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� Background and Aims Recent global changes, particularly warming and drought, have had worldwide repercus-
sions on the timing of flowering events for many plant species. Phenological shifts have also been reported in alpine
environments, where short growing seasons and low temperatures make reproduction particularly challenging, re-
quiring fine-tuning to environmental cues. However, it remains unclear if species from such habitats, with their spe-
cific adaptations, harbour the same potential for phenological plasticity as species from less demanding habitats.
� Methods Fourteen congeneric species pairs originating from mid and high elevation were reciprocally trans-
planted to common gardens at 1050 and 2000 m a.s.l. that mimic prospective climates and natural field conditions.
A drought treatment was implemented to assess the combined effects of temperature and precipitation changes on
the onset and duration of reproductive phenophases. A phenotypic plasticity index was calculated to evaluate if
mid- and high-elevation species harbour the same potential for plasticity in reproductive phenology.
� Key Results Transplantations resulted in considerable shifts in reproductive phenology, with highly advanced ini-
tiation and shortened phenophases at the lower (and warmer) site for both mid- and high-elevation species. Drought
stress amplified these responses and induced even further advances and shortening of phenophases, a response con-
sistent with an ‘escape strategy’. The observed phenological shifts were generally smaller in number of days for
high-elevation species and resulted in a smaller phenotypic plasticity index, relative to their mid-elevation
congeners.
� Conclusions While mid- and high-elevation species seem to adequately shift their reproductive phenology to
track ongoing climate changes, high-elevation species were less capable of doing so and appeared more genetically
constrained to their specific adaptations to an extreme environment (i.e. a short, cold growing season).

Key words: Climate change, flowering phenology, phenotypic plasticity, global warming, drought, common
garden, mid-elevation and high-elevation species, Swiss Alps.

INTRODUCTION

In seasonal climates, the timing of flowering is crucial for plant
reproductive success. Premature or late flowering can expose
plants to adverse environmental conditions such as frost events
(Inouye, 2008), can disrupt plant–pollinator interactions
(Memmott et al., 2007) and can lead to failures in seed set or
maturation. The timing of seasonal activities in plants has thus
evolved to be triggered by reliable environmental cues such as
date of snowmelt, photoperiod, temperature or soil moisture to
guarantee reproductive success (Rathcke and Lacey, 1985).
Recent global change has led to increased temperatures and to
more frequent and more extreme floods and droughts in some
areas (Hartmann et al., 2013) with repercussions on these envi-
ronmental cues. Shifts in phenological events have been used
as ‘fingerprints’ of ongoing climate change (Walther et al.,
2002; Jentsch et al., 2009) and are well documented in numer-
ous global-scale studies (Parmesan and Yohe, 2003; Peñuelas
et al., 2004; Menzel et al., 2006; Cleland et al., 2007).

Phenotypic plasticity may play a crucial role in the short-
term adjustment to novel conditions and can promote long-term
adaptive evolution by buffering against rapid change (Price
et al., 2003; Nicotra et al., 2010; Richter et al., 2012). Although

a potential for rapid adaptive evolution in flowering phenology
has been found (Franks et al., 2007; Haggerty and Galloway,
2011; Anderson et al., 2012) it remains unclear if natural selec-
tion can keep pace with the speed of ongoing changes (Visser,
2008; Shaw and Etterson, 2012). Alternatively, numerous plas-
tic adjustments to current climate change such as advanced and
accelerated phenophases in response to earlier snowmelt and
spring warming have been documented worldwide (Abu-Asab
et al., 2001; Fitter and Fitter, 2002; Cleland et al., 2007;
Vitasse et al., 2013).

In Europe, springtime has advanced by 2�5 d per decade since
the 1970s and delayed autumn events have led to an extension
of the annual growing season (Menzel et al., 2006). Longer and
warmer growing seasons could be associated with enhanced
plant growth (Hudson et al., 2011), although limiting factors
such as reduced water availability in summer could have nega-
tive effects. Indeed, summers in Switzerland have become drier
over the past 30 years (Beniston et al., 1994; Kovats et al.,
2014), and drought stress is known to influence plant growth,
performance and reproductive success (Levitt, 1980) and is
likely to also affect plant phenology (Peñuelas et al., 2004).
While some studies report on advanced flowering dates in
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response to drought (Jentsch et al., 2009; Bernal et al., 2011;
Franks, 2011) others found delayed flowering (Llorens and
Peñuelas, 2005). Phenological responses to drought appear to
be highly species specific (Bernal et al., 2011) as well as depen-
dent upon the specific ecosystem (Peñuelas et al., 2004), and to
follow complex spatiotemporal patterns (Peñuelas et al., 2004).
Furthermore, little is known about the combined effect of
warming and drought on flowering phenology (Dunne et al.,
2003; Bloor et al., 2010).

In the Swiss Alps, the increase in temperature has been
shown to be twice as high as that reported globally (Beniston
et al., 1994), and summer droughts are predicted to become
more frequent (Beniston et al., 1997; Kovats et al., 2014) mak-
ing mountain biota in this region particularly exposed to climate
change (Theurillat and Guisan, 2001; Körner, 2003). For alpine
plants, reproduction is especially challenging and the timing of
flowering even more central to reproductive success as the
timeframe for growth and reproduction becomes progressively
shorter with increasing elevation (Billings and Mooney, 1968;
Körner, 2003). Few studies have examined the effect of drought
on the phenology of alpine vegetation and generally found no
shifts (Bloor et al., 2010; Cornelius et al., 2013). However, ad-
vanced flowering was found when plants were grown in
warmer conditions (Scheepens and Stöcklin, 2013; Frei et al.,
2014a), and other studies with similar findings debated whether
phenological shifts were triggered by higher air temperatures or
advanced snowmelt (Price and Waser, 1998; Dunne et al.,
2003; Cornelius et al., 2013).

Furthermore, photoperiod plays a key role in protecting
plants from hazardous sprouting before the typical last date of
severe spring frosts. Keller and Körner (2003) found that half
of 23 study species were highly sensitive to photoperiod, and a
later publication from Basler and Koerner (2012) specified that
particularly late-successional species are photoperiod sensitive,
and may not react to periods of earlier snowmelt or higher tem-
peratures. This high level of adaptation to the particular alpine
conditions raises the question of whether high-elevation species
harbour the same potential for phenological plasticity as mid-
elevation species. As high-elevation species are adapted to short
growing seasons and have evolved to avoid frost damage, the
onset of flowering phenology is likely to be genetically fixed
(Keller and Körner, 2003), constraining their capacity to re-
spond plastically to changes in external conditions. While
Vitasse et al. (2013) found lower phenological plasticity in
high-elevation deciduous tree species, a reciprocal transplant
experiment with three grassland species revealed no difference
in plasticity between low- and high-elevation populations (Frei
et al., 2014a). However, to our knowledge no study has exam-
ined if mid- and high-elevation herbaceous species harbour the
same potential for phenotypic plasticity in flowering phenology
on a larger scale.

To examine how the combined effects of warming and
drought affect the flowering phenology of mid- and high-
elevation species as well as to examine whether phenotypic
plasticity in flowering phenology differs between species ori-
gin, we reciprocally transplanted 14 congeneric pairs of herba-
ceous perennial mid- and high-elevation species between
common gardens at 1050 and 2000 m a.s.l. Rain-shelters were
used at each site to control the water input to our system to
mimic severe drought events in summer. The study examined

whether transplantation and drought events induced shifts in the
flowering phenology of mid- and high-elevation species.
Specifically, we tested the following expectations: (1) earlier
onsets and expanded durations of phenophases at the lower
(warmer) site taking advantage of a longer growing season, (2)
delayed and shortened durations at the high-elevation site in ac-
cordance with later snowmelt and a shorter growing season, (3)
earlier onsets and shortened durations of phenological stages in
response to drought which acts to shorten the growing season,
and (4) a lower phenological plasticity in high-elevation spe-
cies, stemming from putative constrained adaptations to cold
environments.

MATERIALS AND METHODS

Common gardens and study species

Two common gardens (Supplementary Data Fig. S1) were es-
tablished in the Bernese Highlands in Switzerland, each accom-
modating four beddings delimited by a wooden frame
(1� 3 m). The high-elevation common garden is situated on the
Schynige Platte (46�39003�6300N, 7�54032�7600E) at 2000 m a.s.l.
on a southern slope. The snow-free period generally starts in
June and lasts until October (approx. 150 d). The average an-
nual temperature is 1 �C and the average annual amount of pre-
cipitation is approx. 1600–2000 mm, of which half falls as
snow (MeteoSwiss, 2014). The lower elevation common garden
is situated in Zweilütschinen (46�38026�5500N, 7�54015�2000E).
This was at 1050 m a.s.l. with a south/south-western slope. The
snow-free period usually lasts from mid-April to December
(approx. 250 d). The average annual temperature is 7�2 �C and
average annual precipitation is approx. 1100 mm, of which a
quarter falls as snow (MeteoSwiss, 2014).

Twenty-eight perennial herbaceous species were included in
this study, represented by 14 congeneric pairs of mid- and high-
elevation species (Table 1). The species pairs were selected to
cover a broad range of taxonomic groups and growth forms
while avoiding an overlap in their altitudinal range of distribu-
tion. The ranges of mid-elevation species lie between approx.
300 and 1000 m.a.s.l, while the ranges of high-elevation species
are mostly between approx. 1600 and 2400 m.a.s.l. (Table 1;
Lauber and Wagner, 2001; Aeschimann et al., 2004). Seeds col-
lected from flowers from wild populations were purchased
from Swiss seed producers (Samen & Pflanzen AG Schutz,
Filisur; UFA-Samen, fenaco Genossenschaft, Winterthur;
Wildstaudengärtnerei, Eschenbach).

Experimental design

In spring 2012, seeds were germinated on moist blotting pa-
per in the glasshouse of the Botanical Institute in Basel,
Switzerland. Seedlings were individually transferred into multi-
trays (4 cm diameter, 6� 9¼ 54 pots) filled with low-nutrient
soil (Anzuchterde Ökohum, Herrenhof, Switzerland). In mid
June, plants were brought outside in the garden of the Botanical
Institute to allow acclimation to outdoor conditions. At the be-
ginning of July, plants were transported to the common gardens
and transplanted into bigger pots (11�5� 11�5� 21�5 cm) filled
with the same potting soil. At each site, 12 individuals of each
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species were randomized in the beddings previously enriched
with potting soil and sunk to one-third depth into the soil. This
design was systematically replicated in the beddings receiving
rain-shelters, resulting in an experiment including a total of
1344 individuals across both sites and treatments (12 repli-
cates� 2 sites� 2 treatments� 28 species¼ 1344 individuals;
Fig. S1). The rain-shelters were installed after a week of accli-
mation and consisted of a triangular aluminium frame covered
by an UV-B-transmissible greenhouse film (Luminance AF
Window, Folitec, Germany) with a base area of 2�4� 3�0 m
and a height of 1�2 m. The tunnel shape with large openings al-
lowed for constant wind flow preventing warming beneath the
shelters. To minimize edge effects, the sheltered base was
larger than the central 1� 2�5 -m area occupied by plants. To
avoid lethal consequences of the drought treatment, a minimal
water input was provided. Twenty litres of rainwater was dis-
tributed per bedding every 2 weeks (approx. 0�12 L per individ-
ual). Accordingly, the difference in water availability between
the beddings with and without rain-shelter equals the amount
of precipitation. At the end of the first growing season, rain-
shelters were removed and plants overwintered under snow.

In Spring 2013, rain-shelters were reinstalled right after
snowmelt (early May at the low common garden and mid-June
at the high common garden) initiating the start of phenological
recordings (plants did not reproduce in the first year). Air tem-
perature was recorded hourly in each common garden and treat-
ment at 0�5 m above the ground using sheltered data loggers

(TidBit v.2 UTBI-001; Onset Computer Corp., Bourne, MA,
USA). Similarly, light intensity loggers (Hobo pendant light
data logger 64 K-UA-002-64; Onset Computer) were installed
in each common garden at 1 m above the ground in both treat-
ments. The drought treatment consisted of a minimal water in-
put as in the previous year. Once a month, the volumetric soil
moisture content (VSCM; m3 m–3) was measured randomly in
30 pots of each bedding with an HH2 Moisture Meter and a
Theta Probe type ML2x (Delta-T Devices, Cambridge, UK).

Abiotic treatment effect

Averaged over the experimental period (May–October,
Table 2), at the mid-elevation common garden, the daily tem-
perature was 15�5 �C in control beddings and 15�9 �C in bed-
dings topped by rain-shelters. In the high-elevation common
garden, the average daily temperature was 11�2 �C in control
beddings and 11�4 �C in beddings topped by rain-shelters.
While there was a significant temperature difference between
both common gardens, the rain-shelters increased the tempera-
ture at ground level only marginally by 0�25 �C.

The recorded light intensity (measured in lux at 13:00 h) was
higher at the high-elevation common garden and was signifi-
cantly reduced by rain-shelters (Table 2). At both common gar-
dens, the rain-shelters intercepted approx. 30 % of light but
these values were not limiting for plant growth (see fig. 11�11
in Körner, 2003).

TABLE 1. Overview of the congeneric pairs of mid- and high-elevation species included in our study with their main range limits in the
literature having only been given in terms of altitudinal zonations as defined for the European Alps by Lauber and Wagner (2001) and
Aeschiman et al. (2004): ‘colline’¼ 300–900 m; ‘montane’¼ 900–1500 m; ‘subalpine’¼ 1600–2300 m; ‘alpine’¼ 2300–3000 m;
‘mid-elevation’ species mainly ranged from the colline to the lower montane zones, while ‘high-elevation’ species mainly ranged from

the subalpine to the alpine zones

Family Mid-elevation species High-elevation species

Lamiaceae Acinos arvensis (Lam.) Dandy Acinos alpinus (L.) Moench
colline–montane subalpine

Poaceae Anthoxanthum odoratum L. Anthoxanthum alpinum Löve
colline–alpine subalpine–alpine

Fabaceae Anthyllis vulneraria ssp. vulneraria L. s.l. Anthyllis vulneraria ssp. alpéstris Schult
colline–montane subalpine–alpine

Brassicaceae Arabis hirsuta L. Arabis alpina L. s.l.
colline–montane montane–alpine

Campanulaceae Campanula rotundifolia L. Campanula scheuchzeri Vill.
Colline–subalpine subalpine–alpine

Asteraceae Centaurea scabiosa L. s.l. Centaurea montana L.
colline–montane montane–subalpine

Caryophyllaceae Dianthus deltoides L. Dianthus sylvestris Wulfen
colline–montane colline–subalpine

Rosaceae Geum urbanum L. Geum montanum L.
colline–montane subalpine–alpine

Fabaceae Lotus corniculatus L. Lotus alpinus Ramond
colline–subalpine alpine

Fabaceae Onobrychis viccifolia Scop. Onobrychis montana DC.
colline–montane subalpine

Poaceae Phleum phleoides (L.) Karsten Phleum alpinum L.
colline–montane subalpine–alpine

Plantaginaceae Plantago lanceolata L. Plantago alpina L.
colline–subalpine subalpine–alpine

Caryophyllaceae Silene vulgaris ssp. vulgaris (Moench) Garcke s.l. Silene vulgaris ssp. glareosa (Jord.) Marsd.-Jon & Turill
colline–subalpine alpine

Fabaceae Trifolium pratense ssp. pratense L. Trifolium pratense ssp. nivale (Koch)
colline–subalpine alpine
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VSMC (Table 2) differed significantly between the control
and the drought treatment in both the common gardens
(W¼ 900, P¼ 10–4; W¼ 844�5, P¼ 10–4, respectively). At the
mid-elevation site, the average VSMC of control pots equalled
0�40 6 0�08 m3 m–3, while dry pots had a VSMC of
0�06 6 0�02 m3 m–3. At the high-elevation site, control pots had
an average VSMC of 0�48 6 0�1 m3 m–3, while dry pots had an
average VSMC of 0�08 6 0�02 m3 m–3.

Phenology monitoring

Phenological stages were defined after Price and Waser
(1998) and Dunne et al. (2003). Different stages were used for
forbs and grasses to account for their morphological differ-
ences. Seven stages were defined for forbs: unopened buds,
opened buds, opened flowers, old flowers, initiated fruits, en-
larged fruits and dehisced fruit. For grasses, five stages were
defined: beginning of heading, end of heading, exerted anthers
or styles, dried and broken-off anthers/styles, and disarticulated
seeds.

All observed stages were recorded weekly per individual and
when 50 % or more of the flowers or inflorescences were in a
particular stage it was identified as dominant. Once all plants
had completed their reproductive cycle and the growing season
came to an end, all plants were harvested. Above-ground bio-
mass was cut at soil level and individuals were stored in parch-
ment bags and transported to the laboratory within 24 h, dried
for 72 h at 80 �C and weighed.

Phenological variables

Eight phenological variables were derived from the weekly
recordings: onset of budding, onset of flowering, onset of fruit-
ing, midpoint of flowering, duration of budding, duration of
flowering, duration of fruiting and total duration of all three
phenophases combined. Onset of budding, flowering and fruit-
ing were defined as the date (day of the year) when the first
bud, flower or fruit was observed. Midpoint of flowering was
defined as the average date when opened flowers or exerted an-
thers/styles (for forbs and grasses, respectively) were dominant.
The duration of a phenophase was defined as the number of
days between the onset of said phenophase and the dominance
of the following phenophase.

Phenotypic plasticity in flowering phenology

The degree of phenotypic plasticity in response to warming
and drought was calculated as a phenotypic plasticity index

(Piv) (Valladares et al., 2006). This index was calculated as the
difference between the maximum and the minimum mean value
of a given trait and species over all treatments divided by the
maximum mean, which serves to standardize the index ranging
from 0 (no plasticity) to 1 (maximum plasticity). Note that plas-
ticity was considered at the species level rather than at the
genotype level to compare the degree of plasticity between
mid- and high-elevation species.

Statistical analysis

To test treatment effects, a linear mixed-effect model was
used for all eight phenological variables. ‘Elevation’ (mid- or
high-elevation site), ‘drought’ (control or drought treatment),
‘origin’ of species (mid-elevation or high-elevation) and their
respective interactions were computed as fixed effects. To ac-
count for variances between species, they were nested in their
respective genus and computed as random effects. The effects
of ‘elevation’ and/or ‘drought’ indicate trait variation due to
different environmental conditions (i.e. phenotypic plasticity),
while the ‘origin’ of species effect indicates differences be-
tween mid- and high-elevation species. The interaction between
‘origin’ of species and ‘elevation’ and/or ‘drought’ indicates a
difference in the responses to treatment conditions between
mid- and high-elevation species. Above-ground dry mass was
used as a covariate to correct for size effects on phenology, but
was removed as it did not change the results or add value to the
model. All linear mixed-effect models were implemented with
the ‘lmerTest’ package for R software (Kuznetsova et al.,
2013), based on type 3 errors and Satterthwaite approximation
for denominator degrees of freedom. Post-hoc Tukey’s HSD
tests for multiple comparisons were performed using the ‘mult-
comp’ package (Hothorn et al., 2014) for R software.

To test for differences in the degree of phenotypic plasticity
of flowering phenology between mid- and high-elevation spe-
cies, the Piv calculated for each species was analysed with a
paired Wilcoxon signed rank test. All the analyses were per-
formed in R version 3.0.2 software (R Development Core
Team, 2013; https://www.r-project.org/).

RESULTS

Many individuals died over winter, were subjected to herbivory
or were not reproductive, leading to the total exclusion of four
genera (Centaurea, Geum, Onobrychis and Trifolium) from the
analysis. For the remaining species, an average of 8�3 replicates
per treatment combination were included in the final analysis
with a total of 667 individuals (i.e. 20 out of 28 initial species
and approx. 50 % of the initial sample size). Mortality, how-
ever, was independent of species’ origin and treatment combi-
nations (Fisher’s exact test for count data: P¼ 0�85). In 2013,
the average temperature during the growing season differed by
4�4 �C between common gardens and on average the drought
treatment reduced VSMC by 0�37 m3 m–3. These changes in
abiotic conditions induced highly species-specific shifts in the
onsets and durations of phenophases but important patterns
emerged when groups of mid- and high-elevation species were
considered. To enhance clarity, we first report results from the
control treatment, describing the shifts in reproductive

TABLE 2. Mean temperature, light intensity and volumetric soil
moisture content (VSMC) for each treatment averaged over the

experimental period (May–September)

Temperature
(�C)

Light intensity
(lux)

VSMC
(m3 m–3)

Low site/Control 15�5 115 323�5 0�4
Low site/Dry 15�9 84 554�8 0�06
High site/Control 11�2 139 846�9 0�48
High site/Dry 11�4 101 209�8 0�08
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phenology in response to temperature for mid- and high-
elevation species and second drought effects.

Transplantation effect

The reciprocal transplantation of species to a warmer or
colder prospective climate induced major shifts in the time of
initiation and the duration of reproductive phenology. The on-
sets of budding, flowering and fruiting were always initiated
earlier at the low-elevation site by at least a month, but mid-and
high-elevation species differed in their response to transplanta-
tions. While the differences between mid- and high-elevation
species in phenological onsets were not always revealed by
post-hoc multiple comparisons (Fig. 1), they were highly signif-
icant overall, as indicated by the significant interaction between
elevation and origin treatments (Table 3; budding F¼ 7�64,
P¼ 0�006; flowering F¼ 16�27, P< 10–4; fruiting F¼ 15�48,
P< 10–4, respectively).

Indeed, high-elevation species consistently initiated the onset
of budding, flowering and fruiting earlier than mid-elevation
species, and these differences were particularly pronounced at
the high-elevation site (Table 3; F¼ 7�64, P¼ 0�006;
F¼ 16�27, P< 10–4; F¼ 15�48, P< 10–4, respectively). High-
elevation species started budding 8�4 6 2�2 d earlier than mid-
elevation species when grown at the high-elevation site and
5�5 6 2�2 d earlier when grown at the mid-elevation site (Fig. 1,
Supplementary Data Table S1). High-elevation species also
started flowering and fruiting earlier than mid-elevation spe-
cies, with strongest responses at the high-elevation site (Fig. 1).
The same was found for the midpoint of flowering, which was

always reached earlier by high-elevation species relative to
their lower elevation congeners, especially at the high-elevation
site (Table 3; F¼ 29�47, P< 10–4). The midpoint of flowering
was recorded 12�9 6 2�3 d earlier for high-elevation species
grown at the high-elevation site and 5�7 6 2�6 d earlier when
grown at the mid-elevation site (Fig. 1, Table S1).

Furthermore, differences in responses between mid- and
high-elevation species were also revealed in the fact that
advancement of the onset of phenophases in response to
transplantation between sites was consistently greater for mid-
elevation species relative to high-elevation species (again, not
revealed by post-hoc tests). For mid-elevation species, the onset
of budding at the mid- and the high-elevation sites differed by
32�5 6 2�0 d, whereas for high-elevation species the difference
was less (29�5 6 2�1 d; Fig. 1). Similar trends were found for
the onset of flowering and fruiting. The differences in responses
between mid- and high-elevation species were particularly pro-
nounced for advancement in midpoint of flowering. Going
from the 2000 -m site down to the 1050 -m site, mid-elevation
species advanced midpoint of flowering by 31�2 6 2�4 d (Table
3; F¼ 29�47, P< 10–4), whereas high-elevation species ad-
vanced this stage by only 23�7 6 2�2 d (Fig. 1, Supplementary
Data Table S1).

The duration of phenophases responded to transplantations,
with the exception of the duration of flowering (Table 3). A sig-
nificant interaction between elevation and origin was found for
the duration of budding (Table 3; F¼ 6�03, P¼ 0�01), indicat-
ing a difference in response between mid- and high-elevation
species. The duration of budding was generally shortened at the
high-elevation site compared with the mid-elevation site, but
this was significant only for high-elevation species, for which a
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contraction of 6�8 6 1�1 d was recorded (Fig. 1, Table S1). For
mid-elevation species, by contrast, this contraction was only of
0�5 6 1�4 d. The duration of fruiting was significantly shorter at
the mid-elevation site for both mid- and high-elevation species
(Table 3; F¼ 44�87, P< 10–4). The maturation of fruits took
9�8 6 1�3 d less at the mid-elevation site compared with the
high-elevation site for mid-elevation species, and 8�1 6 1�3 d
less for high-elevation species (Fig. 1, Table S1).

Note that mid-elevation species had a particularly long dura-
tion of fruiting when grown at high elevation (Fig. 1). The total
duration of reproductive phenology was also shortened at the
mid-elevation site. However, this effect was only significant for
mid-elevation species, which had a 7�5 6 1�6-d shorter duration
of reproduction when grown at the lower site. The effects of
transplantation on the total duration of reproductive phenology
were similar to those on the duration of fruiting (Fig. 1), reflect-
ing that this last stage was proportionally the longest.

Finally, it is important to note that at the mid-elevation com-
mon garden, all reproductive individuals from mid- and high-
elevation species reached the final fruit maturation stage
(defined as 50 % or more flowers of one individual having
reached stage 7: dehisced fruits for forbs and stage 5: disarticu-
lated seeds for grasses). At the high-elevation common garden,
99 % of high-elevation species finished fruit maturation but
only 85 % of mid-elevation individuals reached the final fruit
maturation stage before final harvest.

Drought effect

Drought had a tendency to advance phenophases, but had the
greatest effect at the low-elevation site. Drought consistently
led to smaller advancement of phenophases than did transplan-
tation to the warmer site (Fig. 1). Effects of drought on onset of
budding, flowering, fruiting and midpoint of flowering varied
depending on whether plants were grown at the mid- or high-
elevation sites, as indicated by a significant interaction between
elevation and drought (Table 3; E�D for budding P¼ 0�006;
flowering P¼ 0�008; fruiting P¼ 0�048; and flowering mid-
point P¼ 0�01). Drought initiated earlier phenophases at both
sites but this effect was significant only at the mid-elevation
site for high-elevation species (Fig. 1). At the mid-elevation
site, drought-stressed high-elevation species initiated budding
6�1 6 2�1 d earlier than individuals under control conditions,
while drought-stressed mid-elevation species started budding
only 2�1 6 2�3 d earlier. In contrast, at high elevation, the onset
of budding was only marginally advanced in the drought treat-
ment, namely by 0�2 6 1�7 d for mid-elevation species and by
0�9 6 1�1 d for high-elevation species (Fig. 1, Table S1). The
same results were found for the onset of flowering and fruiting,
and for the midpoint of flowering (Table 3), although the differ-
ence between mid- and high-elevation species was not revealed
by post-hoc comparisons for the onset of flowering (Fig. 1).

The durations of phenophases were unequally affected by
drought and only the duration of flowering did not change in re-
sponse to drought (Table 3, Fig. 1). The duration of budding
was significantly shorter on average under dry conditions
(Table 3; F¼ 3�96, P¼ 0�047), but this was not revealed by the
post-hoc multiple comparisons (Fig. 1). For mid-elevation spe-
cies, drought reduced the duration of budding by 3�3 6 1�3 d atT
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the mid-elevation site, and by 3�8 6 1�2 d at the high-elevation
site. This effect was less pronounced and less consistent in
high-elevation species (Fig. 1, Table S1).

While the duration of fruiting was also generally shortened
by drought at the lower site, a significant interaction between
drought and origin was found (Table 3; F¼ 6�27, P¼ 0�01)
meaning that mid- and high-elevation species responded differ-
ently to the drought treatment. At the lower site, drought af-
fected the duration of fruiting only marginally for mid- and
high-elevation species (Fig. 1). By contrast, at the high-
elevation site, the duration of fruiting was significantly short-
ened by 6�4 6 1�4 d for mid-elevation species under drought
stress but only marginally by 2�1 6 1�3 d for high-elevation
species (Fig. 1, Table S1).

For the total duration, a significant interaction was found be-
tween drought and elevation, as well as between drought and
origin (Table 3, F¼ 4�8, P¼ 0�03; F¼ 6�3, P¼ 0�01, respec-
tively). Drought-induced shifts in the total duration of reproduc-
tive phenology were more pronounced at the high-elevation site
than at the mid-elevation site and in mid-elevation species com-
pared with high-elevation species. Drought significantly short-
ened the total duration of reproduction for mid-elevation
species when growing at the high-elevation site, namely by
7�5 6 1�7 d, but this effect was only marginal for mid-elevation
species when grown at the lower elevation site and for high-
elevation species at both sites (Fig. 1).

Piv of mid- and high-elevation species

A significant difference in the Piv was found for the midpoint
of flowering (Fig. 2; V¼ 40, P¼ 0�03). Mid-elevation species
had a greater Piv than high-elevation species, indicating that the
shift in midpoint of flowering in response to elevation and
drought was greater for mid-elevation species than for high-
elevation species (0�19 6 0�04 and 0�15 6 0�05, respectively).
These results are consistent with the previously reported shifts
in number of days. Furthermore, as the Piv of mid-elevation

species was systematically greater (Fig. 2) we also compared
the mean Piv across all traits between mid- and high-elevation
species and found a significantly higher mean value for mid-
elevation species (PivMid¼ 0�31 6 0�1, PivHigh¼ 0�26 6 0�1;
V¼ 36, P¼ 0�01). This overall result indicates that mid-
elevation species tended to have a greater degree of phenotypic
plasticity in their reproductive phenology than high-elevation
species and hence a greater capacity to adjust these traits to en-
vironmental changes in temperature and water availability.

DISCUSSION

Responses to transplantation and drought

Transplantation of high-elevation species to a site with earlier
springtime resulted in advanced onset of reproductive phenol-
ogy, an overall pattern in agreement with existing literature
(Price and Waser, 1998; Dunne et al., 2003; Scheepens and
Stöcklin, 2013). Mid- and high-elevation species initiated all re-
productive phenophases approx. 1 month earlier at the lower el-
evation site, indicating the important role of temperature for
phenophases. Interestingly, high-elevation species initiated bud-
ding prior to mid-elevation species at both sites, on average by
10 d at the high site and by 5 d at the low site. In contrast, other
studies found that reproduction was always initiated first by
low-elevation populations at the low-elevation sites (Haggerty
and Galloway, 2011; Frei et al., 2014a, b). However, in those
studies, experimental gardens were situated at lower elevations
relative to our study sites (at 514 and 600 m compared with
ours at 1050 m). This resulted in high-elevation populations in
prior studies being exposed earlier in the year to days with
higher temperatures, yet relatively shorter photoperiods than in
our study, and may have driven the observed differences in re-
sults among our studies. As photoperiod is also a fundamental
cue for a frost risk-free initiation of growth and reproduction
for some alpine plants (Keller and Körner, 2003; Körner, 2003;
Basler and Koerner, 2012), it is likely that high-elevation popu-
lations in the prior studies waited for days with a sufficiently

1·0

0·8

0·6
P

he
no

ty
pi

c 
pl

as
tic

ity
 in

de
x 

(P
i v

)

0·4

0·2
∗

0
Onset of
budding

Onset of
flowering

Onset of
fruiting

Flowering
midpoint

Budding
duration

Flowering
duration

Fruiting
duration

Total
duration

Mid-elevation species

High-elevation species

FIG. 2. Phenotypic plasticity index (Piv) of mid- and high-elevation species (as indicated in the key) calculated across all treatments for onsets and durations of pheno-
phases. The error bars denote s.e. *P< 0�05.

Gugger et al. — Flowering phenology in mid- vs. high-elevation species 959

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv155/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv155/-/DC1


long photoperiod and did not rely solely on temperature to initi-
ate reproduction. However, in our study, photoperiod was simi-
lar between both common gardens at the time of reproductive
onset. Hence, advanced initiation of reproductive phenology in
high-elevation species at both of our study sites probably re-
flects other adaptations to cold climates and short growing sea-
sons, for example low growing degree day requirements
(Haggerty and Galloway, 2011) and preformation of buds
(Sørensen, 1941; Billings and Mooney, 1968; Bliss, 1971).

At the mid-elevation site, most phenophases were shortened,
which is in agreement with previous studies (Sherry et al.,
2007; Post et al., 2008; Steltzer and Post, 2009). However, the
duration of budding was longer at the lower, warmer site rela-
tive to the high-elevation site, which highlights the contrasting
effects of warming on individual phenophases (Post et al.,
2008; Haggerty and Galloway, 2011; Cornelius et al., 2013).
Contracted phenophases have generally been explained as re-
sulting from increased developmental rates in warm conditions
(Sherry et al., 2007; Haggerty and Galloway, 2011).
Alternatively, extended reproductive durations are often linked
to an expanded growing season (Dunne et al., 2003). In our
study, the average daily temperature during the budding phase
was higher at the mid- than at the high-elevation site (14�1 and
12�3 �C, respectively). Thus, temperature alone cannot explain
expanded budding duration, which is in contradiction with fast
developmental rates expected under warm conditions. This re-
sult might be related mainly to the fact that high-elevation spe-
cies significantly contracted this phenophase at high-elevation
sites (Fig. 1) to guarantee sufficient time for flowering and fruit
maturation, but it is also possible that plants tried to take advan-
tage of a longer growing season at the lower site with advanced
spring. The duration of fruiting was, however, highly acceler-
ated for both groups of species by fast maturation rates under
higher temperatures. As this last stage was proportionally the
longest it resulted in a shorter total reproductive duration at the
low-elevation site, which suggests that plants were not able to
consistently prolong their reproductive cycle to take advantage
of a longer growing season.

Limited water availability had considerable effects on plant
reproductive phenology but drought-induced shifts were less
extensive than those in response to temperature changes (shifts
in the order of magnitude of a few days against a month, re-
spectively). However, when drought stress was combined with
higher temperatures, it generally emphasized the responses of
species and consistently led to further advancements and short-
enings of phenophases for mid-elevation species in responses to
drought. This result is in line with a 4-d advancement in mid-
flowering date recorded after a simulated drought in Central
Europe (Jentsch et al., 2009) and with a study which revealed
that an ‘escape strategy’ inducing earlier flowering was selected
for in Brassica rapa following a natural drought (Franks et al.,
2007; Franks, 2011). In our study, species responded to drought
by plastic shifts congruent with such an ‘escape strategy’.
When the growing season is shortened by drought, plants with
late reproductive initiations might be unable to mature seeds
before conditions become lethal. Hence, when water
availability is limited, a shift towards rapid development and
maturation of flowers is advantageous and allows the
maintenance of reproductive success (Vasek and Sauer, 1971;
Franks, 2011).

Mid- and high-elevation species generally advanced pheno-
phases in response to drought but changes in the duration of
phenophases were less pronounced in high-elevation species.
While the total duration of reproductive phenology was mainly
shortened for high-elevation species, a slight extension of bud-
ding and of fruiting was recorded at high- and mid-elevation
sites, respectively. This result highlights the divergent effects of
drought on certain phenophases (Peñuelas et al., 2004; Llorens
and Peñuelas, 2005). In our case, high-elevation species are
normally less exposed to drought periods than their congeners
from lower elevations (Vasek and Sauer, 1971). Precipitation
tends to increase with elevation and evapo-transpiration tends
to decrease with elevation. Accordingly soil moisture availabil-
ity generally increases with elevation (Körner, 2003).
Consequently, the inconsistent responses of high-elevation spe-
cies to drought at both sites suggest that although high-
elevation species also tended towards an ‘escape strategy’ when
facing drought, they might be less efficient in doing so then
their mid-elevation congeners.

Constrained degree of phenotypic plasticity in high-elevation
species

In line with our hypothesis, the differences between herba-
ceous mid- and high-elevation species affected their potential
for phenological plasticity, as previously found for low- and
high-elevation populations of deciduous tree species (Vitasse
et al., 2013). Our results revealed that herbaceous high-
elevation species tended to have a lower Piv than mid-elevation
species for flowering phenology even though this difference
was only significant for the midpoint of flowering and when
averaged over all phenological variables. Nevertheless, both
mid- and high-elevation species showed a notable capacity of
tracking environmental changes through phenological shifts
while maintaining a high performance. It is particularly interest-
ing that high-elevation species were found to have a lower Piv
specifically for the midpoint of flowering. The exact timing of
flowering might be the most crucial phenophase for successful
reproduction. The timing of flowering is even more crucial in
cold environments, where short growing seasons (Billings and
Mooney, 1968; Körner, 2003) and adverse conditions such as
frost events (Inouye, 2008) pose additional challenges to repro-
ductive success. Consequently, strong directional selection de-
creasing temperature sensitivity and increasing photoperiodic
control (Basler and Koerner, 2012; Vitasse et al., 2013) may
have shaped the evolution of reproductive phenology of high-
elevation species to coincide with favourable environmental
conditions, presumably contributing to local adaptation in het-
erogeneous landscapes (Hall and Willis, 2006; Verhoeven
et al., 2008; Anderson et al., 2011).

The selective pressures controlling timing of reproduction
become increasingly strong with elevation and thus we hypoth-
esize that the difference in phenological plasticity would have
been more pronounced if more strictly alpine species, from
above treeline-elevation, had been chosen. This would have
provided a more extreme contrast with congeneric mid-
elevation species. Here, our results indicate that adaptation to
short growing seasons in the alpine environment limits the po-
tential for phenotypic plasticity in the reproductive phenology

960 Gugger et al. — Flowering phenology in mid- vs. high-elevation species



of high-elevation species in response to environmental changes,
leading to a higher genetic canalization of the timing of peak
flowering (Price et al., 2003; Pigliucci et al., 2006; Ghalambor
et al., 2007).

Consequences of phenological shifts

For high-elevation species, transplantation to a lower eleva-
tion resulted in advanced phenophases, suggesting adaptive
tracking of an advanced growing season (Cleland et al., 2012).
However, higher temperatures also accelerated developmental
rates and led to shortened phenophases, indicating that high-
elevation plants were unable to take advantage of a longer
growing season. Furthermore, in advanced growing seasons,
the time frame for resource acquisition is abbreviated before en-
vironmental cues initiate reproduction. Consequently, advanced
flowering could potentially lead to decreased fitness (Post
et al., 2008; Scheepens and Stöcklin, 2013).

Alternatively, for mid-elevation species, the upward trans-
plantation resulted in delayed initiation and prolonged pheno-
phases. While the later initiation of reproduction at the higher
site might be adaptive, the prolonged phenophases suggest an
entirely passive response to slower developmental rates in cold
conditions (Sherry et al., 2007). At the final harvest in late au-
tumn 15 % of mid-elevation plants had not yet started to dis-
perse their seeds and we estimate that in total approx. 30 % of
flowers from mid-elevation species would not have completed
fruit maturation (E. Hamann, pers. obs.). A prolonged reproduc-
tive period of upward migrated mid-elevation species could
thus have fitness costs if associated with uncompleted seed mat-
uration before winter fall.

Limited water availability advanced and shortened pheno-
phases, a result congruent with the aforementioned ‘escape
strategy’ limiting the negative impact of drought stress on plant
fitness (Franks, 2011). However, drought-induced phenological
shifts were greater for mid-elevation species, suggesting that
they were more capable of adopting an efficient ‘escape strat-
egy’ than their high-elevation congeners. Phenotypic plasticity
has been suggested to be adaptive only when the environmental
fluctuations experienced by populations do not fall outside their
native range (Ghalambor et al., 2007). While mid-elevation
species are frequently exposed to dry summer periods, high-
elevation species have rarely experienced such environmental
conditions in the past (Körner, 2003), which could explain why
they were unable to produce an ‘escape strategy’ as efficient as
their mid-elevation congeners.

We conclude that while the direction of plastic responses in
reproductive phenology tended to track environmental changes,
adaptation of species to their native range seem to constrain
adaptive plasticity in novel conditions and could potentially
lead to maladaptive responses (Ghalambor et al., 2007).

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Figure S1: schematic
overview of the experimental design. Table S1: average day of
the year of initiation and midpoint of phenological stages, and

durations of phenophases reported for mid- and high-elevation
species and treatment combinations.

ACKNOWLEDGEMENTS

We thank Samuel Schmid and Michael Scherer-Lorenzen
from the Agroscope, Switzerland, for the loan of the rain-shel-
ters. We also thank the Schynige Platte Alpine Botanical
Garden, Sophie Schmid, Georg Armbruster and Guy Villaume
for technical support. We thank one anonymous reviewer and
the handling editor for thorough revisions that considerably
improved the manuscript. This work was supported by the
Swiss National Science Foundation (project no. 3100A-
135611).

LITERATURE CITED

Abu-Asab MS, Peterson PM, Shetler SG, Orli SS. 2001. Earlier plant flower-
ing in spring as a response to global warming in the Washington, DC, area.
Biodiversity and Conservation 10: 597–612.

Aeschimann L, Lauber K, Moser DM, Theurillat JP. 2004. Flora alpina.
Bern: Haupt.

Anderson JT, Willis JH, Mitchell-Olds T. 2011. Evolutionary genetics of plant
adaptation. Trends in Genetics 27: 258–266.

Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T.

2012. Phenotypic plasticity and adaptive evolution contribute to advancing
flowering phenology in response to climate change. Proceedings of the
Royal Society B-Biological Sciences 279: 3843–3852.

Basler D, Koerner C. 2012. Photoperiod sensitivity of bud burst in 14 temperate
forest tree species. Agricultural and Forest Meteorology 165: 73–81.

Beniston M, Rebetez M, Giorgi F, Marinucci MR. 1994. An analysis of re-
gional climate change in Switzerland. Theoretical and Applied Climatology
49: 135–159.

Beniston M, Diaz HF, Bradley RS. 1997. Climatic change at high-elevation
sites: an overview. Climatic Change 36: 233–251.

Bernal M, Estiarte M, Penuelas J. 2011. Drought advances spring growth
phenology of the Mediterranean shrub Erica multiflora. Plant Biology 13:
252–257.

Billings WD, Mooney HA. 1968. Ecology of arctic and alpine plants. Biological
Reviews of the Cambridge Philosophical Society 43: 481–529.

Bliss LC. 1971. Arctic and alpine plant life cycles. Annual Review of Ecology
and Systematics 2: 405–438.

Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana J-F. 2010. Effects
of warming, summer drought, and CO2 enrichment on aboveground bio-
mass production, flowering phenology, and community structure in an up-
land grassland ecosystem. Ecosystems 13: 888–900.

Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD. 2007. Shifting
plant phenology in response to global change. Trends in Ecology &
Evolution 22: 357–365.

Cleland EE, Allen JM, Crimmins TM, et al. 2012. Phenological tracking en-
ables positive species responses to climate change. Ecology 93: 1765–1771.

Cornelius C, Leingartner A, Hoiss B, Krauss J, Steffan-Dewenter I, Menzel

A. 2013. Phenological response of grassland species to manipulative snow-
melt and drought along an altitudinal gradient. Journal of Experimental
Botany 64: 241–251.

Dunne JA, Harte J, Taylor KJ. 2003. Subalpine meadow flowering phenology
responses to climate change: integrating experimental and gradient methods.
Ecological Monographs 73: 69–86.

Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants.
Science 296: 1689–1691.

Franks SJ. 2011. Plasticity and evolution in drought avoidance and escape in the
annual plant Brassica rapa. New Phytologist 190: 249–257.

Franks SJ, Sim S, Weis AE. 2007. Rapid evolution of flowering time by an an-
nual plant in response to a climate fluctuation. Proceedings of the National
Academy of Sciences of the United States of America 104: 1278–1282.

Frei ER, Ghazoul J, Matter P, Heggli M, Pluess AR. 2014a. Plant population
differentiation and climate change: responses of grassland species along an
elevational gradient. Global Change Biology 20: 441–455.

Gugger et al. — Flowering phenology in mid- vs. high-elevation species 961

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv155/-/DC1
www.aob.oxfordjournals.org
www.aob.oxfordjournals.org
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv155/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv155/-/DC1


Frei ER, Ghazoul J, Pluess AR. 2014b. Plastic responses to elevated tempera-
ture in low and high elevation populations of three grassland species. PLoS
ONE 9: e98677.

Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007. Adaptive versus
non-adaptive phenotypic plasticity and the potential for contemporary adap-
tation in new environments. Functional Ecology 21: 394–407.

Haggerty BP, Galloway LF. 2011. Response of individual components of repro-
ductive phenology to growing season length in a monocarpic herb. Journal
of Ecology 99: 242–253.

Hall MC, Willis JH. 2006. Divergent selection on flowering time contributes
to local adaptation in Mimulus guttatus populations. Evolution 60:
2466–2477.

Hartmann DL, Klein Tank AMG, Rusticucci M, et al. 2013. Observations: at-
mosphere and surface. In: TF Stocker, D, Qin, GK Plattner, et al., eds.
Climate Change 2013: The Physical Sciences Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge: Cambridge University Press.

Hothorn T, Bretz F, Westfall P, Heiberger RM, A. S. 2014. Simultaneous in-
ference in general parametrics models. Biometrical Journal 50: 346–363.

Hudson JMG, Henry GHR, Cornwell WK. 2011. Taller and larger: shifts in
Arctic tundra leaf traits after 16 years of experimental warming. Global
Change Biology 17: 1013–1021.

Inouye DW. 2008. Effects of climate change on phenology, frost damage, and
floral abundance of montane wildflowers. Ecology 89: 353–362.

Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C. 2009.

Beyond gradual warming: extreme weather events alter flower phenology
of European grassland and heath species. Global Change Biology 15:
837–849.

Keller F, Körner C. 2003. The role of photoperiodism in alpine plant develop-
ment. Arctic Antarctic and Alpine Research 35: 361–368.

Körner C. 2003. Alpine plant life: functional plant ecology of high mountain
ecosystems. Berlin: Springer.

Kovats RS, Valentini R, Bouwer LM, et al. 2014. Europe. In: VR Barros, CB
Field, DJ Dokken, eds. Climate Change 2014: Impacts, Adaptation, and vul-
berability. Part B: Regional Aspects. Contribution of Working Group II to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge: Cambridge University Press.

Kuznetsova A, Brockhoff PB, Christensen RHB. 2013. lmerTest: Tests for
random and fixed effects for linear mixed effect models (lmer objects of
lme4 package). http://cran.r-project.org/package¼lmerTest.

Lauber K, Wagner G. 2001. Flora Helvetica. Bern: Haupt.
Levitt J. 1980. Responses of plants to environmental stress. New York:

Academic Press.
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