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Abstract

Neuroplasticity is key to the operation of brain machine interfaces (BMIs)—a direct 

communication pathway between the brain and a man-made computing device. Whereas 

exogenous BMIs that associate volitional control of brain activity with neurofeedback have been 

shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent 

stimulation – and thus may curtail the time scale that governs natural sensorimotor integration 

loops – have been shown to induce short lasting plasticity. Here we summarize recent findings 

from studies using both categories of BMIs, and discuss the fundamental principles that may 

underlie their operation and the longevity of the plasticity they induce. We draw comparison to 

plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles 

of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian 

brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for 

the purpose of re-organization of target brain regions and directed augmentation of sensorimotor 

maps, and suggest possible avenues for future work to maximize their efficacy and viability in 

clinical applications.

INTRODUCTION

An estimated 1.11 million individuals are diagnosed in the United States each year with 

some loss of sensorimotor function due to amputation, spinal cord injury (SCI), stroke, 

amyotrophic lateral sclerosis (ALS), to name just a few—40% of which survive but with 

moderate to severe motor disability [1, 2]. In addition, an estimated 11-12 million 

individuals continue to live with these conditions [3, 4]. BMI technology promises to have a 

major impact on the health of many of these individuals, particularly those whose recovery 

of sensorimotor function is inherently limited but otherwise remain cognitively intact.
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Broadly defined, BMIs – also known as Brain Computer Interfaces (BCIs) –include any 

form of a direct interface between the brain and an artificial device equipped with some 

form of computations. In sensorimotor control, BMIs rely on the fundamental concept of 

causation between volitional modulation of neural activity and movement of an end effector, 

or between targeted stimulation of ascending sensory pathways and perception of artificial 

sensory feedback. Efferent BMIs read out neural activity from descending neural pathways 

using a sensing device – typically an array of electrodes – by extracting spike event rates 

from well isolated neurons [5], or from multiple single units [6, 7], that are subsequently 

“decoded” to generate control signals that actuate the end effector. This could be the natural 

impaired limb [8, 9], or an artificial limb [10, 11]. Likewise, afferent BMIs, such as cochlear 

implants [12, 13], sense signals from the surrounding and extract features from these signals 

using an “encoder” which subsequently modulates stimulation patterns in order to evoke 

artificial percepts.

While early efferent BMI work has focused on demonstrating the phenomenological aspects 

of neuroplasticity—the brain’s ability to change its structure and/or function during 

development, learning or recovery from injury, recent work has focused on the technical 

aspects of the system design such as device fabrication, control of multiple degrees of 

freedom (DOFs) with increasing dexterity in arm/hand control [10,11]. Reigniting the focus 

on potential mechanisms of neuroplasticity, particularly at the cellular and subcellular levels, 

remains equally important, in part, because it may provide guidance to BMI design and 

training protocols to harness neuroplasticity in ways that supersede traditional physical 

rehabilitation exercises [14]. This review examines the principles that govern BMI-mediated 

neuroplasticity, with particular emphasis on invasive BMI technology. We summarize the 

published data and draw comparisons with some potential mechanisms known to mediate 

natural sensorimotor learning at cellular and subcellular levels that could be at play during 

BMI operation.

BMI CAUSALITY PRINCIPLES

Learning the causality that underlie BMI operation involves a number of principles that are 

critical for improving performance. The first is to gather sensory information about the 

consequences of volitional modulation of neural activity that cause changes in the end 

effector state. Different sensory modalities, such as vision, touch and proprioception play an 

indispensable role in natural motor learning. But with the exception of a few studies [15-17], 

efferent BMIs thus far have relied almost exclusively on vision as the only sensory modality 

that provides feedback about the state of the volitionally modulated neurons. Importantly, 

changes in the end effector state have to be noticeable enough to enable the subject to infer 

the most critical parameters for task success, such as the number of inputs needed to cause 

instantaneous changes in that state, the magnitude of that change as a function of the depth 

of neural modulation, and most importantly, the latency at which the change occurs relative 

to the timing of volition. Some parameters are nonetheless hard to infer based on visual 

feedback alone, such as inferring the correct amount of digit force needed to successfully 

grasp an object without crushing it or letting it slip from the hand.

Oweiss and Badreldin Page 2

Neurobiol Dis. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The second principle is coping with the likely mismatch between the number of input neural 

channels – which is typically of higher dimension – and the number of independently 

controlled DOFs in the task space, which is typically of lower dimension. This creates an 

avenue to involve redundancy because it allows subjects to explore different combinations 

of neural inputs to a muscle (or group of muscles)—or to a decoded motor variable during 

BMI control—to optimize the effort and increase control accuracy [18-20]. Furthermore, it 

may allow the interface to be more robust against potential neural coding errors and noise in 

the biological system [21].

The third principle is the extent of plasticity in the neural circuits mediating BMI control 

that is needed to improve performance. Neuroplasticity in adulthood refers to a multitude of 

different processes of reorganization that occur at multiple temporal and spatial scales for 

the purpose of increasing efficacy of information transfer in the nervous system to serve 

control efficiency and accuracy, or to cope with injury. These processes may include 

changes in existing synaptic strengths, formation of new synapses, or even formation of new 

neurons [22-24]. Neural circuits must undergo some change for motor memory to be 

formed, consolidated and easily recalled [25-28]. And it has been consistently shown that 

changes in neural activity correlates with BMI performance improvement [29-33].

The fourth causality principle is the extent to which BMI skills learned in one task cause 

generalization (i.e. transfer) to other BMI – or even non-BMI – tasks, and whether the extent 

of this generalization decreases as tasks become increasingly different from those in which 

the initial skill was learned, akin to natural motor skill learning [34]. It has been reported 

that increasing the population size for a given level of task complexity does not necessarily 

lead to improving performance, as it plateaus after a certain level [35]. The link between the 

small size of the populations typically used in BMI control (few tens to hundreds of cells) 

compared to the many orders of magnitude larger size used in natural limb control is not 

entirely clear, and published studies have been mostly focused on improving performance 

through extensive practice and less so on addressing the generalization question.

PLASTICITY ASSOCIATED WITH UNI-DIRECTIONAL BMIs

With the exception of human studies [36] [10, 11, 37] and one recent animal study [38-40], 

demonstrations of BMIs have been primarily carried out in able-bodied subjects. During 

manual control (MC) in instructed delay tasks, a monkey is trained to make real arm 

movements from one starting position to a target – or continuously pursue a randomly 

appearing target – after which the arm returns to the starting position before a new trial starts 

[41, 42]. During Brain Control (BC), neural activity is “decoded” as the monkey attempts to 

volitionally modulate the firing pattern of those neurons recorded during the MC mode. The 

parameters of the decoder are calculated by minimizing the error between the measured arm 

movement parameters and their linear estimates from the concurrently recorded neural 

signals [41, 43, 44]. The population vector algorithm (PVA)[41] is a special case of this 

class of estimators when the neuronal tuning functions are cosine shaped and the preferred 

directions are uniformly distributed [45]. The uniformity may not be present during early 

training sessions [46], but may arise with continued practice of the BMI task. This 

biomimetic approach is assumed to mimic what downstream motoneurons would 
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presumably do to “decode” the intended movement represented by M1 activity. It should be 

noted however that these downstream circuits are also innervated by numerous feedforward 

and feedback cortico-cortical as well as cortico-spinal tracts that carry information from and 

back to cortex where these neurons are sampled [47, 48].

It is noteworthy that during the MC mode, the arm movement is obscured from the 

monkey’s vision and rendered to a computer screen in which a cursor indicates the arm’s 

endpoint. Thus, the proprioceptive feedback about the arm state is present but decoupled 

from the visual feedback. This is to ensure that proprioceptive feedback influence on MI 

activity is minimized so that neural data gathered to train decoders for the BC mode provide 

a good representation of visually guided modulation of neural firing (for more details, [49] 

summarizes studies comparing arm restraint to no restraint). Motor imagery/action 

observation has been used to train decoders in paralyzed humans (Dushanova and Donoghue 

2010, Vigneswaran, Philipp et al. 2013, Brunner, Skouen et al. 2014) based on the 

observation that rehearsal of movements or motor imagery appears to engage M1 [27] [48], 

though the source of this activation remains unclear [50]. Similar approaches have been 

adopted in other studies, with differences primarily in assumptions related to movement 

parameters that neurons encode (e.g. position [51], velocity [44], acceleration [43], endpoint 

[52]), or the area of recording (e.g. dorsal premotor cortex (PMd) [52], posterior parietal 

cortex (PPC) [53], or M1 [41, 54, 55]), or the number of Degrees of Freedom (DOF) 

controlled [11, 36].

In the BC mode, subjects have shown a remarkable ability to rapidly adapt their neural 

activity patterns to the task context, as suggested by the marked differences between M1 

activities in the MC and BC modes [21, 56]. There are likely multiple explanations. The 

primary somatosensory cortex (SI), for example, is anatomically and functionally connected 

to multiple motor cortical areas [57], and evidence suggests that it exercises significant 

influence on motor cortex during natural movement planning and execution [58-62]. Further 

support for SI involvement in adaptation is provided by studies in which congruence of 

visual and proprioceptive feedback improved BMI performance [16]. Other sources of 

adaptation may come from other brain areas, particularly the posterior parietal cortex (PPC) 

that was shown to mediate visually-guided, on-line corrections of movement trajectories [63, 

64]. Given the abstract nature of BMI learning, some degree of cognitive control flexibility 

given the altered form of feedback is required, which may favor executive control areas 

known to mediate such processes such as the prefrontal cortex [65-70].

The pioneering work of Fetz et al. [5] provides a foundational basis for the emergence of 

this adaptation mechanism, since it established the causal relationship between the volitional 

control of neuronal activity and reward when no overt movement is produced. Able-bodied 

monkeys could condition the firing rate of single neurons in precentral “motor” cortex to 

earn food reinforcement [71]. Because the monkeys did not know beforehand what the 

conditioning rule is, neurofeedback—the transformation of the neural state into sensory 

feedback through an engineered decoding rule—was used to shape the monkeys’ behavior. 

It was further suggested that selectively dissociating patterns of neural activity by 

reinforcing one activity while simultaneously suppressing another could be used to study 

causality between the underlying brain structures where these neurons reside. In essence, the 
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simple integrator of spiking activity from single units reported by Fetz et al. constitutes the 

first “closed loop decoder” according to modern BMI terminology. This simple—yet 

powerful—neurofeedback idea capitalizes on intrinsic and instantaneous adaptation 

mechanisms that are not entirely clear. Unlike the biomimetic approach reported in 

subsequent BMI studies [41], knowledge of the tuning properties of the neurons being 

conditioned is not necessary. Instead, making the state of neural activity observable to the 

subject likely engages cognitive control mechanisms that are critical to rapid learning of the 

non-biomimetic decoding rule.

The neurofeedback concept has been recently extended to condition spatiotemporal patterns 

of activity from multiple neurons simultaneously recorded in the hand and forearm areas of 

the primary motor cortex of two non-human primates with chronic transradial and 

transhumeral amputation – the first BMI study with an animal having a chronic form of 

disability [38, 40]. Using recordings from ‘stable’ populations of M1 neurons [39], units 

were divided into a number of non-overlapping clusters of functionally connected neurons – 

as measured by spike train correlations during periods of spontaneous activity [72]. An 

unsupervised, non-biomimetic decoder was built from offline analysis of spontaneous neural 

activity to enable the monkeys to control multiple DOFs [40]. Monkeys learned to control 

Cartesian and hand grasp velocities in a self-paced reach-to-grasp task. Furthermore, they 

mastered control of this BMI (unpublished data) to a level that is comparable to a 

supervised, biomimetic-based decoding approach that was tested earlier in the same subjects 

[38]. They also demonstrated the ability to learn to coordinate the reach and the grasp 

components associated with the reach-to-grasp task with increasing task difficulty [73]. As 

these BMI-assigned neurons have been arguably de-afferented for several years prior to 

chronic implantation of the recording electrodes, this study is the first to shed some light on 

BMI-induced plasticity in local neural populations while being minimally confounded by 

other potential non-BMI related mechanisms engaged during natural behavior.

Scale and speed of adaptation

Learning a particular task can take anywhere from a few minutes to multiple days [10, 11, 

41, 43]. Early BMI studies have reported significant changes in tuning quality and preferred 

directions of BMI-assigned neurons over multiple trials [41, 74]. Most of these studies 

employed decoder recalibration strategies within each BMI session primarily to try to 

optimize these decoders and not to study how the animals adapt to various decoder designs. 

Such decoder recalibration practice essentially defines a new mathematical transformation 

between brain signals and the movement of the end effector that subjects had to relearn 

within each session [75]. In particular, it was shown that, after proficient control with one 

fixed biomimetic decoder, training another biomimetic decoder (which was still capable of 

reconstructing the offline kinematics as accurately as the first one) and using it online 

triggers a new learning cycle that was initially rapid but slowed down later on [76] [77]. 

Interestingly, while decoders were calibrated almost daily, subjects slowly became more 

proficient in learning a new decoder mapping in every new session. This learning trend 

results in larger performance gains within daily sessions [56, 78]. A more recent study 

reported that a two-stage decoder calibration process – in which the first stage initializes the 
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decoder while the other recalibrates it based on closed loop brain control data – results in a 

reduction in the observed changes in neuronal tuning between training and test data [79].

Since the decoder defines a causal link between the neural activity and the state of the end 

effector, a few studies have examined the extent to which subjects could learn to adapt to 

perturbations to a given decoding rule [29, 32, 33, 76, 80]. Changes in the statistics of neural 

activity were reported as changes in directional tuning and modulation depth. In particular, 

Jarosiewicz et al. [29, 32] reported that a large percentage (84%) of total error reduction was 

attributed to what seemed to be a global adaptation strategy by the entire population to the 

visuomotor rotation to adjust the error between the desired cursor movement and the 

decoded movement, with the remaining error (16%) explained by a local adaptation strategy 

that appears as changes in the tuning curves of only the perturbed subpopulation. In 

addition, the non-uniqueness of the solution to the vector summation as illustrated in Figure 

1 implies that multiple scenarios could be possible. Thus, a mix of adaptation strategies 

could be at play, depending on the local connectivity and the degree of influence that other 

areas could exercise on each of the recorded cells.

Another possible explanation for such changes is that subjects attempt to match their neural 

activity patterns to the transformation imposed by the decoder and the end effector 

dynamics, which together represent the external environment to be learned by the subject. In 

other words, subjects could be learning an internal model of the external environment in 

which the plant state is observed [81-83]. Evidence of such model in natural motor behavior 

dates back to von Helmholtz [84] and later in the 1950’s [85] who proposed that the CNS 

generates efference copy signals in parallel with descending motor commands that both 

interact with reafferent signals generated by the actual self-generated movements [86]. 

These signals may also interact at the spinal cord level as recent evidence suggests [87]. 

Other evidence of changes in representation as learning progresses comes from functional 

brain imaging studies in which a shift from prefrontal regions of the cortex to premotor, 

posterior parietal, and cerebellar cortex structures was observed a few hours after 

completion of practice while performance remains unchanged [88]. This shift was specific to 

the recall of an established motor skill and suggests that with the passage of time, the change 

in the neural representation of the task may underlie its increased functional stability. These 

gradual shifts in the representation could be a viable means to optimize the spatiotemporal 

patterns of neural activity that drive the decoder in order to produce desired dynamics in the 

task space.

In another series of studies [56, 76], the authors contended that a “stable” fixed decoder 

mapping is needed to facilitate proficient control and skill learning in efferent BMIs. 

Stability here refers to stationarity of unit waveform shapes and underscores the fact that 

keeping the decoder fixed across days necessitates the stability of the decoded units across 

these days. As such, a stable transformation not only requires fixing the decoder mapping, 

but also assigning units to the BMI that have stationary spike waveform shapes that does not 

alter the day-to-day spike sorting outcome. Only a few neurons (on the order of tens), 

however, can be stably isolated across a period of days to weeks in typical chronic 

microelectrode recordings [39, 41, 76, 89-91], although Taylor et al. empirically reported 

maintaining stability of neurons—as determined by their tuning properties to overt 
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movement kinematics—for ~3 years (Taylor, Tillery et al. 2002). Consequently, with few 

exceptions [92], most BMI studies to date rely on identification of new units and decoder 

recalibration before each session. Novel techniques that track units across days could be 

useful to stabilize the mapping as learning progresses [39, 93].

Evidence that late proficient control with initially unwieldy but later seamless switching 

between an “old” and “new” decoder rules could be attained is illustrated in Figure 2 from 

[76, 77]. In particular, subjects attained proficient control using one decoder over 8 days 

after which the decoder coefficients were shuffled such that weights corresponding to one 

neuron were randomly re-assigned to other neurons within the population that drive the 

decoder. Attaining comparable BMI control performance within a few days suggests that 

subjects not only learned a specific decoding rule per se, but they also learned to transfer 

experience learned under one rule to another [34], although the reported time scale for 

learning such skill (3-4 days) was different from the one reported during visuomotor 

perturbations (300 trials-same day [80]). Nonetheless, judicious comparison is necessary 

given that different decoding algorithms, control variables, and perturbation schemes were 

used. A more recent study suggested the existence of neural constraints on learning BMI 

skills [33]. In particular, when the high-dimensional neural activity was projected onto a 

low-dimensional “intrinsic manifold” that captures the statistics of naturally occurring 

patterns in the neural data, perturbations to decoders of this low dimensional representation

—labeled within-manifold perturbations and hence termed “more intuitive” —were 

learnable on a scale of hours. In contrast, perturbations to the projections of the high-

dimensional representation—labeled outside-manifold perturbations and hence “less 

intuitive”—were harder to learn within the same session. Notably, the “more intuitive 

mapping” contended to exist in the within manifold perturbation included both biomimetic 

and non-biomimetic decoder mappings that could be learned by the monkeys, as long as the 

non-biomimetic decoder was constrained by the span of the neural co-modulation patterns, 

which has been suggested by an earlier study [40]. Nonetheless, the study did not test 

across-session learning – a critical element in the comprehensive assessment of the true 

extent of skill learning as opposed to mere sensorimotor adaptation that is known to occur 

within single sessions.

PLASTICITY ASSOCIATED WITH BI-DIRECTIONAL BMIs

Bidirectional BMIs (BBMIs) are systems designed to combine recording and stimulation of 

neural activity, either within the same region or across different regions. A critical element 

in their operation is the nature of events that autonomously trigger stimulation in target 

areas. In particular, we categorize BBMIs as either being exogenous or endogenous, as 

illustrated in Figure 3. Exogenous BBMIs rely on stimulating the nervous system based on 

explicit events that occur in the task space such as limb movement or object touch by the end 

effector when it is under brain control. In contrast, endogenous BBMIs, rely on implicit 

events that occur in the recorded neural activity without necessarily being mapped in the 

task space in the form of neurofeedback. In both categories, a recurrent loop is formed, and 

the time scale that governs this loop could be a primary factor that distinguishes the extent 

and longevity of plasticity that each system may induce.
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Plasticity induced through activity-dependent stimulation

Endogenous BBMIs rely on plasticity mechanisms triggered by activity-dependent 

stimulation (ADS) that operate over a very short time scale (< 50 ms) and could take effect 

in just a few trials. This choice of time scale has roots in Hebbian plasticity [94] that triggers 

Long Term Potentiation (LTP) and long Term Depression (LTD) between pre- and 

postsynaptic neurons [95-97]. A proof of concept was demonstrated by Jackson and co-

workers who delivered ADS to the wrist area of M1 over multiple days (1.6 days on 

average)[98]. For every action potential recorded from a trigger electrode implanted in this 

area, a single pulse was delivered after a pre-determined delay of 0-50ms to a target 

electrode implanted in an adjacent region. Thus, stimulation patterns were triggered based 

on spiking events from neurons that became active on the trigger electrode while monkeys 

engaged in natural behavior. The ensuing changes were assessed using an ICMS protocol, 

where two days of ADS were sufficient to shift the function of the neurons at the trigger site 

to resemble those on the target site, whereas no changes were observed in neighboring 

control sites that were not targeted by the ADS paradigm. This effect was observed for 

delays up to 50ms, whereas delays of 100 ms or more did not induce significant changes. 

Importantly, this effect developed gradually and lasted for one week. The authors suggested 

that these effects could be explained by the potentiation of synapses within the horizontal 

connectivity in cortex, although facilitation through indirect routes in the more extensive 

network that involve peripheral muscle groups innervated by the target site may still be 

possible [99].

Using a similar ADS paradigm, strengthening of neural connections between motor cortex 

and spinal cord was demonstrated [100], albeit the pairing was done between a motor cortex 

site and a spinal postsynaptic site to demonstrate the negative direction of the STDP rule, 

i.e., depression of synapses when post- before pre-synaptic neuron firing occurs. In 

particular, the finite conduction time from motor cortex to the spinal cord was argued to 

enable the stimulation of the target site to occur before spikes from the trigger area arrived at 

the target area and thus is likely to weaken the synaptic connectivity, consistent with a bi-

directional STDP rule. The stimulation paradigm continued for 1-2 days, interleaved with 

recordings of neural and EMG activity during the behavioral task to assess the synaptic 

strength. It was shown that a brief stimulation period of 3.5 hours was enough to strengthen 

the synaptic connections – as measured by an increase in the magnitude of the rectified 

EMGs. With prolonged 1-2 days of conditioning, synaptic connections were strengthened 

with delays of 12-25ms, weakened with delays of 0ms, and not significantly changed with 

delays of 50ms or longer. These effects persisted for 1-2 days after cessation of the ADS 

paradigm.

Longevity of plasticity and homeostatic regulation

In endogenous BMIs, the functional re-organization induced by the artificially synchronized 

populations of neurons seems to be localized to the recording and stimulation sites, and thus 

other distal areas that perhaps have access to information about the target activity rates of 

neurons in the conditioned sites are likely unaffected by the ADS paradigm. O’Donnell and 

Nolan [101] review evidence that, among neurons of a single type, integration of synaptic 

responses is tuned according to the particular function that individual neurons carry out. 
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This tuning may not be restricted to sensory pathways, but could extend to cognitive and 

motor circuits [102]. In fact, neurons in V1 show decreased firing within hours of sensory 

deprivation followed by a rebound to baseline levels 1-6 days post deprivation, with similar 

patterns in sleeping and awake states [103,104]. Our recent data suggest that this also occurs 

in primary somatosensory cortex (S1), and that population – but not single neuron – 

dynamics may provide the necessary sensing mechanism at milliseconds time scale to detect 

perturbations to individual neurons’ function, and consequently adjust connectivity strength 

to restore the “old” function of these neurons [105], or adapt them to the “new” function. 

With the likely continued participation of neurons near stimulation sites in other behavioral 

functions after cessation of the ADS paradigm, populations in distal areas could provide the 

necessary readout to ensure that the activity level of the artificially synchronized neurons 

returns to the homeostatic state prior to the induction of the paradigm, and an efficient way 

to carry out this function could depend on the dynamics of coherent oscillations among these 

areas that spikes are phase locked to.

We then ask: what are the intrinsic mechanisms that allow neurons to change their firing 

patterns to execute reward-based goal-directed behavior such as BMI control while 

constraining their activity to allow them to perform their original function? Some clues that 

could help address this complicated question may come from one of the most prominent 

forms of plasticity: homeostatic regulation of individual cells and cell assemblies [106-109]. 

Turrigiano [102] defines a homeostatic form of plasticity as one “that acts to stabilize the 

activity of a neuron or neuronal circuit in the face of perturbations, such as changes in cell 

size or in synapse number or strength, that alter excitability”. Homeostatic regulation 

involves changes in intrinsic excitability that arise from various combinations of ion channel 

densities in a cell membrane [110]. Indeed, some BCI and motor neurophysiology studies 

have hinted at such homeostatic regulatory mechanisms - albeit being referred to as 

"retention”[111, 112]. Other potential mechanisms act to adjust synaptic strength 

(Turrigiano and Nelson, 2004) or synapse number (Kirov et al., 2004) through changes in 

postsynaptic receptors and GABA (γ-aminobutyric acid)[107-109]. The process depends 

critically, however, on neurons having a way to sense their own activity rate and constantly 

modify their intrinsic parameters as a function of the sensed values. This sensing mechanism 

could be localized within an area, or globally distributed across multiple areas. Coordination 

between multiple brain areas could be key to integrating information between these 

subprocesses, as has been suggested using widespread surveillance of cortical activity 

during an ECoG-based BMI experiment documenting the engagement of prefrontal cortex, 

premotor cortex, and posterior parietal cortex in the early phase of BCI training [113].

DISCUSSION

What is the extent to which rapid neural adaptation contributes to BMI learning? When no 

overt movements are produced, it is critical to bind the volitional motor intent with 

neurofeedback within a short time scale to establish causality. This process is likely 

subserved by a number of sub-processes that encode: the volition, the feedback and the 

transformation between the two, as well as the attentional demands to the causal evidence 

resulting from this transformation. Information integration must occur between these sub-
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processes, and thus requires an effective way to be communicated – both in space and time – 

between the brain areas involved.

Our first proposal is that this communication is mostly carried out using coherent oscillatory 

brain activity. While evidence from BMI studies has been scarce, oscillations have been 

shown to play a prominent role in natural sensorimotor learning [114, 115]. For example, 

fast oscillations in the gamma-range (30-80 Hz) emerge during attentional selection [116], 

perception of spatial saliency maps [117, 118], and volitional scaling of movements 

[119-121]. In addition, enhanced power in the beta frequency range (15 to 25 Hz) has been 

observed during learning skilled movements, reflecting interregional coherence in large-

scale sensorimotor networks [122-125]. Widespread surveillance of cortical activity 

suggests that oscillations gradually decrease as motor skill learning progresses over a single 

training session [126-128].

Our second proposal is that learning exogenous BMI control engages brain areas similar to 

those that mediate natural sensorimotor learning that involve thalamo-cortical, cortico-

striatal, fronto-parietal loops [88, 129-133] as well as the cerebellum [58, 134]. In these 

loops, development of a motor skill with extended practice results in a profound reduction in 

the synaptic activity required to produce internally generated commands but not visually 

guided movement sequences [135]. The cellular mechanisms at play behind this learning-

related plasticity may involve brain-derived neurotrophic factors (BDNF) that influence 

synaptic plasticity [136-138], and if one considers that local field potentials (LFPs) – a class 

of oscillatory brain activity – to represent the spatial summation of coherent dendro-synaptic 

membrane potentials [139], changes in synaptic strength would translate into changes in the 

overall magnitude of LFP oscillations as well as their time constants.

Our third proposal is that coherence between distant neuronal assemblies may not be a mere 

signature of learning but rather a potential mechanism to induce cortical re-organization that 

is essential for learning to progress. Evidence that support this proposal is that mere 

induction of coherent response patterns to presentation of specific stimuli via a 

neurofeedback approach (and without repeated stimulus presentation) results in significant 

behavioral performance improvement upon testing with these stimuli, but not for other 

stimuli [140]. Thus, coherent oscillatory activity could be critical to promote cortical re-

organization to enable consolidation of BMI skills while preserving the overall stability of 

the sensorimotor network that regulate the excitation/inhibition balance in the local 

population as learning progresses.

One experimental design to test the hypotheses we put forward here is to perform 

widespread surveillance of cortical and subcortical activity when small populations of BMI-

assigned neurons are used for BMI control and test the extent to which these areas become 

less (or more) involved in the task as subjects become proficient. One could then use cell-

type-specific optical perturbation through optogenetic means to precisely control the 

entrainment of oscillations in one or more of these areas at various epochs of the task. This 

will effectively create “information lesions” that can be used to test the extent to which this 

manipulation influences the coherence of the oscillations (or their unit phase locking) where 

BMI-assigned neurons are recorded, and whether this correlates with changes in within-
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session performance in BMI tasks, or in the subject’s ability to exercise consistent BMI 

control across sessions.

It is certainly plausible that oscillations may serve other roles in exogenous BMIs, such as 

volitional control. Indeed, a recent study suggested that subjects can volitionally control the 

oscillation dynamics in motor cortex – as measured by an overall decrease in gamma power, 

unit phase locking and depth of entrainment – as a function of distance from conditioning 

sites [141]. The distribution of correlated sites appeared to be widespread within 

sensorimotor cortex, confirming previous studies that documented elevated levels of inter-

areal coherence between somatosensory and motor areas that may be a signature of 

acquiring novel sensorimotor associations [142] during the planning and execution of 

instructed delay tasks [143], as well as during exploratory behavior [70, 92, 127, 141, 

144-150]. A few BMI studies have demonstrated the ability of subjects to simultaneously 

control two DOFs via online LFP decoding [92][151][152]. Nevertheless, the efficacy of 

oscillations as independent signals for use as a source for multiple (>2) DOF BMI control 

remains to be shown.

To summarize, we propose that BMIs induce long-term plasticity that consolidates motor 

BMI memory through the involvement of multiple cortical and subcortical areas during the 

early phase of learning. During that phase, it is critical that volitional control of neural 

activity is transformed from being primarily sensory guided to more anticipatory planning 

with some level of control automation. The initial phase seems to be important to explore 

the ability to coordinate the activity needed to drive the populations controlling the end 

effector, depending on the complexity of the task. Redundancy in information representation 

in space and time among neurons contributing – directly or indirectly - to BMI control could 

be a strategy to determine the most flexible and efficient way for inter-areal communication 

in order to generate neuronal activity that is optimal for the decoding rule while minimizing 

metabolic cost. The late phase, on the other hand, may be critical to ensure an internal model 

of the plant that includes the transformation of motor intent is stable enough to enable the 

transfer of skills learned in one control setting to other types of tasks without significant 

decoder recalibration. Further refinement of that model could be served by plasticity 

mechanisms associated with learning-induced changes in gray matter, similar to those seen 

in individuals learning a particular skill over relatively long time periods [153]. With 

continued practice, the volitional control of neural activity could be more efficiently 

achieved within smaller and more focused areas akin to that observed in sensory and motor 

cortices of professional musicians compared to amateurs or non-musicians [154, 155]. It is 

necessary that future BMI studies be carried out over prolonged periods enough to provide 

support for these hypotheses, and to further assess whether changes in structural and/or 

functional connectivity between areas, if any, following termination of extensive BMI 

training are paralleled with changes in BMI control skills.

CONCLUSIONS

We have reviewed a substantial body of literature documenting multiple forms of 

neuroplasticity in BMI studies and variable rates of learning that could explain the large 

variability in measured performance. We compared potential BMI learning mechanisms to 
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those known to mediate natural sensorimotor skill learning. In particular, we emphasized the 

causality principles that govern BMI operation as well as findings that document the 

involvement of multiple brain areas in learning these principles, even though only a small 

population of neurons is typically selected to control the end effector. We also highlighted 

the potential role that oscillations might play during this process and their contribution to 

binding volitional motor intent signals with the ensuing sensory feedback. This body of 

evidence strongly support the idea that formation, consolidation and recall of BMI memory 

relies on binding operant intentional actions with congruent sensory feedback in ways that 

facilitate the cognitive control of the plant. We have categorized BBMIs that include 

artificial stimulation based on the information they provide, as well as the type and longevity 

of plasticity they induce depending on the occurrence of events in the task space or in the 

neural space. In this realm, the time scale that governs the integration of information from 

multiple subprocesses in exogenous BBMIs seems to be the most critical; the perceived lack 

of such integration in endogenous BBMIs could strip those brain areas involved in BMI 

learning from the ability to maintain the artificially induced plasticity for prolonged periods 

of time.

While we have emphasized studies that examined adaptation to perturbations in the 

decoding rule, a number of challenges encumber the ability to assess the full extent to which 

neuroplasticity subserves BMI skill acquisition. First, stability of neural recordings is critical 

for the formation, consolidation and recall of BMI experience. Yet, stability is not always 

predictable, particularly when using invasive microelectrodes, due to adverse biotic and 

abiotic factors beyond the experimenter’s control [156]. We have summarized evidence 

suggesting that the use of not-necessarily-stable neural ensembles and daily decoder 

recalibration schemes, as classic BMI experiments typically do, correlates with significant 

variability in day-to-day performance and possibly result in a directional bias in decoded 

trajectories [157], albeit subjects can still maintain an overall improvement in performance. 

Thus, it appears that the lack of stability of the interface and the need for subjects to 

frequently relearn decoder mapping is a major impediment to BMI skill acquisition and to 

the ability to fully assess the extent of plasticity accompanying BMI learning. Further 

controlled studies are needed to elucidate the mechanisms by which subjects adapt to 

recording instability or inaccuracy in front-end signal processing such as online spike 

sorting. Other neural recording techniques, such as calcium imaging of neurons engaged in 

BMI [31], may shed some light on how adaptation may be taking place within local 

populations without being confounded by limitations of microelectrode recording 

techniques.

Second, the assessment of changes in the level of excitability of BMI-assigned neurons 

remains a challenge in subjects unable to move their limbs. The availability of kinematic 

data from able-bodied subjects permits to some extent the assessment of such changes, but 

recent evidence suggests that these data may not be sufficient to single out these changes, 

given the engagement of animals in other unrelated behavior that may in by itself alter this 

excitability. Animal models that are closest to the actual human subjects who will ultimately 

benefit from this technology would be key to elucidate these mechanisms [38-40].
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Third, neurons during BMI control may be susceptible to variations in attentional levels and 

degree of motivation and fatigue that are hard to measure in an awake behaving subject. 

Subjects are typically exposed to the BMI task for a few hours per day, after which they 

return to their normal activity in which they engage in behavior that may involve the 

recruitment of BMI-assigned neurons. As such, their tuning properties may change due to 

their participation in other non-BMI related motor and cognitive functions, making it hard to 

disentangle plastic changes solely caused by BMI practice from those that are not.

In summary, it would be important for future studies to shed some light on the potential 

involvement of higher order areas, particularly frontal lobes, in BMI learning to provide 

support for the number of hypotheses we put forward here. Ultimately, sensorimotor events 

during this learning process are instances of specific cognitive functions that the brain must 

engage in to optimize BMI control. An important element of these functions is the ability to 

predict sensory consequences of efferent control, whether it is natural (as in uni-directional 

BMIs) or artificial (as in exogenous BBMIs), to provide some form of integration between 

top down modulation of motor commands and bottom up sensory processing – that may be 

subconscious – to minimize prediction error. Perhaps when this prediction becomes highly 

reliable, the control may shift from being primarily sensory guided to being more internally 

generated and autonomous, much like the control of the natural motor repertoire. Future 

work will need to further characterize the interaction between training protocols and BMI-

induced plasticity, and to provide a systematic approach to augment this training based on 

subject specific learning progress that is independent of task difficulty, so as to continue to 

promote plasticity that improves performance. These features would be critical for the 

widespread use of BMI technology and for broadening their application in other 

neurological diseases and disorders.
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Figure 1. 
(a) Three possible compensation mechanisms following perturbation to population vector 

decoders (©2008 by National Academy of Sciences, adapted from Jarosiewicz B et al. 

PNAS 2008;105:19486-19491). A. Population vector before perturbation (black vector) 

pointing straight toward the target. B. After perturbation, some units will contribute 

differently to the population vector because of their rotated decoder coefficients (red 

vectors) and the resulting population vector does not point at the target. C. One possible re-

aiming strategy based on a virtual target (dotted circle) that recruits a set of neurons with 

preferred directions that point toward the virtual target. The net vector sum is a population 

vector pointing toward the actual target. D. A re-weighting strategy. Down-modulating the 

firing rate of the rotated units makes the population vector straighten toward the target. E. A 

possible re-mapping strategy based on recruiting only unperturbed cells that point toward 

the target and perturbed cells that point 90° from the target to make the population vector 

point directly at the target.

(b) Conceptual illustration of redundancy using population vector addition where three of 

infinitely many solutions are depicted that give rise to the same population vector (blue 

vector).
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Figure 2. 
Neural adaptation to the decoder. (a) Changes in performance for similar trials with 

substitution of newly trained decoders (adapted from [76])

(b) (A-C) Sample units’ tuning curves across days within a decoder series (13-day). Color 

indicates the day (light to dark progression); dashed lines represent non-statistically 

significant tuning fits. (D) Changes in tuning modulation depth and preferred directions for 

all BMI-assigned units across the decoder series (relative to the first day). Grey squares 

indicate units that were not part of the ensemble, or were not significantly tuned. (E) 

Pairwise correlations of the ensemble tuning maps across the decoder series. (F) Average 

map correlation for each day (red) overlaid onto task percent correct (black) (adapted from 

[77])
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Figure 3. 
(a) Exogenous BMIs: Decoding motor intent signals involves reducing the dimensionality 

of the sampled neural state space to a small number of control variables (Degrees of 

Freedom) in the task space. The converse is true in the encoding of sensory feedback where 

stimulation through a small number of channels likely activates a larger number of 

functionally heterogeneous cells. Stimulation is triggered based on the dynamics of the end 

effector state. The congruence between the artificial somatosensory feedback and other 

forms of feedback (e.g. visual) could facilitate BMI sensorimotor learning.

(b) Endogenous BMIs: Stimulation is triggered based on events in the neural state space 

independent of those in the task space. Neurons in the recording and stimulation sites are 

functionally distinct before conditioning, but become functionally similar after conditioning, 

as demonstrated in the behavioral task space. The time scale of the closed loop operation is 

critical to induce Hebbian-like plasticity that is consistent with strengthening synapses 

between the recording and stimulation sites.
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