
ORIGINAL ARTICLE

Poly-arginine and arginine-rich peptides are neuroprotective
in stroke models
Bruno P Meloni1,2,3, Laura M Brookes1,2,3, Vince W Clark1,2,3, Jane L Cross1,2,3, Adam B Edwards3,4, Ryan S Anderton3,4,
Richard M Hopkins5, Katrin Hoffmann5 and Neville W Knuckey1,2,3

Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we
demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy
increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require
heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be
induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with
poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused
to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model;
the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged
poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide
positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced
endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of
different neuroprotective peptides fused to arginine-rich CPPs.
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INTRODUCTION
Currently there are no clinically effective agents that provide
neuroprotection in stroke. Recently, we reported that the arginine-
rich cationic cell-penetrating peptides (CPPs), poly-arginine-9 (R9:
RRRRRRRRR) and penetratin (RQIKIWFQNRRMKWKK) were neuro-
protective in in vitro neuronal cell stroke models.1 This finding
followed several earlier reports from our laboratory and other
laboratories demonstrating that the arginine-rich CPP TAT45–57
(TAT: GRKKRRQRRR) displays neuroprotective actions in both
in vitro and in vivo stroke models.2–5 However, our more recent
data revealed that R9 and penetratin were 17- and 4.6-fold,
respectively, more potent than TAT.1

The recent TAT, R9 and penetratin neuroprotective findings are
highly significant, as prior studies have shown that different
neuroprotective peptides fused to CPPs, including TAT, are
efficacious in a range of acute neurodegenerative disorders,
including stroke, traumatic brain injury, and perinatal hypoxia–
ischemia.6–8 What our recent study1 demonstrates is that carrier
peptides (e.g., R9, penetratin) also display a high level of neuro-
protection. This increases the possibility that the mechanism of
action of a neuroprotective peptide fused to a CPP is largely, if not
exclusively, the result of an enhanced neuroprotective effect of
the carrier peptide. To illustrate this, in one of our earlier studies,
we showed that the addition of three amino acids to TAT
(PKIGRKKRRQRRRG; AM8D-TAT) increased peptide potency

considerably (IC50 decreased from 415 μmol/L to 1.1 μmol/L) in
a glutamic acid excitotoxicity model.2 Furthermore, the mechan-
ism by which arginine-rich CPPs exert their neuroprotective action
may be linked to endocytosis, a predominant carrier-peptide
cellular uptake route, rather than by an interaction with a specific
cytoplasmic target. In contrast, a neuroprotective peptide fused
to a carrier peptide entering a cell by endocytosis, must first
escape the endosome, which is known to be a highly inefficient
process,9,10 before it can interact with its cytoplasmic target,
thereby rendering it unlikely that the peptide can act through
interaction with its intended target.
Therefore, given our previous TAT, R9 and penetratin findings,

and recognition of the potential of cargo peptides to enhance the
effects of CPPs, this current study focuses on further characterizing
the neuroprotective properties of poly-arginine and arginine-rich
peptides, and neuroprotective peptides fused to CPPs with the
goal of gaining a better understanding of the mechanism of
neuroprotection.

MATERIALS AND METHODS
Neuronal Cultures
Establishment of rat primary cortical cultures in Neurobasal/B27 supple-
ment (Life Technologies, Melbourne, VIC, Australia) using cortical tissue
obtained directly from E18-day embryos was as previously described;1
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however, some cultures were established from cortical tissue stored in
Hibernate-E (Life Technologies)/2% B27 supplement for 2 to 7 days at 5 °C.
Neurons were seeded into 96-well-sized glass wells (7 mm diameter, Grace,
Melbourne, VIC, Australia), 96-well plastic plates (Nunc, Thermo Fisher
Scientific, Melbourne, VIC, Australia), or 96-well plastic strip-plates (Costar,
Sigma-Aldrich, Castle Hill, NSW, Australia) and maintained in a CO2

incubator (5% CO2, 95% air balance, 98% humidity) at 37 °C until use on
day in vitro 10 to 14. Under these conditions, cultures routinely consist of
497% neurons and 1% to 3% astrocytes.

Peptides
Peptides used in the study are summarized in Table 1. All peptides were
synthesized by China Peptides (Shanghai, China), except for K10, TAT-
NR2B9c, JNKI-1-TATD, and PYC36-TAT (Mimotopes, Clayton, VIC, Australia),
XIP (Peptide 2.0, Chantilly, VA, USA), NCXBP3 (Pepmic, Suzhou, China), and
TAT, BEN0254, BEN0540, BEN1079 (Pepscan, Lelystad, The Netherlands).
The peptides were high-performance liquid chromatography purified to
attain 88% to 98% purity. The R9D and JNKI-1-TATD peptides were
synthesized in the protease-resistant D-isoform, synthesized from D-amino
acids. All the peptides were prepared as 100× stocks (500 μmol/L) in water
(Baxter, Old Toongabbie, NSW, Australia) and assessed in a concentration
range anywhere from 0.1 to 20 μmol/L, dependent upon the peptide and
injury model used.

Glutamic Acid/N-Methyl-D-Aspartate Excitotoxicity and Peptide
Treatments
Peptides were added to culture wells 15 minutes before glutamic acid
(L-glutamic acid; Sigma-Aldrich) or NMDA (Tocris, R&D Systems, Minnea-
polis, MN, USA) exposure by removing media and adding 50 μL of
Neurobasal/2% B27 containing peptide. To induce excitotoxicity, 50 μL of
Neurobasal/2% B27 containing glutamic acid (200 μmol/L; final concentra-
tion 100 μmol/L) or N-methyl-D-aspartate (NMDA; 100 μmol/L; final

concentration 50 μmol/L) was added to the culture wells and incubated
at 37 °C in the CO2 incubator for 5 minutes (note: peptide concentration
reduced by half during this step). After the 5-minute exposure, media were
replaced with 100 μL of Neurobasal/2% B27 and cultures incubated for a
further 20 to 24 hours at 37 °C in the CO2 incubator. Untreated controls
with or without glutamic acid treatment underwent the same incubation
steps and media additions.
For pre-glutamic acid exposure experiments, neurons were exposed to

peptide for a 10-minute period, immediately before or 1, 2, 3, 4, or 5 hours
before glutamic acid exposure. This was performed by removing media
and adding 50 μL of Neurobasal/2% B27 containing peptide. After the
10 minutes at 37 °C in the CO2 incubator, media were removed and
replaced with 100 μL of Neurobasal/2% B27 (for immediate glutamic acid
exposure media contained glutamic acid; 100 μmol/L). At the relevant
peptide pre-treatment time, media were removed and replaced with
100 μL of Neurobasal/2% B27 containing glutamic acid (100 μmol/L). After
5-minute glutamic acid exposure, neuronal culture wells were treated as
described above. For all the experiments, untreated controls with or
without glutamic acid treatment underwent the same incubation steps
and media additions.

Heparin Experiments
Heparin (for injection) was obtained from Pfizer (1000 IU/mL). Two dif-
ferent heparin experiments were performed: (1) Peptides were incubated
with heparin (20 IU/mL) in Neurobasal/B27 for 5 minutes at room
temperature before addition to culture wells (50 μL) for 15 minutes at
37 °C in the CO2 incubator. After the incubation period, media in wells
were removed and replaced with 100 μL of Neurobasal/2% B27 containing
glutamic acid (100 μmol/L), and subsequently treated as described above;
(2) Media in wells were replaced with Neurobasal/2% B27 containing
heparin (50 μL; 40 IU/mL) and incubated for 5 minutes at 37 °C in the CO2

incubator. After the incubation period, peptides or glutamate receptor
blockers (MK801/CNQX) in Neurobasal/2% B27 (50 μL) were added to the

Table 1. List of peptides used in study

Peptide name Peptide sequence AA residues: arginine residues Net peptide charge at pH 7

R1 H-R-OH 1: 1 1
R3 H-RRR-OH 3: 3 3
R6 H-RRRRRR-OH 6: 6 6
R7 H-RRRRRRR-OH 7: 7 7
R8 H-RRRRRRRR-OH 8: 8 8
R9 H-RRRRRRRRR-OH 9: 9 9
R9D H-rrrrrrrrr-NH2 9: 9 10
R10 H-RRRRRRRRRR-OH 10: 10 10
R11 H-RRRRRRRRRRR-OH 11: 11 11
R12 H-RRRRRRRRRRRR-OH 12: 12 12
R13 H-RRRRRRRRRRRRR-OH 13: 13 13
R14 H-RRRRRRRRRRRRRR-OH 14: 14 14
R15 H-RRRRRRRRRRRRRRR-OH 15: 15 15
R18 H-RRRRRRRRRRRRRRRRRR-OH 18: 18 18
R9/X7/R9 H-RRRRRRRRRPGRVVGGRRRRRRRRR-OH 25: 19 19
E9/R9 H-EEEEEEEEE-RRRRRRRRR-OH 18: 9 0
K10 H-KKKKKKKKKK-OH 10: 0 10
PTD-4a H-YARAAARQARA-OH 11: 3 3
TAT Ac-GRKKRRQRRRG-NH2 11: 6 8
TAT-NR2B9cb H-GRKKRRQRRR-KLSSIESDV-OH 19: 6 7
JNKI-1-TATDc H-tdqsrpvqpflnlttprkprpp-rrrqrrkkrG-NH2 32: 9 12
TAT-JNKI-1c H- GRKKRRQRRR-PPRPKRPTTLNLFPQVPRSQDT-OH 32: 9 11
kFGF-JNKI-1 H-AAVALLPAVLLALLAP-PPRPKRPTTLNLFPQVPRSQDT-OH 38: 3 3
kFGFd H-AAVALLPAVLLALLAP-OH 16: 0 0
PYC36-TATe H-GRKKRRQRRR-GGLQGRRRQGYQSIKP-NH2 26: 9 13
NCXBP3f H-RRERRRRSCAGCSRARGSCRSCRR-NH2 24: 11 10.8
XIPg H-RRLLFYKYVYKRYRAGKQRG-OH 20: 5 8
BEN0254h Ac-WGCCGRSSRRRRTR-NH2 14: 6 5.9
BEN0540h Ac-PFLKRVPACLRLRR-NH2 14: 4 5
BEN1079h Ac-RCGRASRCRVRWMRRRRI-NH2 18: 8 8.9

At the N terminus, H indicates free amine, and Ac indicates acetyl. At the C terminus, OH indicates free acid and NH2 indicates amide. Lower case single-letter
code indicates D-isoform of the amino acid (AA). aPeptide described in Ho et al.12 bNR2B9c-TAT peptide described by Aarts et al.6 cPeptide described in
Borsello et al.37 dPeptide described in Lin et al.14 ePeptide described in Meade et al.2,3 fPeptide isolated by JLC from phylomer library (Phylogica Pty Ltd). gXIP
described by He et al.38 hPeptides isolated by Phylogica Pty Ltd.
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culture wells and cultures incubated for a further 10 minutes at 37 °C in the
CO2 incubator. After the incubation period, media in wells were removed
and replaced with 100 μL of Neurobasal/2% B27 containing glutamic acid
(100 μmol/L), and subsequently treated as described above. For all the
experiments, non-heparin-treated peptide controls with glutamic acid
treatment underwent the same incubation steps and media additions.

Oxygen-Glucose Deprivation and Peptide Incubation
For oxygen-glucose deprivation (OGD), culture media were removed from
wells (glass 96-well plate format) and washed with 300 μl of glucose free
balanced salt solution (BSS; mmol/L: 116 NaCl, 5.4 KCl, 1.8 CaCl2, 0.8
MgSO4, 1 NaH2PO4; pH 6.9) before the addition of 60 μl BSS and incubation
in an anaerobic incubator (Don Whitely Scientific, North Gosford, NSW,
Australia; atmosphere of 5% CO2, 10% H2, and 85% argon, 98% humidity)
at 37 °C for 50 minutes. On removal from the anaerobic incubator, 60 μl of
Neurobasal/2% B27 was added to the wells containing peptides and
cultures incubated for 15 minutes or 24 hours at 37 °C in the CO2

incubator. After the 15-minute peptide exposure, media were removed
and replaced with 100 μL of Neurobasal/2% B27 and cultures incubated for
24 hours at 37 °C in the CO2 incubator. For pre-OGD exposure experiments,
the procedure was the same as described in the glutamic acid model,
except that the 10-minute peptide pre-treatment was performed using
100 μL Neurobasal/2% B27. Control cultures underwent the same BSS wash
procedures and media additions as OGD-treated cultures.

Intracellular Calcium Kinetics
Intracellular calcium influx was monitored in neuronal culture wells (glass
wells) using Fura-2 AM in real-time using a fluorescent plate reader. The
aim of these experiments was to determine the relative change in intra-
cellular calcium before and after glutamic acid exposure. Cells were loaded
with the fluorescent calcium ion indicator Fura-2-AM (5 μmol/L) in 50 μl
NB/B27, 0.1% pluronic F-127, for 20 minutes at 37 °C in the CO2 incubator.
Fura-2-AM solution was removed from wells, replaced with 50 μL NB/B27
containing peptide (5 μmol/L) or glutamate receptor blockers (5 μmol/L
MK801 and 5 μmol/L CNQX) and incubated for 10 minutes at 37 °C in the
CO2 incubator. Control cultures received 50 μL of NB/B27 only. After the
10-minute incubation period, media in wells were replaced with 50 μL of
BSS and wells were transferred to a spectrophotometer (BMG Labtec,
CLARIOstar, Mornington, VIC, Australia) while maintaining temperature at
37 °C. Fifty microliters of NB/B27 containing glutamic acid (200 μmol/L;
100 μmol/L final concentration) was added to wells, and every 5 seconds,
starting 30 seconds before and for 2 minutes after glutamic acid addition,
spectrophotometer measurements (excitation: 355 nm/emission 495 nm)
were recorded. Experiments were performed in triplicate.

Intracellular Calcium Imaging
Intracellular calcium levels were also assessed in neuronal culture wells
(strip wells) using Fura-2 AM and epi-fluorescent microscope. Neuronal
cultures were loaded with Fura-2 AM and treated with peptides or
glutamate receptor blockers as described above. After the 10-minute
incubation period, 50 μL of NB/B27 containing glutamic acid (200 μmol/L;
final concentration 100 μmol/L) was added to the wells before incubation
for 5 minutes at 37 °C in the CO2 incubator. After the incubation period,
media in wells were replaced with 100 μL BSS, and wells incubated for a
further 5 minutes at 37 °C in the CO2 incubator, before examination and
image acquisition using an Olympus IX70 inverted microscope (Notting
Hill, VIC, Australia), fitted with a digital camera (DP70; Olympus), under
software control (DP controller; Olympus).

Neuronal Viability Assessment and Statistical Analysis
At different times after treatments (e.g., 0.5 to 4 hours and 18 to 24 hours),
cultures were examined by light microscopy for qualitative assessment
of neuronal cell viability. Neuronal viability was quantitatively measured
by MTS (3-(4,5,dimethyliazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium salt) assay (Promega, Sydney, NSW, Australia). The
MTS absorbance data were converted to reflect proportional cell viability
relative to both the untreated (no insult) and treated (glutamic acid/OGD)
controls, with the untreated control taken as 100% viability. After glutamic
acid and OGD exposure, cell death in these controls wells typically ranges
from 2% to 10% and 5% to 20%, respectively, based on light microscopy;
all data are presented as mean± s.d. Viability data were analyzed by
analysis of variance, followed by post hoc Fisher’s protected least

significant difference test, with Po0.05 values considered statistically
significant. At least four wells were used in all the assays and usually
repeated a minimum of two times independently.

Rat Permanent Middle Cerebral Artery Stroke Model
This study was approved by the Animal Ethics Committee of the University
of Western Australia and follows guidelines outlined by the Australian code
for the care and use of animals for scientific purposes. Male Sprague–
Dawley rats weighing 270 to 320 g were kept under controlled housing
conditions with 12 hours light–dark cycle with free access to food and
water. Experimental animals were fasted overnight and subjected to
filament permanent middle cerebral artery occlusion (MCAO) and phy-
siologic measurements as previously described.11 The procedure was
considered successful with a 425% decrease from baseline of cerebral
blood flow (CBF) after insertion of filament, as measured by laser Doppler
flowmetry. Thirty minutes post-MCAO rats were intravenously treated with
R9D (1 μmol/kg in 600 μL over 5 minutes) or vehicle (normal saline for
injection; 600 μL over 5 minutes). Treatments were randomized and all
procedures were performed masked to treatment. Twenty-fours hours
post-MCAO infarct area assessment was performed11 and presented as
mean± s.d. The t-test was used to compare mean infarct volume in vehicle
and peptide treatment groups. A total of 29 animals were used in the trial.
Two animals were euthanased because of subarachnoid hemorrhage, one
animal was excluded because of insufficient decrease in CBF, one animal
was excluded because of pyrexia, and one died during surgical recovery for
an unknown reason.

RESULTS
Effects of Poly-Arginine Peptides on Cultured Neurons Exposed to
Glutamic Acid Excitotoxicity
We first examined the influence of poly-arginine length (R1, R3,
R6–R15, R18) in circumstances where peptides were present in
neuronal cultures 15 minutes before, and during a 5-minute
glutamic acid insult. We observed that R1, R3, R6, and R7 peptides
had no neuroprotective effects, while based on efficacy at lower
concentrations (0.1 to 1 μmol/L) for R8 and longer peptides,
neuroprotective potency increases, with increasing length, except
that the longer peptides (R15 and R18) cause cell death at higher
concentrations (Figures 1A–C; data not shown for R1, R3). On the
basis of the level of neuroprotection obtained at a concentration
of 0.5 μmol/L, R15 and R18 were identified as the two most potent
peptides.

Effects of Other Arginine-Rich Peptides on Cultured Neurons
Exposed to Glutamic Acid Excitotoxicity
Given the effects of poly-arginine peptides, we next examined the
effects of six arginine-rich peptides (R9/X7/R9, NCXBP3, XIP,
BEN0254, BEN0540, BEN1079) that contain both arginine and
other amino acid residues, and found that they were also
neuroprotective in the glutamic acid model (Figure 1B; Figures
2A and 2B). To determine whether cationic charge because of
arginine residues was important for neuroprotection, we exam-
ined the effects of R9 fused to the negatively charged poly-
glutamic acid-9 peptide (E9: R9/E9; charge neutral at pH 7), and
poly-lysine-10 peptide (K10, net charge +10) and showed that
both R9/E9 and K10 displayed only minimal neuroprotection
(Figures 2C and 2D, ). Similarly, a modified TAT peptide (PTD-4: 3
of 11 amino acids arginine; net charge +3) that is reported12 to
have 33-fold greater transduction efficiency than TAT was also
shown to display minimal neuroprotection (Figure 3C). Interest-
ingly, although JNKI-1-TATD (net charge +11) is neuroprotective in
the glutamic acid model,3 TAT-NR2B9c (net charge +7) was not
neuroprotective, even at high concentrations (20 μmol/L; Figure 2D).
This peptide, however, was modestly neuroprotective in a milder
excitotoxic model caused by NMDA (Figure 2E). These findings
indicated that arginine residues combined with peptide charge
are the main structural elements determining peptide neuropro-
tective efficacy.
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Effects of Poly-Arginine Peptide Pre-Treatment on Cultured
Neurons Exposed to Glutamic Acid Excitotoxicity
The observation that R9 to R18 poly-arginine peptides are
neuroprotective when present both before and during a glutamic
acid insult (Figure 1), at least at low concentrations, raises the
question of whether pre-exposure is a prerequisite for neuropro-
tection. Therefore, we next tested the neuroprotective efficacy of
R9, R12, R15, and R18 when added to neuronal cultures only
before (10 minutes treatment) or during 5 minutes of glutamic
acid exposure. We observed that in both treatment paradigms,
peptides were neuroprotective and that the level of neuroprotec-
tion was peptide and dose-dependent (Figures 3A and 3B).
We next tested if an extended time interval between peptide
treatment (10-minute treatment) and glutamic acid insult would
be neuroprotective. Experiments involving prolonged intervals (1
to 5 hours) between R12 or R15 peptide treatment of neuronal
cultures and glutamic acid insult, revealed that a 1 to 4 hours pre-
exposure interval was protective, and that the effect was peptide,
time, and dose-dependent (Figure 3C).

The Neuroprotective Mechanism of Action of Peptides in Cells
Exposed to Glutamic Acid Excitotoxicity
To investigate the mechanism of action of neuroprotective pep-
tides, we compared the effects relative to controls (no peptide) of
R9D (D-isoform peptide), R15, BEN1079, PYC36-TAT, TAT, TAT-
NR2B9c, and JNKI-1-TATD on intracellular calcium levels follow
glutamic acid exposure. All peptides to varying degrees were
shown to reduce intracellular neuronal calcium levels when
administered immediately before and/or 1 hour before glutamic
acid exposure (Figures 4A–C). To determine whether cell surface
heparan sulfate proteoglycan-mediated endocytosis is impor-

tant for peptide neuroprotection,13 we pre-incubated peptides
(R12, R15, R9D, PYC36-TAT) with heparin before treatment of
neuronal cultures and showed that this completely eliminated
peptide neuroprotective efficacy in the glutamic acid model
(Figure 5A). Similarly, the presence of heparin in neuronal cultures
before and during peptide treatment (R12, R15, R9D), abolished
peptide neuroprotection after glutamic acid insult, while glutamate
receptor blockers (MK801/CNQX) were still effective (Figure 5B).
To establish whether the JNKI-1 peptide is neuroprotective

when fused to a non-cationic, non-arginine containing CPP in
the glutamic acid model, we assessed JNKI-1 fused to the
kFGF peptide (kFGF-JNKI-1). The kFGF peptide (also known as
MTS; membrane-translocating sequence) is derived from the
hydrophobic region (h-region) of the signal sequence of Kaposi
fibroblast growth factor (kFGF or FGF-4). Importantly, intracellular
uptake of kFGF does not rely on endocytosis, and is thought to
occur by direct translocation through the plasma membrane lipid
bilayer.14 Importantly, neither the kFGF-JNKI-1 or kFGF peptides
were neuroprotective, whereas the control peptides TAT-JNKI-1
and TAT were neuroprotective (Figure 5C). In line with these
results, neither kFGF-JNKI-1 or kFGF significantly reduced glutamic
acid-induced intracellular neuronal calcium levels (Figure 4C).

Neuroprotective Effects of Peptides in Cultured Neurons Exposed
to Oxygen-Glucose Deprivation and In Vivo After Permanent
MCAO
To corroborate the neuroprotective findings obtained in the
glutamic acid model, and to explore the broader applicability of
poly-arginine peptides, we examined their effects in another
in vitro model of stroke (exposure of cultured neurons exposed to
oxygen-glucose deprivation; OGD). For these experiments lower
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peptide concentrations were assessed, as in previous studies we
have observed that high peptide concentrations can be ineffective
after OGD.15 Peptides R9, R12, R15, and R18 were shown to be
neuroprotective when added to neuronal cultures immediately
after OGD (Figure 6A). Interestingly, adding R2, R15, or R18 to
neuronal cultures immediately after OGD was neuroprotective,
even when the peptides were removed (by medium replacement)
after 15 minutes (Figure 6B). Similarly, exposure of neurons to

peptides R12 or R18 for only 10 minutes 1 or 2 hours before OGD
was neuroprotective (Figure 6C), with efficacy decreasing with
increasing pre-exposure time. To explore the relevance of our
in vitro findings to ischemic stroke, we intravenously administered
R9D at a single dose 30 minutes after permanent MCAO in rats.
When assessed 24 hours after stroke, we observed that treatment
with R9D resulted in a statistically significant 20% reduction in
infarct volume (Figure 6D).
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DISCUSSION
The study has made a number of novel findings that have impli-
cations for our understanding of the neuroprotective mechanism
of action of arginine-rich CPPs with or without fusion to a

neuroprotective cargo peptide. We have demonstrated that poly-
arginine peptide neuroprotective potency increases with increas-
ing length. Moreover, poly-arginine peptides are effective even
when given several hours before an in vitro insult and, equally in
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the case of R9D, are effective in vivo at reducing ischemic brain
injury in the rat when administered intravenously after permanent
MCAO. In addition, several other arginine-rich peptides were
shown to be neuroprotective, highlighting the importance of
arginine residues in the process of neuroprotection. Regarding the
mechanism of neuroprotection, we showed that the poly-arginine
(R9D, R15), arginine-rich (BEN1079, TAT), and TAT-fused (JNKI-1-TATD,
TAT-JNKI-1, PYC36-TAT, TAT-NR2B9c) peptides reduce neuronal
intracellular calcium levels after glutamic acid exposure. Recently,
the TAT-NR2Bct neuroprotective peptide has been shown to
attenuate neuronal intracellular calcium influx after NMDA
exposure, despite targeting the intracellular protein DAPK1.16

Our findings that the neuroprotective efficacy of arginine-rich
peptides is attenuated by heparin is consistent with heparan
sulfate receptor-mediated endocytic uptake being essential for
neuroprotection. In support of this hypothesis, a non-arginine,
non-endocytic CPP (kFGF) alone or when fused to the JNKI-1
peptide was shown to be ineffective at reducing neuronal
intracellular calcium levels and neuronal cell death after glutamic
acid exposure. Taken together, although other mechanisms
cannot be ruled out, our findings indicate that peptide suppres-
sion of excitotoxic calcium influx is at least one mechanism
underlying neuroprotection, which we have hypothesized occurs
as a consequence of peptide-induced endocytic internalization
of calcium ion channels and transporters. To this end, the

neuroprotective peptide TAT-CBD3 has been shown to induce
internalization of the NMDA NR2B subunit and the sodium calcium
exchanger (NCX) proteins,17,18 and the TAT-Src peptide inter-
nalization of NR2B.19 Although TAT-CBD3 blocks collapsing
response mediator protein 2 (CRMP2) binding to the N-type
voltage-gated calcium channel protein (CaV2.2), and TAT-Scr
inhibits Src tyrosine protein kinase phosphorylating NR2B, it is also
likely that the reduced surface expression of NR2B and NCX has
occurred as a result of endocytosis during neuronal uptake of
these TAT-fused peptides.
As noted in our previous study,1 the number of arginine

residues and peptide net charge are important factors determin-
ing the neuroprotective efficacy. Arginine, along with lysine (K)
and histidine (H; weakly charged) are the only positively charged
amino acids, whereas glutamic acid (E) and aspartic acid (D) are
the only negatively charged amino acids. The significance of
arginine in terms of charge and chemistry (guanidine head-group)
for neuroprotection is demonstrated by the finding that the
charge-neutral E9/R9 peptide and the poly-lysine K10 peptide
provide only minimal neuroprotection in the glutamic acid
excitotoxicity model. Our data also show that for maximum
neuroprotection, approximately 15 arginine residues are required.
In this regard, peptides R18 and R9/X7/R9 (19 of 25 amino acids
arginine) are no more potent than R15 (on the basis of efficacy at
0.1 and 0.5 μmol/L). Moreover, neuroprotective potency appears

Glutamic acid excitotoxicity model: Fura-2 AM calcium kinetics
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Figure 4. Intracellular calcium assessment using Fura-2 AM after glutamic acid exposure in neuronal cultures. (A) Fluorescent Fura-2 AM
tracers; fluorescence intensity (FI) of neuronal cultures 30 seconds before and after the addition (arrow) of glutamic acid (100 μmol/L final
concentration). Peptides (5 μmol/L) or glutamate receptor blockers (5 μmol/L MK801/5 μmol/L CNQX) were added to neuronal cultures for
10 minutes and removed (time= 0) before glutamic acid addition. Values are mean± s.e.; n= 3. (B and C) Representative images of Fura-2 AM
fluorescence in neuronal cultures treated with peptides (5 μmol/L) or glutamate receptor blockers (5 μmol/L MK801/5 μmol/L CNQX) for
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to correlate with poly-arginine peptide transduction efficiency,20 a
feature that is likely to be directly related to the peptide’s
endocytosis inducing properties. In this regard, on the basis of our
hypothesis, a peptide’s endocytic properties are likely to
determine its ability to reduce excitotoxic calcium influx, and its
toxicity at high concentrations.21

It is also probable that cationic charge provided by lysine
residues within arginine-rich peptides contributes to endosomal-
mediated peptide transduction and neuroprotective efficacy.
Evidence suggests that cationic peptide charge provided by
arginine and lysine residues facilitates electrostatic attraction with
negatively charged cell surface heparan sulfate proteoglycans.22–24

Consequent peptide hydrophobic interactions with proteoglycans
mediated predominantly by arginine residues facilitates heparan
sulfate clustering and endocytosis.22–24 Other amino acids or the
sequence of amino acids may decrease or increase peptide
neuroprotective efficacy as demonstrated for peptides fused to

TAT as shown in our earlier studies. For example TAT as opposed
to PYC71-TAT, and PYC36-TATD as opposed to PYC36scrambled-
TATD, decreased peptide efficacy,3 whereas TATD in contrast to
AM8-TATD increased peptide efficacy.2 Interestingly, alanine (A)
which is commonly used as an amino acid substitute to generate
negative control peptides in neuroprotection studies, has been
shown to significantly impede peptide-proteoglycan binding,24

whereas tryptophan (W) residues within basic peptides can also
promote proteoglycan binding and endocytosis.25,26

There is a growing body of evidence that arginine-rich peptides
(R6;27 R4W2;28 TAT-NR2Bct;16 TAT-Src;19 TAT-CBD3;17,18,29 TAT-3.2-
III-IV30) can interfere with cell surface ion channels and trans-
porters (NMDAR;16–19,27 VR1;28 CaV2.2;17,18,29 NCX;17 CaV3.330), and
most likely other plasma membrane receptors. We have hypothe-
sized that this occurs during peptide endocytosis resulting in the
internalization of cell surface structures. In this regard, TAT-Src19

and TAT-CBD318 peptide-induced internalization of NR2B, and
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TAT-CBD317-induced internalization of NCX have been directly
demonstrated. Similarly, TAT, penetratin, and R9 have been shown
to induce endocytosis of TNF receptors and/or the EGF receptor
in HeLa cells.31 Furthermore, and as mentioned above, the
TAT-NR2Bct peptide has been shown to attenuate neuronal
intracellular calcium influx after NMDA exposure.16 In the setting
of ischemia, reduced levels of cell surface ion channels would
reduce the excitotoxic influx of calcium and other ions, and the
associated downstream pathologic pathways (e.g., activation of
calpain, JNK and nitric oxide synthase). In addition, peptide-
induced endocytic internalization of non-ion channel receptors
such as FasR, TNFR and AQP4 on neuronal and non-neuronal
plasma membranes may also be beneficial after brain ischemia.
Conversely, reduced levels of potentially neuroprotective receptors
and transporters (e.g., Trk and EAAT) or prolonged suppression of
ion channels (e.g., NMDA) may be detrimental. Importantly, about
the later point, it appears that based on the in vitro neuroprotective
findings, the effects of arginine-rich peptides can be relatively brief,
indicating restoration of cell surface receptor activity.

Peptide-induced endosomal receptor internalization may also
explain the immediate and transient nature of the neuro-
protection, and be an important mechanism of action. For
example, endosomal-mediated internalization of receptors can
occur within minutes,32 whereas restoration of cell surface
receptor expression relies on endosomal receptor recycling33

and/or the synthesis and assembly of new receptors, a process
that takes considerably more time. The neuroprotective mechan-
ism we propose is consistent with neuronal endocytic activ-
ity4,34,35 associated with negatively charged cell surface-sulphated
proteoglycans,36 which can promote arginine-rich CPP endosomal
transduction.4,22,35 In addition, as mentioned previously, the
escape of cargo peptides and/or proteins from endosomes is
considered a highly inefficient process,9,10 and as a consequence,
endocytic cargoes are unlikely to have a significant impact within
the cytoplasm. In this regard, the escape of neuroprotective
peptides fused to CPPs is rarely, if ever directly, confirmed in
neuroprotection studies.

Glutamic acid model: Fura-2 AM microscopy
(Peptide treatment 1 hour before glutamic acid exposure)
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Figure 4. Continued.
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CONCLUSION

Our findings indicate that for neuroprotective peptides, arginine
(and to a lesser extent lysine and possibly tryptophan) residues in

carrier peptides (e.g., R9, TAT, penetratin) and/or in cargo peptides
are the critical structural components for neuroprotection and
strongly suggest that poly-arginine and arginine-rich peptides may
represent an exciting new class of receptor-neuromodulating agents,
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which could be developed into neuroprotective drugs in their own
right for the treatment of a range of neurologic conditions. In this
regard, although it is clear peptide arginine content is important, it is
also apparent that other amino acid residues can influence peptide

behavior, a feature which could be utilized to target and modulate
the activity of specific neuronal and non-neuronal receptors within
the CNS for the development of therapies of other neurologic
disorders (e.g., pain, epilepsy, multiple sclerosis).
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