly selecting p samples, where p is the number of variables 

in the regression model. Then, a hyperplane (dimension p-1) through these p samples is 

constructed. The residuals of all n samples are evaluated with respect to the constructed p-

subset hyperplane and then sorted. According to the calculated residuals of all the samples, a 

new subset of h samples with smallest absolute residuals was selected. Subsequently, two C-

steps (where C stands for “concentration”) are carried out. In a C-step, the ordinary least 

squares regression is performed on the h-subset selected in the previous procedure, all the n 

residuals are evaluated with respect to this regression model and sorted. Only two C-steps 

are needed because the data size in our system is smaller than 600.49 This procedure will be 

repeated 108 times, and the 10 models with lowest sum of squares of the h smallest residuals 

will be conducted with more C-steps until convergence. The convergence in FAST-LTS 

algorithm means that the sum of squared residuals over a subset of h samples of m-1th C-

step is the same as the mth C-step. According to the practice of Rousseeuw et al.49, m is 

often below 10. Finally, the model with lowest sum of squares is reported. The entire 

procedure was repeated twice to confirm that the results are identical.

RESULTS and DISCUSSION

Ordinary least square regression models with three charge combinations

To understand the inadequacy of using different charge models with the original AutoDock4 

scoring function, we first calculated the root-mean squared error (RMSE) between the 

experimental binding free energy and the binding free energy estimated by the original AD4 

scoring function, but with the charges calculated with the RESP model. A very large RMSE 

value, 7.3 kcal/mol, was found, indicating that recalibrating coefficients is indispensable 

when different charge models are used. If the Gasteiger charge model was used, as in the 

original AD4 scoring function, a much smaller RMSE of 2.542 kcal/mol was obtained. 

Because the PDB entries 1sre and 1stp have been identified as outliers in the previous 

study,8 the OLS calibration was done with the remaining 187 complexes. However, these 

two entries were included in the robust regression, where we showed that these two outliers 

can indeed be identified. With OLS regression, the AD4 scoring functions with RESP and 

AM1-CC charges for ligands and AMBER Parm99SB charges for proteins yield slightly 

lower RMSEs, as shown in Table 1.

Progressively removing the outliers in OLS regression analysis

In the previous section, we performed the OLS regression for the AutoDock4 scoring 

function to calibrate new coefficients with various charge models. To our knowledge, most, 

if not all, empirical or semi-empirical scoring functions for protein-ligand interaction are 

constructed by OLS regression. Selection of training dataset is always crucial for the OLS 

regression approach because the influence of outliers is usually very significant. The 

resistance of OLS to outliers is almost zero, and the fitted model will probably be affected 

by any arbitrary outlier. In contrast, the robust regression is usually less influenced by 

outliers.48
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On the other hand, it may be anticipated that OLS regression could be improved if the 

samples with large residuals (probable outliers) are removed, which may (wrongly) suggest 

that OLS with progressive outlier removal can finally generate the same model as the one 

generated by robust regression. To assess how OLS models evolve by removing the most 

apparent outliers, we perform an initial OLS regression with the entire dataset with N 

samples; we then remove the sample with largest residual (i.e., the most apparent outlier), 

and the OLS regression is performed on the dataset with N-1 samples. This so-called 

evolutionary regression procedure51 is repeated until the dataset size is 30. The coefficients 

of the N-sample regression model will be compared with the coefficients of the N-1 sample 

regression model to assess the stability of the models, and the average of mean coefficient 

difference, Δcoeff(t) is calculated as follows:

Wi,t represents the coefficient of the ith energetic term in the tth regression after t samples 

with the largest residuals are removed. From the curve of Δcoeff(t) shown in Figure 1, it can 

clearly be seen that progressively removing the outliers does not lead to stable models with 

the OLS regression analysis. Note that with LTS robust regression we simply obtain a 

straight line Δcoeff(t) = 0 for the number of eliminated outliers less than N-h (i.e., 0-97).

Difference between OLS and LTS regression analysis

To illustrate the difference between OLS and LTS regression analysis, the residual-residual 

plot (RR-plot)52, 53 was made, as shown in Figure 2, which is the scatter plot of the residuals 

from two regression analyses. The RR plot can be used to characterize the disparity of 

residuals defined by different methods. Figure 2 indicates that there are indeed significant 

disparities between the residuals defined by the OLS and LTS methods. It can also be 

observed that the LTS residuals of most data points with strong disparity are larger. As a 

result, the outliers possess larger residuals from robust regression but smaller residual from 

OLS, which make the solid line tilted. This phenomenon also reflects the capacity of 

resistance to the outliers of different regression models.

Distribution of residuals of three charge models

Although robust regression will fit to the majority of data and the models constructed by 

robust regression are insensitive to outliers, the outliers in the data set still contribute to the 

RMSE of a model. To reiterate, if there are only a few outliers in a dataset, the models (i.e., 

their coefficients) constructed by robust regression will not be affected, but these outliers 

will still deteriorate the statistical performance of the models. To fairly assess the statistical 

performance of a model, it is still important to identify the outliers of a dataset. Figure 3 

gives the distributions of residuals for robust regression models with three charge 

combinations. It is interesting to note that the residuals of the model with the AP charge 

combination give the most symmetric distribution, and therefore most “Gaussian-like.” The 

distributions of residuals of the models with the GG and RP charge combinations are rather 
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skewed. It can also be observed that the distribution of residuals of the GG model has a long 

tail on the left-hand side of the distribution.

Identification of common outliers to three charge models

A natural strategy to determine the data set for model construction is to remove the common 

outliers to three charge models. To determine the common outliers, the residuals obtained 

from the LTS regression were first sorted as shown in Figure 4. To facilitate easy 

recognition of outliers, a red line that fit the residuals between top 25% and 75% was drawn. 

A data point that is too far away (larger than the criterion shown below) from the red line in 

Figure 4 is considered as an outlier. The criterion for the outlier detection here is defined as 

the absolute value of the y-intercept of the red line. It is seen that the GG model possess the 

largest number of outliers, compared to the AP and RP models. We removed the union of 

identified outliers from three charge model combinations and finally obtained a common 

dataset of 147 complexes. In the following sections, these 147 complexes will be designated 

as the “clean” set. The outliers of three robust models are listed in Tables S1, S2 and S3 of 

Supporting Information.

To obtain the final regression models with three charge combinations, another OLS 

regression on the clean set was performed, following the previous robust regression 

procedure.48 In the following sections, the models constructed by first outlier detection with 

LTS regression analysis and then OLS regression are called “robust models.” Table 2 gives 

the robust models for the three charge combinations and their RMSE’s on the training set 

(i.e., the clean set). It can be seen that the RAP model (robust model with the charge 

combination AP) has the lowest RMSE value of 1.637 kcal/mol. It should be noted that the 

performance of the RGG or RRP model is almost as good as that of the RAP model, which 

may be due to the fact that the bad data points has been removed. More detailed 

comparisons of different charge combinations are discussed in the last subsection of this 

section.

We further performed two types of cross-validation, the leave-one-out cross-validation 

(LOO-CV) and leave-group-out cross validation (LGO-CV), shown in Table 3. LOO-CV is 

a popular approach, but it has recently been discussed for its possible fallacies.54 Shao 

demonstrated LOO-CV is asymptotically inconsistent55 and Golbraikh showed the high 

value q2 of LOO-CV is the necessary but not the sufficient condition for a good QSAR 

model with high predictive power.56 Therefore, we also performed the leave-group-out 

cross-validation (LGO-CV), which is also known as the Monte-Carlo cross-validation 

(MCCV). LGO-CV is conducted by randomly sampling a test set from a group of data 

points with as many iterations as possible. Based on the suggestions of Konovalov et al.23, 

we divided the clean set into one half for training and one half for testing. With 1000 

iterations, the average values of SPRESS and q2 were summarized in Table 3. The SPRESS 

and q2 are given by following equations:
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Epred. and Eexp. are the predicted and experimental binding free energy, respectively. Emean. 

is the mean value of experimental binding free energy of all observed cases. N is the size of 

the training set. The degree of freedom, k, is 5 for all the regression models in this study. 

The results shown in Table 3 indicate that all assessments of cross-validation are comparable 

for the performance on the training set. It was shown that the RAP and RRP models gave 

slightly smaller prediction errors and higher correlations, compared to the RGG model, but 

the differences in the numerical values of this statistical assessment may not be significant.

Assessment with external complexes

To assess whether the performances of our new robust models are sensitive to the dataset, a 

benchmark on an external dataset of protein-ligand complexes from PDBbind57, 58 was 

conducted. PDBbind is currently the largest public database that contains the structural 

information and binding affinities of receptors and ligands. We started with the dataset with 

1741 protein-ligand complexes from the 2009 version of PDBbind, which is the so-called 

“refined set.” In the PDBbind refined set, ligands with added hydrogens and Gasteiger 

charges have been prepared, and receptors structural files are arranged as biological 

assemblies. We first filtered out 211 complexes whose net charges of ligands are not 

consistent with the calculation with the “estimateFormalCharge” function of Chimera. In 

addition to these ligands with problematic net charges and protonated states, some 

complexes have problems in atomic charges or energy calculations. For example, MOPAC 

or GAUSSIAN could not be used to calculate too large molecules within an acceptable time, 

autogrid4 cannot generate maps for the molecule with more than 32769 atoms, and 

autodock4 cannot calculate the energies of a ligand with more than 32 torsions. These 

complexes were further removed. Finally, 1427 complexes from the PDBbind refined set 

was used as the test set in this study.

Table 4 shows the statistical performances of the three robust AutoDock4 scoring functions 

and two other recent protein-ligand scoring models, SFCscore4 and PDSE-SVM,5 on 

PDBbind data sets. The three robust AutoDock4 scoring functions have significantly higher 

correlations (RP, Pearson’s correlation coefficient; RS, Spearman’s correlation coefficient), 

as well as smaller standard deviations (SD) and mean errors (ME). For the comparison with 

SFCscore, we only showed the results of their models that were constructed by multivariate 

linear regression. Because the test set we used (PDBbind v2009) and the test set of PDSE-

SVM (PDBbind v2005) have an overlap of only 634 complexes, we also made an 

assessment by using the refined set of PDBbind version 2005. Our robust AutoDock4 

scoring functions gave comparable results (Rp = 0.540–0.578, Rs = 0.553–0.601) to the 

performance of PDSE-SVM. Our assessment indicated that AutoDock4RGG gave slightly 

better statistics than AutoDock4RRP. However, the small difference in the numerical values 

of statistics may not be significant.

Assessment of binding pose prediction with external decoys

The performance of binding pose prediction of the three robust AutoDock4 scoring 

functions and the original AutoDock4 GG model were assessed by the decoy sets of 100 

protein-ligand complexes from Wang et al..25 In this test, 100 ligand conformations near the 

binding site in each complex were generated by using AutoDock3, and the native ligand 
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conformation of each complex was also included. All structural information with hydrogens 

added for ligands and receptors are available.59 After the atomic charges were calculated, 

we performed local minimizations to optimize too close contacts of original structures (only 

for native ligand conformations) in the same procedure as the preparation of the LPDB 

training dataset. The mean values of RMSD’s between the original and minimized 

conformation are 0.57Å, 0.66Å and 0.74Å for RGG, RAP and RRP, respectively.

Ideally, if a scoring function could recognize near-native structures among a set of decoys, 

at least some of the near native conformations (i.e., with small RMSD’s with respect to the 

native ligand conformation) should have the best scores or the lowest predicted binding free 

energies. Thus, each conformation with lowest predicted energy and corresponding RMSD 

with respect to the native conformation was recorded. The success rate can be defined 

according to different criteria, as shown in Table 5, which gives success rates of AutoDock4 

scoring functions and other scoring functions. We found that AutoDock4 made a remarkably 

improvement compared to AutoDock3 on the same decoy set. The RAP model can even 

achieve the same success rates of DrugScoreCSD. The RAP and RRP models are not 

identical, although AM1-BCC is a semi-empirical quantum mechanical model that aimed to 

reproduce the RESP results as much as possible. On the other hand, we should stress that the 

performance also strongly depends on the test set. In 2009, Cheng et al.28 published a 

comparative assessment of scoring functions on a new decoy set, which consists of 195 

complexes with reassessed quality of structures, binding data, and components of protein 

complexes. The ligand conformations were obtained from four docking software packages, 

with the aim to reduce the bias in binding pose selection. Figure 5 gives the comparison of 

the success rates of AutoDock4 scoring functions and 16 scoring functions. The robust 

AutoDock4 functions achieve excellent success rates compared to most of other scoring 

functions, as shown in Figure 5. To assess whether our robust functions exhibit strong class-

dependence, we delineate the success rate results into three classes (hydrophilic, 

hydrophobic, and mixed). Table 6 summarizes the success rates in these three classes of 100 

complexes.25 The robust AutoDock4 functions achieve outstanding success rates in all three 

classes. It is noted that there is no difference in the accuracy of binding pose prediction 

between using the RAP charge model and the original AutoDock 4 scoring function for the 

hydrophobic class of complexes, but there is a significant difference for the hydrophilic 

class. To further investigate the potential reasons for such observed differences, we 

inspected at the cases that were predicted differently by these two scoring functions, and 

found that the four d-xylose isomerase complexes (8xia, 4xia, 2xia and 2xis) in hydrophilic 

class could be successfully predicted by RAP, but not by the original AutoDock4 scoring 

function. These cases have some common features: two metals (magnesium or manganese) 

and a d-xylose in the active site. The difference between the estimated energies of the native 

poses of d-xylose from RAP and the original AutoDock4 scoring function is mainly due to 

the electrostatic energetic term (~0.7 kcal/mol) between an oxygen atom of ligand and an 

metal on the protein site. The different charges of the oxygen atom result in different 

electrostatic interaction.
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Performance of three models for large dipole moment cases

So far, our assessments indicate that the robust model with the GG charge combination 

(Gasteiger models for both ligand and protein) can achieve similar statistical performances 

of the robust models with the other two charge combinations, in which quantum chemical 

calculations need to be carried out. One possible explanation for such close performances 

could be attributed to the heterogeneity of the data set. Regression analysis, when properly 

performed, provides the suitable (and subtle) balances among different energetic terms, and 

the shortcoming or the inaccuracy of some energetic terms can be mitigated by reducing 

their weighting coefficients. It is therefore worthwhile to assess the three robust models with 

different charge combinations in the subset of the test set, where the differences of the 

charges models could be most pronounced. Because different charge models (Gasteiger, 

RESP, AM1-BCC) mainly affect the distributions of the partial charges of the molecules, 

not the total charge of the molecules, we should be able to see the differences of the charge 

models on the subset in which ligands are neutral. On such subset of complexes with neutral 

ligands, it is especially of interest to see the dependence of statistical performance on the 

dipole moments of ligands, because the dipole moments give the largest contribution to the 

electrostatic energies for the neutral ligands.

For the 569 neutral ligands of the PDBbind test set, the dipole moment distributions 

according to three kinds of charge models are shown in Figure 6. One can easily recognize 

the differences in the distributions of the dipole moments calculated with three different 

charge models. We further sorted the prediction errors according to the dipole moments and 

took moving average to smooth out the large fluctuation for clearer visualization of their 

tendencies, shown in Figure 7. We can see pronounce differences of prediction errors for the 

cases with large dipole moments (larger than 12.5 Debye, from Figure 6). In Table 7, 

according to the RMS prediction errors it was clearly indicated that RRP has the best 

statistical performance for the subset of complexes with neutral ligands having large dipole 

moments. We also analyzed the dipole moment distributions and prediction errors in our 

training set, whose size may in turn be too small to provide significant statistical differences. 

The results are given in Supporting Information (Figure S1, S2 and Table S4).

CONCLUSION

We have constructed three robust protein-ligand free energy models for three popular charge 

combinations. The combination of AM1-BCC or RESP charges for ligands and Amber99SB 

charges for proteins perform statistically better than the combination of Gasteiger charges 

for ligands and proteins does. Our results also indicate that the use of more advanced charge 

models may lead to more accurate estimates of protein-ligand binding free energy, 

especially for the protein-ligand complexes with large dipole moment neutral ligands.

Nevertheless, construction of free energy models (or scoring functions) for protein-ligand 

interactions based on regression analysis remains a challenging task. There are many 

uncertainties in the experimental information and in the preparation of protein and ligand 

files, e.g., determination of protonation states, number of rotatable bonds, etc. In this work, 

the flexibility of the protein-ligand complex was not yet explicitly taken into account for 

constructing the scoring functions. The contribution of stable water molecules in the protein 
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binding pocket was also not yet included. The metals were only treated in the classical 

manner, and the consideration of the entropy contribution is certainly incomplete. Yet, with 

robust regression, we were able to show the five energy terms in the AutoDock4 scoring 

functions can capture the essential picture of the protein-ligand interactions. It should be 

stressed that the same scoring function was applied in AutoDock4 to both binding pose 

prediction and binding free energy evaluation, and its molecular-mechanics based semi-

empirical nature allows sensitive recognition of protein conformational changes. This is not 

the case for many protein-ligand scoring functions that adopt relatively coarse-grained 

potential or crude distance criteria, e.g. XSCORE, ChemScore, PLP, etc.

Our analyses for the performances of different scoring functions on the subset of neutral 

ligand may indicate that the accuracy of such regression models may be improved still 

further when the protein-ligand complexes are suitably classified. However, this also implies 

that a larger training set is needed if multivariate regression is to be applied for different 

protein-ligand interaction classes. Construction of larger databases with structural and 

binding affinity information of protein-ligand complexes, similar to the endeavor of 

PDBbind, is indispensable for establishing such two-staged (first class identification and 

model selection, and then free energy prediction) free energy models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The average of mean coefficient difference Δcoeff(t) versus the number of eliminated 

outliers. Note that the models are still very unstable even after one third or more of large 

residual data points are regarded as outliers and eliminated. The charge combination is RP.
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Figure 2. 
The Residual-Residual plots between OLS and LTS. The charge combination is RP. The 

solid red line was obtained by linear fitting between residuals from two regression methods. 

If no outlier blends with the training set, the residuals of OLS regression and robust 

regression will be similar to the identity line (dashed). The sloped red solid line shows the 

capacity of resistance to the outliers of different regression models.
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Figure 3. 
The histograms of residuals based on the model constructed by robust regression analyses. 

The black, red and green lines represent residuals distributions of GG, RP and AP models, 

respectively.
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Figure 4. 
Sorted absolute residuals based on robust regression analysis for the (A) RP and (B) AP and 

(C) GG charge combinations. The index represents the rank of residuals. Red lines are fitted 

to the residuals between top 25% and 75%.
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Figure 5. 
Comparison of the success rates of AutoDock4 scoring functions and 16 scoring functions 

provided by Cheng et al.28 The cutoffs are rmsd < 1.0 Å (blue bars), < 2.0 Å (red bars), and 

< 3.0 Å (green bars), respectively. The native binding poses of ligands were included in the 

decoy sets. Scoring functions are sorted by the number of cases under 2Å.
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Figure 6. 
The distributions of dipole moments (Debye) of 569 neutral ligands. The values of dipole 

moment were calculated by three charge models.
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Figure 7. 
Moving average of prediction errors (in kcal/mol) versus dipole moments (in Debye). The 

prediction error was the deviation between estimated and experimental binding free energy. 

The values of dipole moment were sorted according to the dipoles calculated with the RESP 

charge model.
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Table 3

Cross-validation of three robust regression models in this work

Combination

LOO-CV MCCV

SPRESSS q2 SPRESS q2

AutoDock4RGG 1.732 0.675 1.782 0.657

AutoDock4RAP 1.707 0.684 1.749 0.670

AutoDock4RRP 1.711 0.683 1.755 0.668

All RMSE values and SPRESS are in kcal/mol.
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Table 6

Success rates of binding pose prediction of various scoring functionsa on three classes of complexes

success rate (%; rmsd ≦2Å)

Overall hydrophilic mixed hydrophobic

scoring function (100) (44) (32) (24)

AutoDock4RAP 87 89 91 79

AutoDock4RGG 86 86 91 79

AutoDock4RRP 84 84 91 75

original AutoDock4GG 79 77 81 79

Cerius2/PLP 76 77 78 71

SYBYL/F-Score 74 75 75 71

Cerius2/LigScore 74 77 75 67

DrugScorePDB 72 73 81 58

Cerius2/LUDI 67 75 66 54

X-Score 66 82 59 46

AutoDock3 62 73 53 54

Cerius2/PMF 52 68 44 33

SYBYL/G-Score 42 55 34 29

SYBYL/ChemScore 35 32 34 42

SYBYL/D-Score 26 23 28 29

a
Data were adopted from Wang et al.25 except for AutoDock4 scoring functions.

b
Scoring functions are sorted according to the overall success rates.
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Table 7

RMS prediction errors of AutoDock4 scoring functions for neutral ligands in the testing set

scoring function 569 cases 43 casesa

AutoDock4RGG 3.004 3.022

AutoDock4RAP 3.087 2.755

AutoDock4RRP 3.088 2.702

original AutoDock4GG 3.253 2.938

a
These 43 cases are large dipole moment ligands. (Debye > 12.5)

All values of RMS prediction errors are in kcal/mol.
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