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Abstract

Cryptosporidiosis is increasingly recognized as an important global health concern. While initially 

reported in immunocompromised such as AIDS patients, cryptosporidiosis has now been 

documented as a major cause of childhood diarrhea and an important factor in childhood 

malnutrition. Currently, nitazoxanide is the only proven anti-parasitic treatment for 

Cryptosporidium infections. However, it is not effective in severely immunocompromised patients 

and there is limited data in infants. Immune reconstitution or decreased immunosuppression is 

critical to therapy in AIDS and transplant patients. This limitation of treatment options presents a 

major public health challenge given the important burden of disease. Repurposing of drugs 

developed for other indications and development of inhibitors for novel targets offer hope for 

improved therapies, but none have advanced to clinical studies.
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Introduction

Cryptosporidium species are increasingly recognized as important enteric pathogens [1-3]. 

Cryptosporidiosis was initially recognized as a cause of diarrhea in compromised hosts. 

Shortly thereafter, zoonotic and waterborne transmission of the parasite was identified. 

Cryptosporidium is now considered one of the major causes of childhood diarrhea. In 
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addition, Cryptosporidium has been documented as a key component of the vicious cycle of 

infection and malnutrition that are major contributors to childhood morbidity and mortality 

worldwide. The majority of human Cryptosporidium infections are attributed to two species: 

C. hominis and C. parvum [1, 2]. However, at least 13 other species may infect humans, 

[3-5]. Clinically, cryptosporidiosis causes watery diarrhea in healthy patients. In contrast to 

other causes, diarrhea caused by cryptosporidiosis tends to be more prolonged and can be 

chronic in compromised hosts, such as children with malnutrition.

Cryptosporidium parasites develop within the microvillus layer of intestinal epithelial cells, 

mainly found in the small intestines in immunocompetent hosts, but may be found 

throughout the GI tract and even the respiratory tract. Persistent infection is associated with 

villus atrophy, crypt hyperplasia, and variable increases in leucocytes in the lamina propria. 

The symptoms of watery diarrhea and malabsorption are thought to be related to sodium 

malabsorption, electrogenic chloride secretion, and increased intestinal permeability, and 

severity of disease correlates with altered intestinal permeability [6, 7]. These effects are 

likely mediated by the host response and neuropeptides such as substance P may be key 

contributors [8, 9]

The burden of disease caused by Cryptosporidium worldwide has been significantly 

underestimated. For example, only about 1% of the estimated 750,000 cases that occur 

annually in the US are reported [10, 11]. Historically, Cryptosporidium was thought of 

primarily as a cause of chronic diarrhea in AIDS and other immunocompromised patients. 

More recent data has shed light on the parasite's effect on children in resource poor areas. 

Older studies, using acid fast staining to identify the organisms, found Cryptosporidium in 

<5% of cases of childhood diarrhea. However, more recent studies using antigen and 

molecular assay have detected Cryptosporidium infection in 15-20% of all childhood 

diarrhea [1, 12]. In a multicenter study of childhood diarrhea in Sub-Saharan Africa and 

South Asia, Cryptosporidium was second to rotavirus as a cause of moderate-to-severe 

diarrhea in children two years of age and was a major cause of morbidity in the second year 

of life [13]. Subsequent studies using molecular methods demonstrated that even that study 

had under diagnosed cryptosporidiosis [14].

There are also chronic sequellae of Cryptosporidium infection. Lima et al showed that 

infection in children less than one year old was followed by recurrent diarrhea and growth 

stunting that continued for two years after the initial episode [15]. Follow-up studies 

demonstrated deficits in cognitive development and physical fitness when patients were 

examined 5 years later [16].

Cryptosporidiosis is more frequent and severe disease in children with malnutrition, 

including higher incidence of deaths [2, 17, 18]. Malnutrition predisposes patients to 

infection and creates a vicious infection-malnutrition cycle with long term consequences 

including cognitive impairment and stunting [19]. Using an animal model, that closely 

resembles the complex interaction between nutritional status and infection, Costa et al. 

showed 20% additional weight loss when malnourished mice were infected with C. parvum, 

higher fecal shedding and failure to prevent weight loss or parasite stool shedding despite 

treatment with nitazoxanide [20]. In addition, children under the age of one year with 
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Cryptosporidium infections fail to have catch-up growth that is typically observed with 

children infected at a later age. The diarrheal morbidity for this young age group is 

significantly increased as well [18, 21].

Symptomatic therapy is vital in cases of cryptosporidiosis. Replacement of fluids and 

electrolytes in cryptosporidiosis is critically important as in other causes of diarrhea. Anti-

motility drugs are also a key element of therapy. Most published patient studies utilize 

narcotic agents such as loperamide and diphenoxylate/atropine. Other reports suggest that 

tincture of opium (paregoric) may be a more effective agent in AIDS patients. Nutritional 

support is also imperative for successful treatment, which includes continued breast-feeding 

of infant patients.

Because cryptosporidiosis is typically self-limited in immunocompetent hosts, restoration of 

immune function is a key component of management. Immune reconstitution in response to 

effective combination antiretroviral therapy has been linked to parasite clearance, as well as 

reduced long term morbidity and mortality associated with cryptosporidial infection of 

AIDS patients [2, 22, 23]. Nevertheless, even with effective antiretroviral therapy, chronic 

diarrhea is associated with early mortality [24]. There are anecdotes of better responses 

when anti-motility and anti-parasitic drugs are used as part of the initial therapy [23]. 

However there is no conclusive evidence that this is the case. Interestingly, some HIV 

protease inhibitors have activity against Cryptosporidium both in vitro and in vivo [25].

Current Therapeutics

Despite the fact that cryptosporidiosis has been recognized as an important cause of 

diarrheal disease for over 3 decades, anti-parasitic treatments has been limited. Initial 

screening of available compounds failed to identify effective treatments for 

cryptosporidiosis. A number of drugs previously reported to be effective have failed in 

clinical trials [22].

The only drug that has FDA approval for treatment of Cryptosporidium is nitazoxanide [2]. 

Nitazoxanide was synthesized in the 1980s by combining a thiazole ring (similar structurally 

to metronidazole) with a benzamidine ring (similar to the tapeworm drug niclosamide). 

Nitazoxanide is a broad spectrum anti-parasitic with reports of use as a deworming agent as 

well as in controlled trials in giardiasis and cryptosporidiosis [22]. Three placebo-controlled 

trials of treatment of cryptosporidiosis with nitazoxanide in non-AIDS patients have been 

reported [26-28]. Studies reported up to 93% of treated patients experienced parasite 

clearance as opposed to 37% of placebo treated patients [27]. The drug also has been shown 

to improve diarrhea and mortality rates among infected, malnourished children [26]. 

However, the response rate in malnourished children was only 56% [26]. Unfortunately, 

nitazoxanide has not been found to be effective in AIDS patients [29].

Nitazoxanide is only FDA approved for patients one year of age or older. A recent study 

among hospitalized children in Egypt aged 6 months to 10 years presenting with persistent 

diarrhea compared paromomycin and nitazoxanide with no antiparasitic treatment. [30]. 

Overall, 86.6% of children treated with 100 or 200 mg of nitazoxanide every twelve hours 

for three days demonstrated complete clearance of oocysts and cessation of clinical 
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symptoms. Among children treated with 25 mg/kg/day of paromomycin for two weeks, 

68.8% experienced stool clearance and were completely cured. Both treatments were better 

than no anti-parasitic treatment.

Though AIDS patients are the main immunocompromised population effected by 

Cryptosporidium, the parasite is also problematic in organ transplant recipients as well 

[31-33]. Bhadauria et al. conducted a retrospective review of living donor renal transplant 

recipients admitted for evaluation of diarrhea [33]. Cryptosporidium was found to be the 

most common cause of infectious diarrhea in these patients. Patients receiving combination 

immunosuppression including tacrolimus had higher rates of infection with Cryptosporidium 

compared to a combination of cyclosporine. Bhadauria and colleagues reported a better 

response to nitazoxanide/flouroquinolone combination therapy than to nitazoxanide alone 

[33]. However, the authors did not test the patients for E. coli enteropathogens. Thus, the 

benefit of the fluoroquinolone may have been on undiagnosed bacterial co-infection. Other 

groups have noted that transplant patients responded poorly to nitazoxanide alone. Still, 

there are anecdotes of better responses to combinations of nitazoxanide, azithromycin, 

and/or paromomycin [34-36].

Another population effected by chronic Cryptosporidium infections includes patients with 

primary immunodeficiencies such as hyper-IgM syndrome. This syndrome is a combined 

immune deficiency disorder caused by mutations in CD40 ligand. Infections in these 

patients are similar to that of AIDS patients, with extra-intestinal manifestations including 

biliary involvement. Fan et al., showed that treatments with CD40 agonist antibody 

effectively reduced the number of oocytes shed by these patients. Although relapse occurred 

treatment was stopped [37].

Physicians initially approached the devastating effects of cryptosporidiosis in AIDS patients 

by testing a wide range of available drugs. One such drug, paromomycin, was reported to 

ameliorate cryptosporidiosis in AIDS patients [38]. In neither of the two controlled trials in 

patients with AIDS were the effects more than modest (few cures and mild decrease in 

diarrhea) [38, 39]. In one controlled trial, there was a statistically significant decrease in 

oocyst shedding and diarrhea [40]. While Hussien et al. demonstrated clearance of 

cryptosporidiosis among hospitalized children with paromomycin treatment compared to no 

treatment. However, the response was significantly less active than with nitazoxanide [30].

Other drugs reported to have some effect in case series include azithromycin, spiramycin, 

and bovine anti-cryptosporidium immunoglobulin [22]. However, all were ineffective in 

controlled trials in AIDS patients. Unfortunately, while all of these studies were presented at 

scientific meetings, none of these trials have been published [22]. Azithromycin seemed to 

be better than two anthelminthic drugs for cryptosporidiosis in children [41]. It has also been 

used in combination with nitazoxanide and/or paromomycin in compromised hosts with 

decreased stool frequency and parasite clearance in some patients [34, 42].

Rifamycins have been studied for anti-Cryptosporidium activity. Rifabutin, was tested in 

vitro and showed a 25% decrease in C. parvum infection in vitro. When combined with 

nitazoxanide, infection decreased by 75% [43]. Holmberg et al. [44] reported an 85% 
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decrease in the incidence of Cryptosporidium in the cohort of AIDS patients receiving 

rifabutin for M. avium complex prophylaxis, compared to the groups receiving 

clarithromycin or azithromycin. Similar results were seen when comparing AIDS patients 

taking rifabutin, clarithromycin or a combination [45]. A small group of HIV patients were 

found to have resolution of diarrhea with rifaximin, a non-absorbed rifamycin [46, 47].

Gaps

While nitazoxanide was an important advance in the management of cryptosporidiosis in 

children, its limited efficacy in compromised or malnourished hosts has raised important 

questions regarding how to manage these patients. Clearly, we are in urgent need of better 

drugs for therapy of cryptosporidiosis. A pivotal step towards this goal is the identification 

of specific targets. At an experts' workshop on cryptosporidiosis, development of novel 

drugs for cryptosporidiosis was considered a critically important priority, with potentially 

huge public health payoffs. The inability to propagate the organisms in vitro or to 

genetically manipulate parasite gene expression were identified as major hurdles for drug 

development [2].

Progress in developing novel drugs against Cryptosporidium also has been hampered by 

limitations of current experimental models [48]. Because animal models are suboptimal for 

some human infections, human cell lines have been used as an alternative to study intestinal 

pathogens [49, 50]. However the utility of cell lines is limited by the fact they do not readily 

support parasite propagation. However, novel methods incorporating intestinal stem cells 

offer the prospect of significantly improving propagation[51].

Further hindrances in the research and treatment of Cryptosporidium are the gaps in 

understanding of the gastrointestinal and immune responses to the parasite. There is a 

specific lack of knowledge regarding the mechanisms of parasite clearance in 

immunocompetent hosts. Insight into this aspect of infection might enable advances in 

preventative research. A more in-depth knowledge of the gastrointestinal responses is also 

needed to facilitate optimization of current treatment methods as well as provide specific 

targets for preventatives.

The Way Forward

One of the typical difficulties faced when developing anti-parasitic treatments is lack of drug 

targets that do not have human homologues. Several key enzymes have been identified as 

targets due to significant differences from human enzymes. Many apicomplexan parasites 

have unique calcium-dependent protein kinases, including the Cryptosporidium CDPK1, an 

essential component of cell invasion [52]. The parasites lack amino acids blocking access to 

the active site by “bumped kinase inhibitors”. Castellanos et al. has identified several 

compounds that bind to this enzyme, inhibiting enzyme function and ultimately killing the 

Cryptosporidium cell. A number of these inhibitors have exhibited anti-cryptosporidium 

activity both in vitro as well as in SCID-beige immunocompromised mouse models [53].

Clan CA cysteine proteases have been found to be a potential target for the treatment of 

cryptosporidiosis. Clan CA cysteine proteases are thought to be vital for host cell invasion 

Sparks et al. Page 5

Curr Trop Med Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and has been found to be structurally different than analogous enzymes in humans [54]. This 

protease can be inhibited utilizing N-methyl-piperazine-Phe-homoPhe-vinylsulfone phenyl 

(K11777) inhibits growth of Cryptospordium in vitro and has been shown to rescue 

immunocompromised mice from lethal infection [55].

The folate biosynthesis pathway, historically a target for cancer, bacterial, and malarial 

disease has also been identified as a potential target for anti-cryptosporidials. 

Cryptosporidium contains a bi-functional thymidylate synthase/dihydrofolate reductase 

enzyme. Licensed anti-bacterial and anti-protozoan drugs do not inhibit the cryptosporidium 

enzyme but, research teams are evaluating the activity of compounds designed to 

specifically block this key enzyme in the folate synthesis pathway in vitro. Published data 

has reported striking anti-cryptosporidial activity of these compounds within cell culture 

[56].

Another potential drug target is oxidoreductase inosine 5′-monophosphate dehydrogenase 

(IMPDH) which is essential in guanine synthesis in Cryptosporidium. Unlike human 

IMPDH, CpIMPDH seems to have originated from bacteria via lateral gene transfer thus the 

enzyme is structurally different than its human counterpart. Current research has found a 

series of inhibitors for this enzyme [57, 58]. Another study investigated the use of 

Phylomer® peptides to inhibit CpIMPDH functions. These studies were conducted in vitro 

and identified two out of twelve peptides with anti-cryptosporidium functions [59].

The repurposing of already developed drugs or compounds is another promising area of anti-

cryptosporidial research. A study done by Bessoff et al. utilized Human HMG-CoA 

Reductase and Isoprenoid Synthesis inhibitors from the NIH Clinical Collections drug 

library in a novel cell-based assay [60]. Results showed that there may be a surprising 

amount of overlap between previously FDA approved drugs and potential anti-

cryptosporidal activity [60]. The use of Malaria Box drug-like compounds is also being 

investigated. These compounds have been created by the Medicines for Malaria Venture and 

are freely available to researchers [61]. A preliminary study identified several potential anti-

cryptosporidiosis candidates however, further in vitro and in vivo research has yet to be 

published [62]. Similarly, the anti-inflammatory drug auranofin demonstrates activity 

against Cryptosporidium in vitro however, no in vivo or clinical results have been published 

[63].

The re-evaluation of current oral rehydration therapies is also being conducted to determine 

its role in the clearance of Cryptosporidium in immunocompetent hosts. Castro et al. 

demonstrated that supplementation of L-arginine to infected, undernourished mice aided in 

weight gain and reduced parasite burden [64]. Similar findings were reported by Costa et al. 

and Argenzio et al. utilizing the supplementation of an oligodeoxynucleotide with 

unmethylated CpG motif, alanyl-glutamine, and tumor necrosis factor alpha in in vitro and 

in vivo models [65, 66]. These findings indicate that current recommended oral rehydration 

therapies may need to be updated, however no clinical trials have been completed to asses 

these supplements in humans. Further research in this area could potentially provide a cost 

effective treatment option for malnourished and immunocompromised patients in resource-

limited areas.
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Conclusions

Within the past few years, studies have increasingly focused on the importance of 

Cryptosporidium as a cause of childhood diarrhea and associated morbidity and mortality. 

However, there has been little clinical advancement in the treatment of cryptosporidiosis. 

The study conducted by Hussien et al. concluded that nitazoxanide treatment is superior to 

paromomycin in children with chronic diarrhea in endemic areas [30]. Successful 

development of novel drugs could also aid in decreasing childhood malnutrition. Progress 

has been slowed by limitation in methods to propagate the organisms in vitro and genetically 

manipulate the organisms. Nevertheless, research focused on anti-cryptosporidials continues 

to make substantial advancements. Several enzymes have been identified as potential drug 

targets, including calcium-dependent protein kinases [53], Clan CA cysteine proteases [55], 

IMPDH [57] and the folate biosynthesis pathway [56]. Other studies are testing compounds 

repurposed, which were developed for other indications. However, none of these compounds 

have made it into clinical trials.
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Table 1
Current and prospective therapeutic options for Cryptosporidium infection

Therapeutics Research Level Comments

Current Therapeutics

Nitazoxanide

FDA approved for 
treatment of patients 1 
year and older

Not useful in 
patients with 
AIDS

Nitazoxanide/ Azithromycin/ Paromomycin mixtures

Anecdotal clinical 
evidence of response in 
transplant patients

CD40 Agonist Antibody
One clinical study 
published

Patients relapsed 
after cessation of 
treatment

Paromomycin Multiple clinical studies

Clinical results 
have been mixed 
or moderate at best

Azithromycin
One published clinical 
study

Decreases parasite 
load with 
clearance in some 
patients

Rifamycins (Rifabutin, Rifaximin)

Several clinical studies 
which included AIDS 
patients

Prevented 
infection in AIDS 
patients

Prospective Therapeutics

CDPK Inhibitors
Several published in 
vitro and in vivo studies

N-methyl-piperazine-Phe-homoPhe-vinylsulfone phenyl (K11777)
Published in vivo 
studies

Inhibits Clan CA 
cysteine proteases

Phylomer® Peptides
Published in vitro 
studies Inhibits CpIMPDH

Compounds from NIH Clinical Collections
Published in vitro 
studies

Two compounds 
from this 
collection have 
been tested

Malaria Box Drug-Like Compounds
One published in vitro 
study

Auranofin and other “orphan drugs”
Several published in 
vitro studies

Auranofin has 
been successfully 
tested against 
other 
apicomplexans in 
vivo

Note: Dr. White determined the Mechanisms column should not be included due to lack of information in this area.
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