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Abstract

An image-based 3D–2D registration method is presented using radiographs acquired in the 

uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous 

method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely 

‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and 

detector are unconstrained. The method was implemented using a gradient correlation similarity 

metric and stochastic derivative-free optimization on a GPU. Development and evaluation were 

conducted in three steps. First, simulation studies were performed that involved a CT scan of an 

anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs 

in posterior–anterior and lateral views. A median projection distance error (PDE) of 0.007 mm 

was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies 

were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen 

and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF 

method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and 

demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical 

study was conducted with intraoperative radiographs of the spine exhibiting real anatomical 

deformation and image content mismatch (e.g. interventional devices in the radiograph that were 

not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation 

time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-

DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable 

tool for target localization (e.g. decision support in level counting) as well as safety and quality 

assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph 

for verification of the surgical product) in a manner consistent with natural surgical workflow.
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1. Introduction

Mobile digital radiography (DR) is widely used in the operating room (OR), intensive care 

unit (ICU) and in various bedside applications for diagnosis, target localization and/or 

verification of interventional device placement and surgical product. A mobile DR system 

consists of an x-ray source and (in recent systems, a wireless digital) detector that are 

somewhat unconstrained in their geometric relationship. The flexibility in imaging geometry 

facilitates the use of mobile radiography in challenging setups about the OR table, ICU bed, 

etc, though it can also challenge the radiographer in placing the detector at a suitable 

position with respect to the source and patient. For 3D–2D registration, a mobile system 

entails nine degrees of freedom (9-DOF) to be solved in estimating the source-detector 

geometry, compared to 6-DOF associated with a C-arm (in which the source–detector 

relationship is constrained by the C-arm gantry and can be well calibrated).

Intraoperative mobile radiography is often employed at both the beginning of a case (e.g. for 

level counting in spine surgery) and at the end of a case (as verification of surgical product 

and a check against retained foreign bodies). Analysis of the radiograph is primarily visual 

and qualitative—for example, visual confirmation that a target structure is correctly 

localized by placing a radio-opaque tool on the patient, or assessing the placement of 

implants (e.g. pedicle screws) visually with respect to their relative position to the 

surrounding anatomy. The work reported below aims to extend the utility of mobile 

intraoperative radiography via accurate 3D–2D registration to preoperative CT and planning 

data for more rigorous and quantitative localization and verification. For example, 

registration to a mobile radiograph acquired at the beginning of a case could provide 

decision support in vertebral level counting analogous to the LevelCheck method (Otake et 

al 2013b) and registration at the end of a case could provide more rigorous quality assurance 

of the surgical product in direct comparison to (registered) planning data.

Registration of a prior 3D volume using 3D–2D registration has been applied in mobile 

radiographs for intraoperative guidance, such as in hip implant surgery (Zheng et al 2009) 

and 3D reconstruction of the spine (Moura et al 2011, Zhang et al 2013) and hip (Schumann 

et al 2013). These studies employed either a one-time calibration (Zhang et al 2013), a 

geometry approximated from the knowledge of the source–detector distance (SDD) (also 

known as focal-film distance) recorded in the DICOM header (Zheng 2010), or a geometry 

measured by a built-in measuring device (e.g. laser rangefinder) (Moura et al 2010). 

Another approach to geometric calibration in an unconstrained geometry is to image the 

patient together with a calibration fiducial of known shape, such as a ‘calibration jacket’ 

(Moura et al 2011) or a custom-made phantom (Otake et al 2010, Schumann et al 2013). 

However, such approaches introduce additional complexity in workflow and require the 

fiducial/phantom to be present in both the 3D and 2D image. In addition to one-time 

calibration, (Otake et al 2010) used an alternating optimization between the geometry and 
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the patient pose parameters to improve registration accuracy. The method used multiple pre-

calibrated projection images acquired by a C-arm and demonstrated the challenge associated 

with local optima. An analogous method with a known fiducial marker was shown to 

provide automatic image-to-world registration in C-arm cone-beam CT for surgical 

navigation (Dang et al 2012).

This paper develops and evaluates a method to solve the geometric calibration and patient 

registration simultaneously in a single optimization using a single uncalibrated projection 

image of the patient. The approach is based on the notion common to many forms of 3D–2D 

registration in which the patient anatomy itself acts as the fiducial tying the preoperative 3D 

image to the intraoperative 2D image. The algorithm models the projection geometry 

according to a 9-DOF configuration of the 3-DOF source position (x, y, z)s and 6-DOF 

patient position (x, y, z, η, θ, ϕ)obj, both with respect to the detector coordinate system. The 

method is equivalent to an alternative 9-DOF representation of the source–detector geometry 

(x, y, z)s and (x, y, z, η, θ, ϕ)d. The algorithm simultaneously seeks all the model parameters 

that maximize similarity between the acquired projection and a digitally reconstructed 

radiograph (DRR) computed from a preoperative CT. Previous work has not addressed the 

joint optimization framework of the geometry and the patient pose parameters. The 

contributions of this paper include: (1) to extend previous work to a novel optimization 

framework well suited to the 9-DOF problem; (2) to experimentally validate performance of 

the method to perturbation in a certain degree of freedom; and (3) to demonstrate its 

application in the context of mobile intraoperative radiographs. Key to the method is a 

robust optimization facilitated by performing a large number of function evaluations in an 

efficiently parallelized GPU implementation. The focus of application in studies reported 

below is orthopaedic or neurosurgical spine intervention, where 3D–2D registration could 

provide decision support in target localization and postoperative assessment.

2. Method

2.1. Projection geometry

The projection geometry is illustrated in figure 1. The world coordinate frame is located at 

the center of the detector with the X and Y axes parallel to the detector edge and the Z axis 

formed by their cross product. The coordinate frame of the CT volume was defined at the 

center of the volume and its position and orientation with respect the world coordinate frame 

was represented as a 6-element vector of translations and rotations (x, y, z, η, θ, ϕ)obj using 

the ZYX Euler angle. The projection geometry was parameterized by the source position 

with respect to the world coordinate (x, y, z)s, where zs represents the length of the 

perpendicular line from the source to the detector (SDD). These nine parameters formed the 

following projection matrix relating a 3D point and its projection in the 2D detector plane:

(1)
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where (x, y, z)T is the 3D point in the CT coordinate frame, (u,v)T is the projected location in 

the detector coordinate frame, R3 × 3 is the rotation matrix for the CT frame with respect to 

the detector frame parameterized by (η, θ, ϕ)obj, PM3 × 4 is the resulting projection matrix 

and the ~symbol denotes that the left and right sides are equal to within scalar multiplication

—i.e. (a b)T ~ (A B C)T implying a = A/C and b= B/C.

2.2. 3D–2D registration with 9-DOF

The framework underlying the 3D–2D registration method follows that of Otake et al 

(2013b) in which an optimization algorithm seeks model parameters that maximize the 

similarity between the radiograph and DRR, extended in this work to a 9-DOF 

representation of the projection geometry that does not require geometric calibration of the 

imaging system. The optimization algorithm was implemented on a CPU for flexibility in 

parameter selection. DRRs and similarity metric were computed on a GPU as in previous 

publications (Otake et al 2012, Tornai et al 2012) to improve computational performance. 

Data transfer between the CPU and the GPU was minimized by transferring only nine model 

parameters and one similarity value back to the CPU in each function evaluation—i.e. copy 

of 9 × 4 = 36 N bytes from the CPU to the GPU and 4 N bytes from the GPU to the CPU for 

N function evaluations with single-precision floating point values. Prior to registration, the 

CT and radiograph were cropped to a consistent region of support and the collimated regions 

of the radiograph were cropped. The CT image was also thresholded to remove low-density 

structure, with voxels below a threshold (T) set to 0. A nominal value of T = 100 HU was 

used in all studies, selected between typical values of soft tissue (typically <80 HU) and 

bone (typically >150 HU). The results were verified to be insensitive to threshold selection 

across a fairly broad range of 0–200 HU.

2.2.1. Similarity metric—The best choice of similarity metric depends on the application, 

though comparative studies (Russakoff et al 2003, Birkfellner et al 2009) show that metrics 

based on local intensity correspondence tend to outperform those based on global intensity 

(e.g. mutual information, MI) in 3D–2D registration. A previous study (Otake et al 2013b) 

used the gradient information (GI) similarity metric, which compares the gradient magnitude 

at each pixel and ignores gradients appearing only in one of the images. Since GI relies on 

the absolute value of the gradient magnitude, registration of images with different dynamic 

ranges (e.g. mobile radiographs of fixed bit depth [0 4095] for 12 bit format) can be a 

challenge. We therefore employed the gradient correlation (GC) (Penney et al 1998) 

similarity metric, since it is independent of the image dynamic range. The GC averages the 

normalized cross correlation (NCC) between the X- and Y-gradients of the fixed (I0) and 

moving (I1) images as follows:

(2)

(3)
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where Ω denotes the entire image domain. The GC was calculated on a GPU by treating one 

image as a column vector and using matrix multiplication in CUBLAS (nVidia, Santa Clara, 

CA) to simultaneously evaluate multiple moving images against a single fixed image. 

Therefore, m moving images were represented as an n × m matrix, M, where n is the number 

of pixels in an image and the fixed image was represented as an n × 1 vector, F. For 

example, the numerator in equation (3) (pixel-wise multiplication and summation) for all 

moving images was computed by MTF using the cublasSgbmv matrix-vector multiplication 

function.

2.2.2. Initialization—Initialization of the optimization used basic knowledge of the 

imaging protocol but did not rely on calibration of the imaging geometry. For example, in 

acquisition of a mobile radiograph, the operator places the source and detector manually in a 

desired orientation (e.g. view) posterior–anterior (PA) or lateral (LAT) with the source 

roughly centered on the detector (Varnavas et al 2013). A tape measure is sometimes used to 

estimate the SDD, which is governed largely by the physical constraints of bedside imaging 

(e.g. the bed, rails and film stand) and a desired level of geometric magnification. We 

assumed such basic, coarse knowledge in setting the initialization and allowed a broad 

capture range in the optimization. In each case, source position was initialized to (x, y, z)s = 

(0, 0, 1000) mm to emulate clinical practice (at our institution) in which the radiography 

technician typically sets the geometry such that the SDD is approximately 1000 mm and the 

approximate orientation of the patient with respect to the detector (PA or LAT, prone or 

supine) was derived from the acquisition protocol to initialize the volume data at (η, θ, ϕ)obj 

= (0, 0, 0) degrees. The distance from patient to detector assumed the detector to be placed 

as close to the patient as possible (to maximize radiographic field-of-view, FOV), giving 

initial translation along the Z axis, zobj, equal to half the size of the volume (sometimes 

termed ‘patient separation’). Initialization of the translation in X and Y directions, xobj, yobj, 

involved the selection of a landmark in the volume coordinate frame, p3D and a roughly 

corresponding point in the radiograph coordinate frame, p2D. The initial xobj and yobj were 

defined such that the projection of p3D yielded p2D using equation (1). Such manual 

initialization is currently being implemented in a simple graphical interface suitable for use 

by a radiographer to specify the approximate position of the radiograph in the superior–

inferior direction. Robustness over a broad range of initialization error was evaluated in the 

simulation study described in the next section.

2.2.3. Optimization—The covariance matrix adaptation-evolutionary strategy (CMA-ES) 

(Hansen 2006) was used to solve the optimization problem:

(4)

where Φ = {xs, ys, zs, xobj, yobj, zobj, ηobj, _θobj, _ϕobj}, and S represents the solution space 

(i.e. search range). CMA-ES calculations were performed on a CPU in Matlab (The 

Mathworks, Natick, MA) with function calls to an externally compiled C++ library for 

computing DRRs and similarity metric on a GPU using CUDA (nVidia, Santa Clara, CA).
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CMA-ES generates multiple sample solutions (population size λ) in each generation to be 

independently evaluated, allowing parallelization of λ function evaluations. A multi-start 

optimization strategy (Otake et al 2013b) was employed to divide the search space into N 

smaller subspaces by the kD-tree partitioning algorithm (Bentley 1975), perform local 

optimization in each partition, and select the best of the resulting converged solutions (i.e. 

local optima). The number of multi-starts was 100 in this study, improving global search 

performance and parallelization by allowing λ × N concurrent function evaluations. In each 

generation, λ × N projection matrices were computed based on the nine parameters at the 

sample solutions in the current generation using equation (1), with DRRs and similarity 

metric for λ × N samples simultaneously computed on the GPU. A two-level multi-

resolution pyramid (Munbodh et al 2009) with 1252 and 5002 pixels was used to improve 

robustness against local optima and improve the convergence rate.

2.3. Experiments

2.3.1. Simulation study—Simulation studies were conducted to evaluate the accuracy of 

the registration and robustness against initialization error by using a CT scan of an 

anthropomorphic torso phantom containing a natural human skeleton in soft-tissue-

equivalent plastic (Rando™, The Phantom Laboratory, Greenwich, NY). One thousand 

random geometries were generated by perturbing the default geometry parameters ((x, y, z)s 

= (0, 0, 1000) mm, (x, y, z)obj = (0, 0, 300) mm and (η, θ, ϕ)obj = (0, 0, 0) degrees) according 

to three standard deviations in the normal distributions about each parameter as detailed in 

table 1. Simulated PA and LAT radiographs with each random geometry were generated 

using Siddon’s ray-tracing algorithm (Siddon 1985). The perturbation thus represents the 

initial misalignment (i.e. the error in mobile x-ray system setup compared to the first view 

with the default geometry in the optimization) and is illustrated graphically in figure 2.

Registration accuracy was evaluated in terms of projection distance error (PDE) (van de 

Kraats et al 2005) defined as:

(5)

where  is the projection of the ith target point computed by a projection matrix (equation 

(1)) estimated by the registration and  is the projection computed by the true projection 

matrix. Target points were manually defined in the CT volume at the approximate centroid 

of each vertebra. The 9-DOF registration was compared against a conventional 6-DOF 

registration, the latter assuming a fixed source position (x, y, z)s = (0, 0, 1000) mm. All 

calculations were performed on a desktop Windows 7 64 bit workstation with an Intel Xeon 

2 processor (2.4 GHz) and GeForce TITAN GPU (nVidia, Santa Clara, CA).

2.3.2. Cadaver study—A fresh (unfrozen, unfixed) cadaver torso from neck to mid-femur 

without arms was prepared and immobilized on a carbon fiber fluoroscopy tabletop and ten 

BB markers were placed on its surface. The specimen was imaged in CT (SOMATOM 

Definition Flash, Siemens Healthcare) (120 kVp, 100 mAs, CARE Dose B20 s kernel) and 

carefully transported on the carbon fiber tabletop to a mobile radiography system (Sedecal 
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SM-40, Madrid, Spain) equipped with a 35 × 43 cm2 wireless flat-panel detector (DRX-1, 

Carestream Health, Rochester, NY). Deformation of the specimen between CT and 

radiography is believed to be minimal. Nine mobile radiographs were acquired (100 kVp, 5 

mAs) across three ROIs (thoracic, abdominal and pelvic) and three SDDs (~800, ~1000, 

~1200 mm) as illustrated in figure 3. One hundred registration trials initialized at the 

‘default geometry’ explained above ((x, y, z)s = (0, 0, 1000) mm, (x, y, z)obj = (0, 0, 300) mm 

and (η, θ, ϕ)obj = (0, 0, 0) degrees) were performed with the 6- and 9-DOF algorithms. For 

the 6-DOF algorithm, SDD = 800 and 1200 mm were also tested to explore dependency on 

the SDD (which is fixed in 6-DOF). For each radiograph, a geometric calibration phantom 

(Cho et al 2005) was placed above the cadaver to define the ground truth of the system 

geometry (figure 3(a)). The phantom was then removed for acquisition of a radiograph to be 

used in 3D–2D registration. Each radiograph contained 3–7 BBs depending on the ROI. 

Each BB was manually segmented in both CT and mobile radiographs and the center of each 

BB was quantitatively defined by the Hough transform (Hough 1962) as the target point and 

registration accuracy was evaluated in terms of the PDE as described above.

In addition, to evaluate robustness of the proposed method against the initialization error in 

the real image, an experiment with random initializations similar to the simulation study was 

performed. The nine parameters were randomly perturbed from the ground truth registration 

by (±50, ±50, ±100) mm in patient translation, (±5, ±5, ±5) degrees in patient rotation and 

(±50, ±50, ±100) mm in source position, which produced the maximum PDE of 168.5 mm 

(mean: 36.2 mm, standard deviation: 19.4 mm). One thousand random trials were performed 

on each image (i.e. 9000 trials in total).

2.3.3. Patient study—An IRB-approved retrospective study was performed using 

preoperative CT and intraoperative mobile radiographs acquired for two patients undergoing 

spinal intervention (one image per patient) at our institution to further test and validate the 

robustness of 3D–2D registration under conditions of realistic imaging protocols, anatomical 

deformation and placement of interventional devices. The inferior edge of the spinous 

process on each vertebra served as anatomical landmarks manually localized in both the CT 

and mobile radiograph by a fellowship-trained radiologist for quantitative evaluation of 

accuracy. As in the other two experiments, the registration was initialized with the ‘default 

geometry’ ((x, y, z)s = (0, 0, 1000) mm, (x, y, z)obj = (0, 0, 300) mm and (η, θ, ϕ)obj = (0, 0, 

0) degrees).

3. Results

3.1. Simulation study

Figure 4 summarizes the results of the simulation study, demonstrating an improvement in 

the registration accuracy achieved by the 9-DOF optimization in comparison to 6-DOF. For 

each case (i.e. LAT or PA views registered via 9-DOF or 6-DOF), performance was 

assessed in terms of the error in each of nine geometric parameters (xs, ys, zs, xobj, yobj, zobj, 

ηobj, _θobj, _ϕobj) as well as PDE. The median PDE at initialization over all cases was ~120 

mm, corresponding to a broad range of initialization error equivalent to ~3 vertebral levels 

(and therefore raising the distinct possibility of vertebra mis-localization). Such coarse 

initialization is believed to be achieved with relative ease by a capable radiographer using 
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basic setup tools (e.g. measuring tape) as mentioned in section 2.2.2. The 9-DOF registration 

resulted in a median PDE of 0.007 mm (0.006 mm for LAT and 0.009 mm for PA) whereas 

the 6-DOF registration was 0.767 mm (0.566 mm for LAT and 1.044 mm for PA). The 

larger error in 6-DOF registration was due to the mismatch of the source position between 

the real and assumed geometries. The median PDE is therefore within a clinically acceptable 

range (<5 mm) for vertebral level location using either registration scheme, but the 9-DOF 

method also demonstrated reduced variability in the registration result, with one case 

exhibiting a PDE of 1.105 mm and all other cases giving PDE < 1 mm, compared to 

725/2000 cases giving a PDE > 1 mm (and one outlier with PDE > 10 mm) for the 6-DOF 

method. Average computation time was 48.5 s (687, 701 function evaluations) for 9-DOF 

registration and 18.2 s (233, 851 function evaluations) for 6-DOF registration, each 

potentially within the workflow requirements of safety checks and QA in a mobile 

radiograph acquired at the beginning and/or end of a case.

The plots in figures 4(c) and (d) illustrate that the 6-DOF registration attempted to partially 

compensate for the error in source position by translating and rotating the CT volume to 

generate a similar view as the radiograph. For example, the error in zs (SDD) was partially 

compensated by adjusting zobj (out-of-plane translation of the volume) and the error in xs 

(horizontal translation of the piercing point) was partially compensated by adjusting xobj and 

θobj (horizontal translation and rotation about the vertical axis) and so on. Thus, the ratio 

between the absolute errors in these coupled parameters (i.e. xs and xobj, ys and yobj, zs and 

zobj) was approximately equal to the ratio between the SDD and object-to-detector distance 

(ODD) (i.e. 1000:300 in this study). On the other hand, the 9-DOF registration correctly 

estimated the source position and yielded greater accuracy in the translation and rotation 

parameters.

Interestingly, PA projections resulted in a slightly elevated PDE and a greater number of 

outliers than LAT projections. This finding is attributed to the ambiguity between the SDD 

and ODD for planar objects, i.e. a reduced magnification effect in the shorter PA extent of 

the pelvis (cf its lateral extent). Conversely, the larger depth of the pelvis in the LAT view 

yielded a more distinct global optimum in the objective function and improving robustness 

of the optimization.

3.2. Cadaver study

The cadaver study also demonstrated the advantage of 9-DOF registration over the 6-DOF. 

Figure 5(a) shows the BB target positions projected by the true and estimated projection 

matrix with the zoomed-in views of figure 5(b) illustrating the increased error associated 

with 6-DOF registration although both methods demonstrated a PDE < 5 mm, which may be 

suitable for various applications. A quantitative comparison of the nine images illustrated in 

figure 3(c) (thorax, abdomen and pelvis at three values of SDD) is shown in figure 5(c). The 

actual SDD of images #1–#3, #4–#6 and #7–#9 was approximately 1200, 1000, and 800 mm 

respectively. Whereas the 9-DOF registration was able to achieve sub-mm PDE across all 

nine scenarios irrespective of initialization across the range examined, the performance of 

the 6-DOF registration was susceptible to error if poorly initialized. Specifically, although 

each 6-DOF case performed reasonably well (PDE < 2 mm) if initialized at an SDD 
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matching the (approximate) true SDD, each was subject to errors of ~4–10 mm if the SDD 

initialization was poor.

Over all cadaver studies, the average PDE of the 9-DOF registration was 0.49 mm with a 

maximum of 0.62 mm whereas the best case 6-DOF registration (source position of (0, 0, 

1000) mm with correct initialization of the SDD) achieved a mean PDE of 2.53 mm (and 

range up to 5.50 mm).

The evaluation of robustness with 9000 random trials (1000 for each image) demonstrated a 

PDE of 1.29 ± 0.54 mm (mean ± std) after registration (figure 6) with one failure case (33.3 

mm final PDE). Considering the large initial perturbation (and the large initial PDE), this 

result suggests a fairly high degree of robustness in real data.

3.3. Patient study

Figure 7 illustrates 3D–2D registration of anatomical landmarks (inferior aspect of the 

spinous process) in patient images analyzed retrospectively from real preoperative CT and 

intraoperative mobile radiographs. Using 9-DOF 3D–2D registration, the average PDE at the 

spinous processes was 1.13 mm for both patients whereas, using 6-DOF registration, it was 

1.41 mm for patient #1 and 1.22 mm for patient #2. Due to a lack of highly accurate 

landmarks (e.g. radioopaque fiducial BBs), the manual truth definition involved a degree of 

uncertainty upwards of ~1–5 pixels or ~0.14–0.70 mm. Thus, despite the slightly larger error 

in 6-DOF than 9-DOF, further investigation with a larger cohort is needed to reveal 

statistically significant differences in accuracy. Since the ground-truth registration 

(including the source position) is not available, and the anatomical landmarks for target 

definition also involved a degree of uncertainty in the patient study, it is not straightforward 

to draw a definitive conclusion from those two cases. However, one possible reason why the 

6-DOF algorithm gave a comparatively good result was that the actual SDD happened to be 

closer to the assumed value (1000 mm) in those two cases. In patient #2, two of the lumbar 

landmarks (marked by arrows in figure 7(d)) exhibited the largest error due to deformation 

around the sacrum and L5 vertebra as discussed below. The GC images (figures 7(c) and (f)) 

show the contributions of each pixel to the GC metric (equation (2)). Note that the GC was 

computed such that the summation occurs at the end of the process to improve 

parallelization; the images in figures 7(c) and (f) show the GC at each pixel before 

summation. The GC image therefore illustrates edges that were well matched between the 

DRR and radiograph with regions of higher intensity indicating structures that were 

consistent with the preoperative CT.

The various annotations burned into the radiograph are evident in figures 7(a) and (d) and 

could not be removed without explicit post-processing. The gradients associated with 

annotation were fairly minor and did not challenge the registration process (in part due to the 

intrinsic robustness of the GC in ignoring inconsistent gradients and the robust optimization 

in avoiding converging to the false local optima), so no post-processing was applied. (One 

could alternatively apply a simple mask function to the annotation as in Otake et al 

(2013b)). With respect to interventional tools, patient #1 (figure 7(a)) included retractors, an 

inserted K-wire and structure associated with OR table and patient #2 (figure 7(d)) included 

a K-wire, wires associated with monitoring devices and intubation. However, the presence 
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of such strong gradients did not appear to degrade the registration results again attributable, 

in part, to the intrinsic robustness of the GC against mismatched gradients and the robust 

optimization. A strong degree of anatomical deformation, however, was seen to cause 

potential errors in the registration. For example, patient #2 (figures 7(d)–(f)) exhibited fairly 

strong deformation in the lumbar spine and pelvis relative to the preoperative CT. The 

reduced GC in that region of the image is associated with a noticeable discrepancy in the 

registration of target points. One method to mitigate such mismatches from contributing to 

the similarity metric is to apply a weighting mask to down-weight regions suspected to 

exhibit deformation (or instrumentation) as proposed in Otake et al (2013b). Such masks 

could potentially be created manually or automatically by detecting objects that create 

artificially strong gradients.

4. Discussion

A 3D–2D registration method was presented that specifically addresses the challenge of 2D 

projections acquired in an uncalibrated geometry as common in mobile radiography 

systems. The algorithm models the complete projection geometry using 9-DOF and 

estimates each geometric parameter based on fast DRR calculations, GC similarity and 

CMA-ES optimization. The primary contribution of the current work is the extension of 3D–

2D registration to 9-DOF compared to previous work that assumed a rigid relationship (6-

DOF) of the source and detector as common to a C-arm. Experiments in phantoms, cadavers 

and patients demonstrated a robust and accurate estimation of the nine parameters (PDE <5 

mm in all cases and typically <1 mm) in a reasonable computation time (<60 s) using a 

parallelized GPU implementation. The 9-DOF method demonstrated a PDE of 0.007 mm in 

the phantom study (compared to 0.767 mm for 6-DOF method) and 0.49 mm in the cadaver 

study (compared to 2.53 mm for the 6-DOF method). Similarly, the 9-DOF method 

demonstrated a PDE of ~1.1 mm in patient images (compared to 1.2–1.4 mm for the 6-DOF 

method).

A clinically relevant performance requirement varies depending on the application. Previous 

work defined criteria to determine possible registration failure in application to spine level 

localization in terms of PDE within the approximate spatial extent of a single vertebra (e.g. a 

conservative range of ~5–10 mm). The current study aims to achieve accuracy as high as 

possible for purposes of quality assurance beyond level localization. For example, 

application to surgical navigation requires a much higher accuracy (e.g. <2 mm) for 

purposes of registering the image with respect to an interventional tool.

In the clinical study, there was no attempt to control or limit the quality of the images or 

patient setup. Therefore, the images are believed to exhibit real, presumably typical, 

challenges presented by (in possibly increasing order of importance) image quality, 

annotations burned into the DICOM images, the presence of surgical tools and anatomical 

deformation. With respect to image quality, the images in this study were acquired using 

standard clinical protocols and other work has examined the possible effects associated with 

coarser voxel and pixel size (Uneri et al 2013) and reduced radiation dose (Uneri et al 

2014).
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Two potential applications of the method are: (1) an assistant to decision support in 

localization of vertebrae in spine surgery (cf conventional level counting), especially in the 

mid-thoracic area where the lack of clear anatomical landmarks can challenge confident 

localization even by an expert surgeon or radiologist and presents a known source of wrong-

site error (Palumbo et al 2013); and (2) verification, QA and documentation of the surgical 

product whereby planning data can be accurately registered to the postoperative radiograph. 

Such registration could provide a more quantitative assessment of the quality of surgical 

products, conformity to intended device locations and trajectories and a check against 

instrumentation of the wrong (or additional) levels. In addition, Otake et al posited a method 

by which the registration could be used to increase the conspicuity of retained foreign bodies 

through subtraction (or other comparative analysis) of the registered DRR and true 

radiograph (Otake et al 2013a).

It is worth noting, however, that the 3D–2D registration is subject to possible local optima in 

the objective functions associated with the somewhat periodic nature of the spinal column. 

For example, one of the failure modes includes a vertical shift by exactly one level of 

vertebra due to the similarities between the neighboring vertebrae. However, even though 

the vertebrae are almost periodic in the 2D projection, surrounding structures (e.g. rib cage, 

abdominal organs) exhibit non-periodic appearances, which discourage the false local 

optima and help the optimization converge at the true optimum. Extensive validations of 

robustness against local optima in the 6-DOF 3D–2D registration were reported in Otake et 

al (2013b), suggesting more than 99.99% success (<5 mm PDE) in various scenarios with 

local optima were caused by the periodicity and deformation. It is also worth noting, of 

course, that the process is not robust against human error in labeling structures of interest—

e.g. human errors in vertebral labels in preoperative CT would be faithfully reproduced in 

the registered radiograph.

Since the method involves a rigid 9-DOF (or 6-DOF) transform, large anatomical 

deformations can challenge the registration process. The GC similarity metric carries a 

degree of robustness to such gradient mismatch and previous work (Otake et al 2013b) 

specifically investigated the effect of deformation, the potential benefit of a weighting mask 

applied to strongly deforming regions (e.g. the diaphragm or skinline) and the ability to 

accurately register the spine despite strong deformations. The patient study reported above 

suggests the ability to accommodate realistic deformation, though in a very small cohort (N 

= 2), and future studies are required to more fully understand the overall reliability and 

potential failure modes as well as methods to mitigate the effects of deformation (e.g. a 

mask function applied to the skinline). Another possible solution is to estimate the 

deformation simultaneously in the optimization by parameterizing potential modes of 

deformation by a small number of parameters. For example, deformation of the spine could 

be modeled as articulated rigid vertebrae whose deformation can be constrained within 

statistical variations found in patient population studies (Boisvert et al 2008).

The accuracy of the DRR calculation can be further improved by introducing more realistic 

forward projection models such as inclusion of a polyenergetic x-ray spectrum, x-ray scatter 

and a finite focal spot size, which may improve the similarity with the real radiograph and 

thus improve the registration accuracy. Robustness of the registration can be further 
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improved by increasing the number of multi-starts at the expense of computation time as 

shown in previous work (Otake et al 2013b). Assuming an ongoing increase in the number 

of GPU processor cores, the parallelization efficiency is a key factor in improving 

robustness by methods that increase computation time (e.g. number of multi-starts and 

population size). The stochastic derivative-free approach is especially beneficial in this 

regard compared to inherently sequential algorithms such as the Newton-type gradient-based 

algorithms or the classic derivative-free approach such as Powell’s method (Powell 1964), 

downhill simplex (Nelder and Mead 1965) and simulated annealing (Kirkpatrick et al 1983) 

where the next sampled solution is dependent on the completion of all previous function 

evaluations.
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Figure 1. 
Projection geometry. (a) Setup of a mobile radiography system and chest phantom placed 

prone on the detector. (b) Parameters associated with the source, CT and detector coordinate 

frames.
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Figure 2. 
Illustration of the distribution in initialization errors in the simulation study superimposed on 

(a) PA and (b) LAT radiographs. Each square indicates one initial pose estimate of the L3 

vertebra (with the true position shown as a yellow circle). Close inspection of the corners of 

each square shows not only the error in (x, y) placement but also a skew imparted by 

rotational errors in the initialization.

Otake et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Experimental setup for the cadaver study. (a) Illustration of projection geometry showing 

SDD, ODD (object-to-detector distance) and placement of the calibration phantom for truth 

definition. (b) Example radiograph with arrows marking the location of fiducials in the 

calibration phantom). The small target BBs placed on the cadaver are visible upon close 

inspection. (c) Radiographs acquired in three anatomical regions at three values of SDD.
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Figure 4. 
Registration accuracy for 9- and 6-DOF registration of LAT and PA views of the body 

phantom over 1000 simulation trials with randomly perturbed initialization. Details of the 

steps to generate the random initialization and its range were explained in section 2.3.1. In 

each case (a)–(d), the error in each of nine system parameters is shown along with the 

resulting PDE before and after the registration. Box and whisker plots denote the first/third 

quartiles and min/max values, respectively, with the median marked by the horizontal line 

and outliers by crosses. For 6-DOF registration, the error in (x, y, z)s is the same as the 

initialization error since these parameters were not solved.
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Figure 5. 
(a) Example registration for the thoracic radiograph acquired with an SDD of ~1200 mm 

with the true and estimated position of seven target BBs overlaid. (b) Zoomed-in views of 

the each target BB, showing the true (cyan) and estimated (magenta) locations for the 9- and 

6-DOF registration methods. (c) Median PDE (over 100 trials) for each image in the nine 

cases in the cadaver study (three anatomical regions and three values of SDD).
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Figure 6. 
Robustness evaluation in 9000 random trials with real images from the cadaver study. (a) 

Initial and final PDE. Box and whisker plots denote the first/third quartiles and min/max 

values, respectively, with the median marked by the horizontal line and outliers by crosses. 

(b) Scatter plot of the final PDE as a function of the initial PDE.
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Figure 7. 
9-DOF 3D–2D registration of anatomical landmarks (spinous processes) in patients 

undergoing spinal intervention. (a,d) Intraoperative radiographs superimposed by true 

(defined by a radiologist, cyan) and estimated (via 3D–2D registration, yellow) landmark 

locations. (b,e) DRRs computed at the registration result, shown for side-by-side comparison 

to the true radiograph. (c,f) GC similarity metric image at the registration solution. Overall, 

the registration result agreed with the true locations, with slight error (<2 mm) noted in the 

lumbar spine of patient #2 due to an anatomical deformation marked by pink arrows. The 

color-bars indicate the grayscale window of the GC image (c,f). The windows of a, b, d, e 

were adjusted manually.
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Table 1

Summary of experimental and algorithmic parameters.

Simulation study

CT Dimension 512 × 512 × 894 voxels

Voxel size 0.73 × 0.73 × 0.50 mm3

Perturbation range (3σ) (x, y, z)s (±100, ±100, ±200 mm)

(x, y, z)obj (±100, ±100, ±200 mm)

(η, θ, ϕ)obj (±10°, ±10°, ±10°)

Simulated radiograph Dimension 2560 × 3072 pixels

Pixel size 0.139 × 0.139 mm2

Cadaver study

CT Dimension 512 × 512 × 1427 voxels

Voxel size 0.67 × 0.67 × 0.60 mm3

Mobile radiograph Dimension 2560 × 3072 pixels

Pixel size 0.139 × 0.139 mm2

Regions thoracic, abdominal, pelvic

SDD ~800, ~1000, ~1200 mm

Optimization parameters

Population size λ = 50

Number of multi-starts N = 100

Image dimensions in Level1 1252 pixels

multi-resolution pyramid Level2 5002 pixels

Upper/lower bound of the (x,y,z)s (±100, ±100, ±200 mm)

search space (x,y,z)obj (±100, ±100, ±200 mm)

(η, θ, ϕ)obj (±10°, ±10°, ±10°)
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