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Abstract

In this paper, we revisit a 1986 article we published in this Journal, Meta-Analysis in Clinical 

Trials, where we introduced a random-effect model to summarize the evidence about treatment 

efficacy from a number of related clinical trials. Because of its simplicity and ease of 

implementation, our approach has been widely used (with more than 12,000 citations to date) and 

the “DerSimonian and Laird method” is now often referred to as the ‘standard approach’ or a 

‘popular’ method for meta-analysis in medical and clinical research. The method is especially 

useful for providing an overall effect estimate and for characterizing the heterogeneity of effects 

across a series of studies. Here, we review the background that led to the original 1986 article, 

briefly describe the random-effects approach for meta-analysis, explore its use in various settings 

and trends over time and recommend a refinement to the method using a robust variance estimator 

for testing overall effect. We conclude with a discussion of repurposing the method for Big Data 

meta-analysis and Genome Wide Association Studies for studying the importance of genetic 

variants in complex diseases.
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INTRODUCTION

Three decades ago in this Journal (formerly titled Controlled Clinical Trials), we proposed a 

simple non-iterative method to integrate the findings from a number of related clinical trials 

to evaluate the efficacy of a certain treatment for a specified medical condition [1]. Our 

approach, the random-effects model for meta-analysis, now commonly referred to as the 

“DerSimonian and Laird method”, has become extremely popular in medical research and 

other applications. According to the Web of Science Core Collection, there are more than 

Correspondence to: Rebecca DerSimonian.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Contemp Clin Trials. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
Contemp Clin Trials. 2015 November ; 45(0 0): 139–145. doi:10.1016/j.cct.2015.09.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



twelve thousand citations attributed to the article with a substantial proportion of them 

occurring in the more recent years.

Following the introduction of the term meta-analysis in 1976 [2] and before the publication 

of our article, Meta-analysis in Clinical Trials, in 1986 [1], Web of Science lists 222 articles 

with the term meta-analysis in the title. Almost all of these were in social sciences with 50% 

in psychology, 32% in education research and 10% in business economics. In contrast, a 

large proportion of the more than 46000 articles since 1986 with the term meta-analysis in 

the title are related to medical or clinical research.

In this paper, we first review the background and the setting that led to Meta-Analysis in 

Clinical Trials [1] and the “DerSimonian and Laird method”, briefly describe the random-

effects model for meta-analysis, assess its use in various settings and trends over time and 

explore the reasons for its popularity in medical and clinical research. We recommend a 

refinement to the method using an improved variance estimator for testing overall effect and 

conclude with a discussion of repurposing the method for genetic association studies and 

Big Data meta-analysis.

BACKGROUND

Eugene Glass first coined the phrase meta-analysis in 1976 to mean the statistical analysis of 

the findings of a collection of individual studies [2]. In the following decade, meta-analysis 

was primarily used in the social sciences to summarize the results of a large number of 

studies on many behavioral, educational and psychosocial studies and experiments. For 

instance, Rosenthal [3] analyzed accumulating data from studies done by others to assess if a 

teacher’s expectations can influence a student’s performance. Similarly, Glass [2] was 

interested in assessing if psychotherapy is effective while Mosteller [4–5] set out to 

determine the optimal class size for learning.

Early papers in the field were mostly descriptive and stressed the need to systematically 

report relevant details on study characteristics, not only about design of the studies, but 

characteristics of subjects, investigators, interventions, measures, study follow-up, etc. 

However, a formal statistical framework for creating summaries that incorporated 

heterogeneity was lacking.

An article exemplifying the approach in those early years addressed an important 

contemporaneous educational controversy to assess the effectiveness of coaching students 

for the Scholastic Aptitude Tests (SAT). In a meta-analysis of data from 23 studies 

evaluating the effect of coaching on SAT scores, Slack and Porter [6] concluded that 

coaching is effective on raising aptitude scores, contradicting the principle that the SATs 

measure “innate” ability or aptitude.

What was interesting about the data set analyzed by Slack and Porter was a striking 

relationship between the magnitude of the coaching effect and the degree of control for the 

coached group. Many studies evaluated only coached students and compared their before 

and after coaching scores with national norms provided by the Educational Testing Service 

(ETS) on the average gains achieved by repeat test takers. Other studies used convenience 
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samples as comparison groups, and some studies employed either matching or 

randomization.

Using the same data set, we published a follow-up to Slack and Porter and introduced the 

random-effects approach for meta-analysis in this setting [7]. Our analysis geared towards 

explaining heterogeneity in the results and found gains in SAT scores depended highly on 

evaluation design. Studies without concurrent controls tended to show large gains for 

coaching, whereas in matched and randomized evaluations, the gain due to coaching was too 

small to be of practical use.

In contrast to that of Slack and Porter, our results were consistent with the principle 

advocated by ETS that the evidence did not support a positive effect of coaching on SAT 

scores. At the time, our paper attracted considerable media attention, with hundreds of US 

newspapers reporting on it, reflecting that the topic was of great interest to the general 

public. Although the number of citations related to this article in the scientific literature is 

comparatively modest, the ETS does continue to reference [8] our work in support of the 

notion that high scores simply reflect long-term rigorous academic training rather than some 

short-term coaching program.

Our approach for meta-analysis of the studies to assess if coaching improves SAT scores 

followed that of Cochran [9] who wrote about combining the effects of different 

experiments with measured outcomes. Cochran introduced the idea that the observed effect 

of each study could be partitioned into the sum of a “true” but random effect plus a sampling 

(or within-study) error. Similarly, the variance of the observed effect can also be partitioned 

into the sum of a variation in true means, plus a within study variance. Following Cochran, 

we proposed a method for estimating the mean of the “true” effects of coaching, as well as 

the variation in “true” effects across studies. This random effects model for meta-analysis is 

shown in Figure 1, and our approach to the estimation is shown in Figure 2. We used a 

method of moments approach to estimate the variation in the true effects, but ML or REML 

are also possible. In the SAT application, we assumed that the observed effect for the i-th 

study, Yi, was the difference in two means between coached and un-coached students, and 

Ti was the true, but unobserved, effect. Allowing Ti to vary across studies permits different 

studies to have different coaching effects. We used an estimate of the within-study error 

assumed from each individual study, si
2, to estimate the variation in the “true” effects, σ2. In 

this setting, the primary purpose is to provide an estimate of the overall coaching effect, μ, 

and characterize the variation, σ2, of the effects across studies.

META-ANALYSIS IN CLINICAL TRIALS

For Meta-Analysis in Clinical Trials [1], we adopted this same random-effects approach to 

integrate the findings from a number of related clinical trials to strengthen the evidence for 

the efficacy of a certain treatment for a specified medical condition. The basic idea of the 

approach is the same, but here we assumed the treatment effect for the i-th study, Yi, was the 

difference in Binomial cure rates between a treated and control group. Assuming the two 

groups are independent, the variance, si
2, can be estimated using the Binomial model. Here 
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again, the primary purpose is to make inferences about the overall treatment effect and 

provide a quantitative measure of how the treatment effects differ across the studies.

Our approach to integrate the findings across related clinical trials has become increasingly 

popular in medical research and has led to the moniker “DerSimonian & Laird method” 

when referring to the random-effects model for meta-analysis. According to Web of Science 

Core Collection, the paper has over twelve thousand citations to date. Moreover, the 

popularity does not seem to be subsiding in that more than 50% of those citations occur in 

the last few years with more than two thousand in the year 2014 alone (Figure 3).

Figures 4A–4B and 5A–5B highlight some of the changes that have occurred over time in 

the research topics as well as the journals citing the 1986 article. For instance, the top five 

research areas constituting a little more than half of the total 4493 citations during 1986–

2009 are in general internal medicine (18%), public health (12%), oncology (10%), 

cardiology (7%) and gastroenterology (7%) (Figure 4A). In contrast, the top five research 

topics constituting about half of the total 7342 citations during 2010–2014 are in oncology 

(17%), internal medicine (12%), science & technology (8%), cardiology (7%) and surgery 

(7%) (Figure 4B). In the later years, citations in general internal medicine and public health 

related topics are replaced by additional citations in oncology and science & technology 

research related topics. For instance, less than one percent of the articles in the earlier years 

were in science and technology compared to the 8% in the later years. Similarly, the 

proportion of articles in oncology increased from 10% to 17% in the later years. In contrast, 

a smaller proportion of the articles in the later years were in internal medicine and public 

health. Over time, internal medicine articles decreased from 18% to 12% and public health 

articles decreased from 12% to 6%. Overall, each time period includes more than 100 

research areas with many of them being represented by only an article or two.

Similar trends and changes occur in the journals citing the 1986 paper. For instance, top 

citing journals in the earlier years are Cochrane Database of Systematic Reviews, Statistics 

in Medicine and general medical journals, including Journal of the American Medical 

Association, British Medical Journals, Annals of Internal Medicine, and Archives of Internal 

Medicine (Figure 5A). In contrast, top citing journals in the later years are PLoS One, 

Cochrane Database of Systematic Reviews, Tumor Biology, Molecular Biology, Gene and 

several cancer related journals (Figure 5B). Figure 5B lists the top eight citing journals in 

2010–2014 representing about 21% of the total citations (1532/7342) during this period. 

Overall, each time period includes more than 1000 journals with a large number of them 

being represented by a single article.

In summary, results from Figures 3–5 seem to imply that the surge in citations in the later 

years maybe due to the method’s use in new and emerging research areas, such as molecular 

and statistical genetics, in addition to the more traditional areas of medical and clinical 

research.

The “DerSimonian and Laird method” offers a number of advantages that explain its 

popularity and why it continues to be a commonly used method for fitting a random-effects 

model for meta-analysis. The method requires simple data summaries from each study that 
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are generally readily available. The non-iterative method is simple and easy to implement, 

the approach is intuitively appealing and can be useful in identifying sources of 

heterogeneity.

Our original paper considered estimation of σ2 using ML, REML or MOM, as well as an 

unweighted method. We concluded that ML was biased downward, and that there was little 

difference between REML and MOM. The estimates from the unweighted method differed 

from the estimates of other three methods but without any consistent pattern. MOM was 

recommended because it is non-iterative. For estimating an overall treatment effect as well 

as treatment effect differences across studies, several simulation studies comparing the 

method with more sophisticated yet computer intensive methods [10–13] have concluded 

that the “DerSimonian and Laird method” remains adequate in most scenarios and there is 

little to gain from using more computationally intensive techniques. In an update to the 

original DerSimonian and Laird article, DerSimonian and Kacker [10] presented a unified 

framework for estimating σ2 and showed that the corresponding estimates for both iterative 

and non-iterative methods can be derived as special cases of a general method-of-moments 

estimate each reflecting a slightly different set of weights assigned to the individual studies. 

For instance, in the unweighted method, each study is assigned an equal weight while the 

weights in MOM are inversely proportional to the within-study sampling variances. 

Analogously, in ML and REML, the weights are inversely proportional to the total variances 

(within-study sampling variances as well as σ2) but the methods require iteration to estimate 

σ2.

Several extensions of the DerSimonian and Laird approach have been introduced for 

multivariate meta-analyses [14–16]. The applications include combining effect sizes for 

studies with multiple endpoints or for single endpoint studies with different subgroups.

There have been substantial developments on two related topics: confidence intervals for 

estimates of σ2 and testing for homogeneity (H0: σ2 = 0) [17–21]. Using an estimate of σ2 as 

a measure of heterogeneity is unsatisfactory as it depends heavily on the scale of 

measurement and has no absolute interpretation. A popular alternative is to use I2 [22] which 

can be interpreted as the percent of the overall variation in study results that is due to 

between study heterogeneity. Confidence intervals for I2 are also given in [22]. I2 can be 

substantial even when a test of homogeneity accepts.

Many investigators take the approach that studies should not be combined in the presence of 

heterogeneity. This attitude may stem from the fact that the power to detect overall effects 

will weaken as the between study heterogeneity increases. However, using tests of 

homogeneity to decide whether on not to combine studies may lead to biased inferences. 

The original DerSimonian and Laird paper espoused the point of view that the random 

effects approach can be used whether or not there is heterogeneity and offered limited 

discussion on testing for heterogeneity. It is important to bear in mind that tests of 

heterogeneity are often underpowered, and an acceptance of homogeneity is weak. In 

addition, a test of homogeneity does not shed light what the cause of heterogeneity might be. 

A valuable extension of random effects meta-analysis is meta-regression [14–15, 23–24], a 

meta-analysis that relates the size of the effect to one or more characteristics of the studies 
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involved. Meta-regression can be useful for exploring sources of heterogeneity and for 

offering important insights as to the nature of interventions, of populations, or both.

When the focus is on testing rather than estimation, however, several other simulation 

studies [25–27] have highlighted limitations of the DerSimonian and Laird method and 

suggest alternative approaches that are just as simple and perform better, especially when 

the number of studies is small. In the next section, we discuss such refinements to the 

DerSimonian and Laird method for improved standard error estimation and testing for 

overall treatment effect.

An early criticism of the method is that the studies are not a random sample from a 

recognizable population. As discussed in Laird and Mosteller [28], absence of a sampling 

frame to draw a random sample is a ubiquitous problem in scientific research in most fields, 

and so should not be considered as a special problem unique to meta-analysis. For example, 

most investigators treat patients enrolled in a study as a random sample from some 

population of patients, or clinics in a study as a random sample from a population of clinics 

and they want to make inferences about the population and not the particular set of patients 

or clinics. This criticism does not detract from the utility of the random-effects method. If 

the results of different research programs all yield similar results, there would not be great 

interest in a meta-analysis. We view the primary purpose of meta-analysis as providing an 

overall summary of what has been learned, as well as a quantitative measure of how results 

differ, above and beyond sampling error.

Repurposing DerSimonian and Laird for Big Data

Modern technology has enabled the collection of enormous amounts of data on individual 

subjects, for example data from cell phones, social media web sites, administrative health 

care data bases, genomic and more generally ‘omics’ data. We now have readily accessible 

data sets that are orders of magnitude larger than conventional data sets. There are many 

types of Big Data, and the goals of each analysis can be quite different for different settings, 

but there are some common features. In addition to the magnitude of data collected on 

individual sampling units, the number of independent studies (K) available may be quite 

small. Third, the focus is often hypothesis testing rather than estimation. Finally, because of 

the magnitude of the data, it is natural to consider analyzing data summaries, rather than to 

consider pooling the data from different studies into one mega-sized database

Consider, for instance, Genome Wide Association Studies, which are currently popular in 

studying the importance of genetic variants in complex disease. In a typical study, around a 

million variants may be measured for each subject, and another million might be imputed for 

analysis. The ultimate goal is to locate variants which are causal for the disease, but even 

with two million variants available for each subject, one would be very lucky to have 

measured a causal one, since there are around 3 billion variants total in the human genome. 

Thus the practical objective is to find those variants that are associated with the disease; in 

the absence of confounding factors, we can presume these are in close physical proximity to 

a causal variant. As a result, testing for association with all measured variants is the main 

task, whereas estimation of association parameters is not. Because of the multiple testing 

problem, even studies with several thousand subjects may not be sufficiently powered to 
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detect the small effects that are typical of GWAS associations. As a result, one major 

rationale for meta-analysis is to improve power. Often genetic studies analyze different 

ethnic or racial groups separately, and then use meta-analysis techniques to combine over 

groups. In this setting K can be quite small, on the order of 2 or 3. Using meta-analysis to 

improve power can be successful, but only if the degree of heterogeneity is small.

Hypothesis Testing versus Estimation—Hypothesis testing was not discussed in 

DerSimonian and Laird [1]. Rather, we considered estimation of the overall mean, μ, the 

extraneous variance in the treatment means across studies, σ2, and a variance for the 

estimated mean. It is straightforward to obtain a hypothesis test that H0: μ=0, by inverting 

the confidence interval for μ. This gives a test sometimes attributed to DerSimonian and 

Laird, although this may not be the best approach. In particular, this method is sometimes 

criticized as ‘anti-conservative’ [25] or as being ‘too-conservative’ [26]. A difficulty is that 

there is not a single obvious null hypothesis. Figure 6 lists several possible nulls for the 

random effect setting. The ‘so-called’ equal effects assumption is that σ2 is zero, and the null 

hypothesis tests μ=0. This is a popular null hypothesis because, if true, power gains can 

ordinarily be achieved by a fixed effects meta-analysis. Clearly the DerSimonian and Laird 

test will be conservative in this setting; it will tend to overestimate  because it 

estimates σ2 assuming it is positive. A second assumption is that σ2 is positive, and the null 

hypothesis also tests that μ=0.

This null allows for the possibility that on average there is no effect, but that some studies 

may be non-zero and in opposite directions. Such a scenario may suggest interactions (see 

the INSIG2 example below) but otherwise may be difficult to interpret. The alternative of σ2 

> 0 and μ ≠ 0 will often be appropriate. In this setting the DerSimonian and Laird approach 

can be anti-conservative for testing, especially if K is small and/or the sample sizes of each 

study are small, or highly unequal [25]. In these cases,  is not well estimated by the 

DerSimonian and Laird approach. There is a simple fix however, as described in [25] and 

discussed below, which is attractive because it also uses data summaries and is a minor 

adjustment to the original analysis presented in Figure 2. The third null hypothesis one 

might want to consider tests that both μ=0 and σ2=0, as proposed by in [26]. A feature of the 

Han and Eskin approach is that the null hypothesis may be rejected if μ=0, but σ2 is not, a 

scenario which can happen if there are studies showing opposite effects. Such a scenario 

may be difficult to interpret, or may point to interactions with study level variables.

Alternative Estimates of —The DerSimonian and Laird approach assumes that 

the variance of a study effect size is the sum of two components: the within study sampling 

error (which we treat as fixed and known), and σ2; σ2 is estimated by a method of moments 

approach. μ is estimated by a weighted mean, where each weight is the inverse of the 

assumed variance (Figure 2). Since the true variances are unknown, both σ2 and the within 

study variance are replaced by their estimates in calculating the weight. Thus the weight is 

estimated, but in calculating , we assumed the weights are fixed and known and that 

the variance is correctly specified in order to get a simple expression for  as the 

inverse of the sum of study weights. See Figure 2. This is the classical model based estimate, 

and should hold approximately in many cases as long as K and the within study sample sizes 
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are large. In practice, the model based estimator may be too small because it ignores the 

variability in the weights, and using a test based on an inverted confidence interval will be 

anti-conservative. Several alternative approaches have been proposed, including a weighted 

least squares approach [29] and using the ‘robust’ variance estimator [27]. Both estimators 

give a test with improved coverage with the robust estimate doing somewhat better overall 

[25, 27]. The robust variance estimate is similar to the model based, except that instead of 

assuming var(Yi) = (wi)−1, Var(Yi) is replaced by the residual  i.e,

Note that if  replaces  in the robust variance formula above, the estimate for 

 reduces to the model based estimate, apart from a factor of K/(K-1). Using the robust 

variance estimate gives valid confidence intervals and tests under a wide range of 

assumptions.

Using Data Summaries for Meta-Analysis—In our experience, most meta-analysis 

approaches were designed to utilize summary information which is readily available from 

the literature, or the study investigators. Conversely, when the original individual-level data 

are available for analysis, they can be combined and treated as one large stratified data set. 

This is typically referred to as pooling. In the case of big data, each study data set is so large 

as to make pooling impractical, whereas using data summaries can be relatively easy. Thus 

in the literature of the GWAS, using meta-analysis has come to mean using data summaries 

in order to pool results. In fact, a recent article in Genetic Epidemiology points out that there 

is no efficiency gain in using individual level data over meta-analysis in the context of 

GWAS [30]. Fortunately, the approach outlined by DerSimonian and Laird is particularly 

well suited for this purpose, except that for testing, we recommend the robust variance 

estimate proposed by Siddik and Jonkman [27] for this setting be used. In addition, bigger 

advantage might be taken of meta-regression in this setting as using important study 

characteristics may uncover gene-environment interactions [31].

Example. One of the first GWAS studies was published in 2006 [32]. Using the family data 

from the Framingham Heart Study, the authors found that a genetic variant near the 

INSGIG2 gene, Rs7566605, was associated with obesity. In addition, the same variant was 

significantly associated with obesity in four out of five additional comparisons, which were 

preplanned by the authors. For a variety of reasons, the finding was controversial. 

Fortunately, this is a finding that is easy for almost any investigator to replicate because 

height and weight, which are used to assess obesity, are always available in any clinical 

study, and it is fairly simple for most investigators to assay just a few genetic variants. Many 

attempts at replication were made, some successful and some not. Because of the large 

number of conflicting results from different studies, the original investigators developed the 

hypothesis that the association might be due to factors correlated with the nature of the 

population studied.

Some of the original investigators undertook a meta-analysis [31] to investigate several 

hypotheses, including the hypothesis that the results depended on the population studied. 
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The studies were categorized as general population (GP) studies, healthy population (HP) 

studies or obesity studies (OB). The subjects in the GP studies were essentially random 

samples from a general population, with no exclusions based on health status. The HP 

studies largely used samples from employed or otherwise ‘healthy’ populations (nurses, 

physicians, etc.) whose health status is generally quite different from the general population. 

The OB studies selected obese subjects and controls. Excluding seven studies in the original 

Herbert paper, they found 27 studies of Caucasian adults, as reported in Figure 7. The 

summary results of the studies, overall and by category are given in Figure 8.

Here, the data summary from each study is an odds ratio, so the null hypothesis is H0: μ=1. 

From Figure 8, if we combine over all studies, ignoring the population type, the overall odds 

ratio is close to one, and the standard error is large because of the large amount of 

heterogeneity. Here we have used I2 to measure heterogeneity. I2 is the percent of total 

variance in the Yi’s that is explained by the extraneous variance, σ2. It is a better indicator of 

extraneous variance than σ2 because it is scale free [22]. If we analyze the studies stratifying 

on population type, the odds ratio for the GP studies is larger, whereas the odds ratio for the 

HP studies is in the opposite direction. Both are marginally significant and have much 

smaller indices of heterogeneity. The result is similar to findings from many meta-analyses 

that show the dependence of study results on study design factors, however it is quite 

different in the sense that the characteristic is the nature of the population that was sampled 

rather than the design. This suggests some environmental effects may alter the effect of the 

genetic variant.

This meta-analysis is not typical of a big data scenario since we have selected only one 

variant for investigation. In a more typical setting there may be millions of hypotheses to 

test. Nonetheless it does illustrate the potential utility of the approach, demonstrates the need 

to investigate extraneous variability, and that many analytical issues are similar in the many 

settings where meta-analysis is used.
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Figure 1. 
Random Effects Notation and Model
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Figure 2. 
Method of Analysis
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Figure 3. 
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Figure 4. 
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Figure 5. 

DerSimonian and Laird Page 18

Contemp Clin Trials. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Hypothesis Testing with the Random Effects Model
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Figure 7. 
INSIG2 Variant and Obesity
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Figure 8. 
INSIG2 Rs7566605 Association with Obesity Meta-Analysis Results for Adults
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