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Quasiparticle spin resonance and coherence
in superconducting aluminium
C.H.L. Quay1, M. Weideneder1, Y. Chiffaudel1, C. Strunk1,2 & M. Aprili1

Conventional superconductors were long thought to be spin inert; however, there is now

increasing interest in both (the manipulation of) the internal spin structure of the

ground-state condensate, as well as recently observed long-lived, spin-polarized excitations

(quasiparticles). We demonstrate spin resonance in the quasiparticle population of a

mesoscopic superconductor (aluminium) using novel on-chip microwave detection

techniques. The spin decoherence time obtained (B100 ps), and its dependence on the

sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main

decoherence mechanism. The striking divergence between the spin coherence time and the

previously measured spin imbalance relaxation time (B10 ns) suggests that the latter is

limited instead by inelastic processes. This work stakes out new ground for the nascent field

of spin-based electronics with superconductors or superconducting spintronics.
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S
pin/magnetization relaxation and coherence times, respec-
tively, T1 and T2, initially defined in the context of NMR,
are general concepts applicable to a wide range of systems,

including quantum bits1–4. If one thinks of spins as classical
magnetic moments, T1 is the time over which they align with an
external magnetic field, while T2 is the time over which Larmor-
like precessions of the spins around the external field remain
phase coherent2. (T1 is sometimes also called the longitudinal or
spin-lattice relaxation time and T2 the transverse relaxation time.)
T1BT2 for conduction electrons in most normal metals3,5–7.

In a typical electron spin resonance (ESR) experiment, electrons
are immersed in an external homogenous static magnetic field, H.
Microwave radiation creates a perturbative transverse magnetic
field (perpendicular to the static field) of frequency fRF. The power
P(H, fRF) absorbed by the spins from the microwave field is
determined, usually by measuring the fraction of the incident
microwaves that is not absorbed, that is, either transmitted
or reflected. When H is tuned to its resonance value,
Hres ¼ 2pfRF=g—with g the gyromagnetic ratio—the electron spins
precess around H and P(H, fRF) is maximal. P(H, fRF) is
proportional to the imaginary part of the transverse magnetic
susceptibility, i.e. to ½ H�Hresð Þ2þ 1

gT2ð Þ2�
� 1 in the case of a linearly

polarized field8. Thus, T2¼ 2/(gDH), where DH is the full width at
half maximum of the power resonance as a function of H.

At first glance, these ideas might seem to be irrelevant to
conventional Bardeen–Cooper–Schrieffer (BCS) superconductors,
as the BCS superconducting ground state is a condensate of
Cooper pairs of electrons with opposite spins (in a singlet state)9.
It has recently been demonstrated, however, that a
non-equilibrium magnetization can appear in the quasiparticle
(that is, excitation) population of a conventional superconductor,
with T1 on the order of several nanoseconds10–14.

This raises the question of T2 for these non-equilibrium
quasiparticles; however, the short penetration depth of magnetic
fields in type-I superconductors (B16 nm for bulk aluminium)
creates difficulties for the observation of quasiparticle spin resonance
(QSR): firstly, the signal is small—for normal metals, conduction
ESR measurements are typically carried out on macroscopic foils
tens of microns thick3,15, and, second, the magnetic field in the
superconductor is highly inhomogeneous16. (In type-II and
unconventional superconductors, the entry of vortices into the
sample can solve the first problem but not the second.)

In the following, we overcome these obstacles using thin-film
samples and two novel on-chip microwave detection techniques
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Figure 1 | Two on-chip microwave power detection schemes for superconducting (hybrid) devices. (a,c) Scanning electron micrograph of a device

nominally identical to Device A (scale bar, 1 mm) and schematic drawings of the two measurement set-ups. (Data shown are from Device A unless

otherwise stated.) In both cases, a static magnetic field, H is applied parallel to a superconducting bar (S, Al) and a sinusoidal signal of root mean squared

amplitude VRF and frequency fRF in the microwave range applied across the length of S (with a lossy coaxial cable in series), resulting in a high-frequency

field perpendicular to H. To detect the spin precession of the quasiparticles in S, two on-chip detection methods are used. (a) Detection scheme 1: a voltage

Vd.c. is applied between S and a normal electrode (N1, thick Al) with which it is in contact via an insulating tunnel barrier (I, Al2O3). The differential

conductance G¼ dI/dVd.c. is measured, where I is the current between N1 and S. (b) G as a function of Vd.c. and nominal VRF (at the output of the generator

and not accounting for attenuation in the lines). The red dot indicates the operation point of the detector for the data in Fig. 2: VRF ¼ V0
RF, Vd.c.¼ � 288 mV.

For any given frequency, we define V0
RF as the VRF (at the output of the generator) at which the effective voltage at the device is the same as that for

fRF¼ 7.14 GHz and VRF¼ 16.81 mV. (See Supplementary Note 2 and Supplementary Fig. 2). (c) A slice of b at Vd.c.¼ � 288 mV (blue dashed line in b) with

the operation point indicated. (d) Detection scheme 2: a current Id.c. is injected along the length of S. We measure either the voltage V between the ends of

the S bar or the differential resistance R¼dV/dId.c.. We record in particular the switching current IS at which S first becomes resistive. (e) R as a function of

Id.c. and nominal VRF (not accounting for attenuation in the lines). The switching current IS at which S become resistive appears here as a peak in R. IS can be

seen to decrease monotonically with VRF. The red dashed line indicates the operation point of the detector for the data in Fig. 3: VRF¼0.8V0
RF. (f) The blue

trace is the first slice of e (blue dashed line in e) at VRF¼0.1 mV. The black trace is a two terminal measurement of the S bar, in the absence of microwaves,

with a constant corresponding to the resistance of the lines subtracted. The difference in IS between the two indicates that the S bar is strongly out of

equilibrium in our second (switching current) detection scheme. (See Supplementary Note 4).
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to perform QSR experiments on superconducting aluminium.
We find T2B100 psooT1B10 ns (ref. 12), in contrast to normal
metals where T1BT2, and identify spin–orbit scattering as the
main decoherence mechanism.

Results
Devices and measurement set-up. Our devices are thin-film
superconducting (S) bars, with a native insulating (I) oxide layer,
across which lie normal metal (N) and either superconducting
(S0) or ferromagnetic (F) electrodes (in the cases of devices B and
A, respectively). Here S and S0 are both aluminium, I is Al2O3, F is
cobalt with an aluminium capping layer and N is thick alumi-
nium with a critical magnetic field of B50 mT (ref. 17). In all the
data shown here, the N electrodes are in the normal state. The
F electrodes are not used here, but rather in frequency-domain
measurements of T1 reported elsewhere10. Device A, lying atop a
Si/SiO2 substrate, is shown in Fig. 1. As in previous experiments,
the NIS junctions have ‘area resistances’ of B6� 10� 6O cm2

(corresponding to barrier transparencies of B1� 10� 5) and
tunnelling is the main transport mechanism across the insulator.
(See Supplementary Information of ref. 12.) Measurements were
performed at temperatures down to 60 mK, in a dilution
refrigerator. On the basis of conductance measurements across
the NIS juctions, S has a superconducting gap of 205±10 mV
(265±10 mV) in device A (device B), corresponding to critical
temperatures of 1.34±0.07 K (1.75±0.07 K) in the BCS theory.

A static magnetic field H is applied in the plane of the device
and parallel to the S bar (Fig. 1a). S has a thickness of dB8.5 nm
(6 nm) for device A (device B), well within the magnetic field
penetration depth l, which we expect to be t315 nm (375 nm) in
our samples at 70 mK. (See Supplementary Note 1 and ref. 18
for details on this estimate.) The ratio of the orbital energy
a ¼ D deHð Þ2

6‘ to the Zeeman energy Ez ¼ 1
2 gmBH is B0.32 (0.22) for

the quasiparticles in S in device A (device B) at 0.5 T \ the
highest measured resonant magnetic field Hres. It is lower at lower
fields. Therefore, the Zeeman energy is always dominant and we
are in the ‘paramagnetic limit’16,19,20. Here D is the diffusion
constant, e the electron charge, g the Landé g-factor, mB the Bohr
magneton and ‘ Planck’s constant. (See Supplementary Note 1
for details.) The data shown below are from device A unless
otherwise stated.

A sinusoidal radio frequency signal of frequency fRF and root
mean squared amplitude VRF is applied across the length of the S
bar (via a lossy, that is, resistive coaxial cable). The resulting
supercurrent flowing along the length of S serves primarily to
produce the desired high-frequency magnetic field perpendicular
to H; secondarily, it also breaks some Cooper pairs and thus
increases the quasiparticle population. Microwave radiation due
to the supercurrent thus impinges on the quasiparticle spins in
S. Some of this radiation is absorbed by the quasiparticle spins,
and the rest transmitted to and absorbed by the surrounding
environment. The ‘transmitted radiation’ can appear as a voltage
across a tunnel junction between S and N; this is the basis of our
first detection scheme (DS1; Fig. 1a). It can also be absorbed by
the superconducting condensate, thus reducing the density of
Cooper pairs and the current IS at which S becomes resistive,
known as the switching current; this is the basis of our second
detection scheme (DS2; Fig. 1c). Both of our detection schemes
for P(H, fRF) are therefore entirely ‘on-chip’.

In DS1 (Fig. 1a), we apply a bias voltage Vd.c. across an NIS
junction and measure its differential conductance G¼ dI/dVd.c.

using standard lock-in techniques. (I is the current across the
junction.) Figure 1b shows such traces as a function of VRF, in
which we see a flattening of the coherence peaks in a monotonic
manner. (This is similar to the effect of classical rectification10.)

Figure 1c shows a slice of Fig. 1b at Vd.c.¼ � 288mV. G across
the junction can be seen to be an effective microwave power
meter at the chosen operating point (red dot). We define V0

RF
(for any given frequency) as the reference VRF (at the output
of the generator) at which the effective voltage at the device is
the same as that for fRF¼ 7.14 GHz and VRF¼ 16.81 mV.
(See Supplementary Note 2 and Supplementary Fig. 2).

In DS2 (Fig. 1d), we measure the voltage–current characteristic
of the S bar and record the switching current IS. A current Id.c. is
injected from one N electrode to another and the resulting voltage
V across the length of the bar is measured. Figure 1e shows the
differential resistance R¼ dV/dId.c. of the S bar as a function of
Id.c. and of VRF. The peaks in these traces correspond to IS. IS can
be seen to depend monotonically on VRF and is thus also a good
measure of the latter.

Our on-chip detection provides improved sensitivity compared
with earlier work on the spin resonance of conduction electrons
in normal metals (CESR)3,21. Indeed, based on calculations for
CESR measurements on macroscopic samples, it was previously
thought that CESR signals in type-I superconductors would be
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circles, respectively). A linear fit to Hres(fRF) data gives a Landé g-factor of

1.95±0.2. The black dots indicate values obtained at different powers or

with the second detection scheme. (See Supplementary Note 3 and

Supplementary Fig. 3). All dots and circles have been offset by 53 mT to

account for a systematic shift in the applied magnetic field during the

associated cooldown. The squares indicate values obtained from Device B,

in which S is 6-nm thick.
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unmeasurably small22. This is no doubt why, while a considerable
amount of work has been done on the CESR in normal metals
since the 1950s, to our knowledge only one such measurement
has been performed on a bulk BCS superconductor (Nb) in the
vortex state, close to the critical field23–25.

Quasiparticle spin resonance. Having characterized our two
microwave power meters, we now perform QSR measurements
using each of them in turn, and compare the results of both.

In the first set of measurements, using DS1, we operate the NIS
junction detector—which is to say measure the differential
conductance G¼ dI/dVd.c. across it—at a fixed Vd.c. of � 288mV
and VRF ¼ V0

RF. (G(Vd.c., H) traces in the absence of microwaves
are shown in Supplementary Fig. 1). As can be seen in Fig. 1c, at
this operation point, small decreases in the absorbed power will
result in a proportional increase in G. (It can also be seen that we
remain in the linear regime in the measurements in Fig. 2).

Figure 2a shows G(H) at several different fRF. As expected, each
trace shows a resonance, that is, an increase in G(H) due to the
fact that more power is being absorbed by precessing
quasiparticle spins and therefore less appearing across the NIS
junction. We determine Hres and DH by a Lorentzian with a
linear-in-H background signal to these data. The background
comes from magnetic-field-induced orbital depairing in the
quasiparticle density of states. This measurement was repeated

at different fRF; Hres as a function of fRF is shown in Fig. 2b. A
linear fit to the data gives a g-factor of 1.95±0.2, consistent with
previous measurements of electrons in Al in the normal state26,27.

Note that DH may be larger than its intrinsic value if, for
instance, the static field is inhomogeneous in the region of
interest2. This would then lead to an underestimate of T2. In our
samples, however, d/2ool, as mentioned above. Thus, the
magnetic field seen by the quasiparticles is homogeneous to
t1:5% in the superconductor, much smaller than the DH we
measure, and our estimate of T2 is unaffected by magnetic field
inhomogeneity. This is confirmed by the fact that DH does not
depend on Hres, as can be seen in Fig. 2b. Field homogeneity has
been a challenge for both ESR and NMR measurements
performed on macroscopic type-II superconductors. In these,
specimen dimensions greater than l mean that the field decays
significantly within the specimen, and additional complications
often arise from the presence of vortices.

In the second set of measurements, we use DS2. As can be seen in
Fig. 1e, small decreases in the absorbed microwave power will result
in a proportional increase in the switching current IS. We first
measure the differential resistance R¼ dV/dId.c. of the S bar as a
function of Id.c. and of H at fRF¼ 6.05 GHz, VRF¼ 0.8 V0

RF (Fig. 3a).
We observe an increase in IS at H¼ 0.17 T, which we identify as
Hres—at this field, the quasiparticle spins enter into resonant
precession, thus absorbing more microwave power. Less power is
then transferred to the superconducting condensate and IS increases.
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In Fig. 3b, we show IS as a function of H at two different
frequencies. (IS is the average of 200 switching current values
obtained from V(Id.c.) measurements.) The expected resonance
appears at both frequencies. To compare results from the
two different detection schemes, we superimpose on these traces
data from Fig. 2a at the same fRF. We see that both Hres and DH
are the same for both detection schemes. We also verified that
Hres and DH are independent of VRF (see Supplementary Note 3,
Supplementary Fig. 3 and black dots in Fig. 2b).

As DS2 is sensitive to a longer portion of the S bar compared
with DS1, the agreement between the two detection schemes is
further confirmation that the magnetic field is quite homogenous
along the entire length of the S bar between the two N electrodes.
Thus, our results for T2 reported below should be reasonably
close to the intrinsic value.

The spin coherence time TS
2 for 8.5-nm-thick superconducting

aluminium (device A) is 95±20 ps as determined from DH
(the full width at half maximum of the resonance) in Figs 2a and
3b; this is fairly constant within the range of accessible fields
(Fig. 2b). Measurements on device B, in which S is 6-nm
thick yielded TS

2 ¼ 70±15 ps (Figs 2b and 3d). Both the order
of magnitude of TS

2 , as well as the fact that it is inversely
proportional to the film thickness, are consistent with spin
coherence limited primarily by tso, the Elliott–Yafet spin–orbit
scattering time5,12,26–36.

TS
2 is, however, relatively unaffected by the quasiparticle

density: In device A, the linewidths measured by DS1 and DS2
are identical (Fig. 3b), whereas the quasiparticle density is
estimated to be about two orders of magnitude higher in the
supercurrent measurements (with injection across the tunnel
junctions) than in the conductance measurements. (See Fig. 1f,
Supplementary Note 4 and ref. 37.) In device B, the linewidth
remained unchanged at temperatures of up to 600 mK and at
injection currents (across an NIS junction) of up to 42 nA.

Equilibrium measurement of the spin-flip time. It is thus
reasonable to compare TS

2 with an independent estimate of tso
from G(Vd.c.) measurements across an SIS0 junction in device B,
following work by Tedrow and Meservey on Al thin films20,31,38.
(Here S0 is a 8.5-nm-thick superconducting Al counter electrode.)
In the absence of spin–orbit coupling, as spin is conserved in
tunnelling between S and S0, G(Vd.c.) shows a peak at
Vd.c.¼ (DþD0)/e at all fields (with D (D0) the superconducting
energy gap of S (S0)) and the Zeeman effect is effectively invisible.
In the presence of small but finite spin–orbit coupling, spin
mixing modifies the density states for each spin and leads to a
small conductance peak at a lower voltage Vd.c.¼ (DþD0 � 2Ez)/
e, whose height Btso (Fig. 4). (At very strong spin–orbit
coupling, the two peaks merge; spin orbit then has the same effect
on the conductance trace as a depairing magnetic field20.) A fit
using the BCS density of states and the theory outlined in
refs 20,38 yields a spin-mixing parameter b of 0.018±0.002 and
tso¼ 45±5 ps, which agrees well with TS

2 above, as well as
previous measurements31 (Fig. 4).

Discussion
We now address the conspicuous divergence between TS

2 and TS
1 ,

the latter previously determined to be on the order of B10 ns in
films of similar thickness12. In comparison, in normal Al,
TN

1 �TN
2 B50 ps in such films at 4 K (ref. 12). (Note that TN

1
depends on the film thickness12,26,27,33–36).

The striking effect can be understood by considering that spin
imbalance (that is to say non-equilibrium magnetization) in
superconductors can be thought of, in a simple picture, as having
contributions from both a spin-dependent shift in the quasiparticle

chemical potentials as well as spin-independent heating of the
quasiparticle population11,39,40. The former can be characterized
by ms � mQP" � mQP#

� �
=2—with mQPa the chemical potential of

the spin-a quasiparticles—and the latter by an effective
temperature T*. (A more general description could be based on,
for example, the quasiparticle distribution function for each spin).

T* and ms should relax on different timescales, respectively, the
inelastic scattering time tin and the spin-mixing time
tsf (dominated in thin-film Al by tso). TS

1 is then the longer of
tin and tsf , whereas TS

2 should be affected only by tsf but not
tin–TS

1 and TS
2 in superconductors can thus be quite different.

That the previously determined value for TS
1 is close to

the inelastic relaxation time in Al, estimated to be B5 ns from
ref. 41 is consistent with spin relaxation being limited by tin and
in particular quasiparticle–quasiparticle interactions41,42. We
note that the quasiparticle–phonon interaction time tep—over
which the whole system relaxes to equilibrium—has recently been
determined in frequency-domain measurements in 20-nm-thick
Al films at 100 mK to be B1.6 ms (ref. 43), much longer than both
tee and tsf . Thus, tep should not be a limiting timescale for either
TS

1 or TS
2 .

In contrast, spin accumulation in normal metals is impervious
to T* and is due only to ms. Spin relaxation in normal Al then
occurs over tsf , which also governs spin coherence. Thus,
TN

1 �TN
2 � tsf and indeed these terms are sometimes used

interchangeably in the literature.
Our results are, in sum, consistent with spin–orbit scattering as

the main spin decoherence mechanism in thin-film superconduct-
ing Al, and also with a picture in which T1 and T2 diverge in
superconductors due to the plural sources of spin accumulation in
these systems. This has implications for (coherent) computing
possibilities using superconducting spintronic devices44, and also
raises new questions about the interactions between the two
sources of spin imbalance in the simple picture presented above, as
well as of both with the superconducting condensate39,40.
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Our methods for measuring the coherence time can in
principle be extended to other superconducting materials—both
conventional and unconventional—as long as they can be
nanostructured. A little more speculatively, our work also calls
to mind the NMR experiments performed on superfluid 3He,
which were critical for identifying its different phases and in
particular their spin (triplet) structure; it opens up analogous
perspectives in (unconventional) superconductivity, where
(the manipulation of) the internal structure of Cooper pairs is
now an active field of enquiry.

Methods
Sample fabrication and transport measurements. We fabricate our samples
with standard electron-beam lithography and angle evaporation techniques in an
electron-beam evaporator with a base pressure of 5� 10� 9 mbar. We first
evaporated B6 nm (B8.5 nm) of Al for device B (A), which is then oxidized at
8� 10� 2 mbar for 100 to produce a tunnel barrier, then 100 nm of Al at an angle.
For device B, we then evaporated 8.5 nm at another angle. (In device A, 40 nm of
Co and 4.5 nm of Al are evaporated at the second angle, but these electrodes were
not used in this work.) All transport measurements were carried out in a 3He–4He
dilution refrigerator with a base temperature of 60 mK. Differential resistances were
measured with standard lock-in techniques. The switching currents IS reported
here are the mean values of 200–500 measurements.
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