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A method for reducing the effects of motion contamination
in arterial spin labeling magnetic resonance imaging
Aaron B Tanenbaum1, Abraham Z Snyder1,2, Matthew R Brier1 and Beau M Ances1,2

Arterial spin labeling (ASL) is a noninvasive method to measure cerebral blood flow (CBF). Arterial spin labeling is susceptible to
artifact generated by head motion; this artifact is propagated through the subtraction procedure required to calculate CBF. We
introduce a novel strategy for mitigating this artifact based on weighting tag/control volumes according to a noise estimate. We
evaluated this strategy (DVARS weighting) in application to both pulsed ASL (PASL) and pseudo-continuous ASL (pCASL) in a cohort
of normal adults (N = 57). Application of DVARS weighting significantly improved test–retest repeatability as assessed by the
intra-class correlation coefficient. Before the application of DVARS weighting, mean gray matter intra-class correlation (ICC)
between subsequent ASL runs was 0.48 and 0.51 in PASL and pCASL, respectively. With weighting, ICC was significantly improved
to 0.63 and 0.58.
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INTRODUCTION
Arterial spin labeling (ASL) is a noninvasive functional magnetic
resonance imaging (fMRI) technique that measures cerebral blood
flow (CBF). Arterial spin labeling acquisition involves tagging
arterial blood water, waiting for the blood to perfuse the slice of
interest, and measuring the signal. The physical principal under-
lying ASL is observing the intensity difference between tagged
and untagged images to infer CBF. The ASL-based CBF measure-
ments approximate CBF estimates derived from positron emission
tomography using radio-labeled water.1 The favorable properties
of ASL (e.g., no ionizing radiation exposure, superior temporal, and
spatial resolution) motivate further methodological development.
However, ASL, like most fMRI techniques, is sensitive to motion-
induced artifact.2

The problem of motion artifact and strategies to mitigate such
artifacts have been extensively discussed in the context of blood
oxygen level-dependent fMRI.3,4 Motion also impacts ASL-derived
measurements of CBF but discussion of this issue has been
limited.5,6 Extant strategies focus on removing signals presumed
to be artifactual (e.g., residual motion artifacts and global signal2)
or removing frames contaminated by movement (i.e., frame
censoring5). However, the efficacy of these strategies has not been
quantitatively evaluated.
The procedure used to calculate CBF makes ASL particularly

susceptible to head motion artifacts. Arterial spin labeling, like
blood oxygen level-dependent fMRI, is subject to artifacts induced
by head motion (spin history effects).7 These artifacts introduce
noise, which corrupts the measurement and cannot be corrected
by simple realignment. However, the calculation of CBF from ASL

data involves subtracting subsequently acquired volumes. Thus,
head motion over two frames contribute artifactual signal which
exacerbates the confound.
Here, we report a technique that reduces the effect of motion

by systematically discounting motion-contaminated frames. We
demonstrate that this weighting scheme improves test–retest
repeatability of ASL using both pulsed ASL (PASL) and pseudo-
continuous ASL (pCASL) in a cohort of healthy individuals. Further,
we demonstrate that noise weighting reduces the variance
because of artifact in estimated CBF.

MATERIALS AND METHODS
Participants
Fifty-seven participants (34F/27M; mean age= 35 years old, standard
deviation = 16 years) were included in this study. Each participant was
cognitively normal and had no history of head injury with loss of
consciousness greater than 30 minutes, major psychiatric disorders, or
contraindications to scanning. The Human Research Protection Office
at Washington University in St. Louis approved all the procedures and each
participant provided written informed consent. All the procedures
conformed to the ethical standards put forth by the Washington University
in St. Louis Human Research Protection Office and the Declaration of
Helsinki.

Image Acquisition
Participants underwent imaging with a Siemens 3T Trim Trio scanner
equipped with a standard 12-channel head coil. A high-resolution three-
dimensional, sagittal, MPRAGE (magnetization-prepared rapid gradient
echo scan) T1 scan was acquired (TR (time to repeat) = 2,400 milliseconds,
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TE (time to echo) = 3.16 milliseconds, flip angle = 8°, 256 × 256 acquisition
matrix, inversion time= 1,000 milliseconds, voxel size = 1 × 1× 1mm).
A two-dimensional multi-slice oblique axial spin density/T2-weighted fast
spin echo scan (TE = 450 milliseconds, TR = 3,200 milliseconds, 256 × 256
acquisition matrix, 1 × 1 × 1mm voxels) was also acquired for image
registration. Pulsed ASL was acquired using a common Siemens sequence
with PICORE Q2T (TI1/TI of 700/1,800 milliseconds, TR/TE of 2,600/13
milliseconds, voxel size = 3.4 × 3.4 × 6.0 mm with 1.5 mm slice gap, 64 × 64
acquisition matrix, 15 axial slices, and 90° flip angle). Two PASL runs
each containing 63 volumes (duration of 2.7 minutes) were acquired.

Pseudo-continuous ASL was also obtained (1.5 seconds labeling
time,1.2 seconds post-labeling delay, TR of 3,500 seconds, TE of 9.0
milliseconds, 64 × 64 acquisition matrix, 90° flip angle, 22 axial slices with a
1mm gap, and voxel size of 3.4 × 3.4 × 5.0). Two pCASL runs each
containing 60 volumes (duration of 3.5 minutes) were acquired. Pulsed ASL
and pCASL run pairs were acquired in immediate succession. Pulsed ASL
preceded pCASL in all but one subject. There was approximately 5 minutes
between PASL and pCASL acquisitions.

Preprocessing—Structural Data
Affine transforms were calculated to align each participant’s T1 image
to a common atlas space. This affine transform was combined with the
transformation relating the T2 image to the T1 scan to enable alignment of
the ASL data to a common space.

Preprocessing—Functional Data Alignment
The ASL data were aligned (6 degrees-of-freedom rigid body motion)
within and across runs using a standard algorithm minimizing the squared
intensity difference between input and reference images. Mean PASL and
pCASL images (across each scan) were aligned to the T2 structural scan.
The overall scheme achieves atlas transformation by a composition of
affine transforms (EPI → T2w →MPRAGE → atlas).8 The final preproces-
sing step generated volumetric time-series EPI data in 3 mm3 atlas space,
combining head motion correction and atlas transformation in one
resampling step.
Using the realignment time-series, we calculated the root sum squared

frame displacement for the first and second run for PASL and pCASL
separately. The mean and standard deviation frame displacement
across subjects was 0.22 (0.2) for the first PASL run, 0.28 (0.2) for the
second PASL run, 0.18 (0.2) for the first pCASL run, and 0.21 (0.2) for

Table 1. Model constants

Constant PASL pCASL Definition

λ 0.9 g/mL [23] 0.9 g/mL [23] Blood/tissue partition
coefficient

α 0.95 [26] 0.85 [24] Labeling efficacy
T1b 1.65 s [25] 1.65 s [25] T1 decay of labeled protons
Tl1 0.7 s Bolus duration
τ 1.5 s Labeling duration
Tl 1.8 s Inversion time
PLD 1.2 s Post-labeling delay
Tp Tag volume in a given pair p
Cp Untagged volume in a given

pair p
M0 Equilibrium image

Abbreviations: ASL, arterial spin labeling; PASL, pulsed ASL; pCASL, pseudo-
continuous ASL. Arbitrary and derived constants for the ASL model.
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Figure 1. Arterial spin labeling (ASL) derived cerebral blood flow (CBF). Mean CBF from 57 participants is displayed for PASL and pCASL with
and without DVARS weighting. (A) Unweighted (uw) PASL. (B) uw-pCASL. (C) Weighted (w) PASL. (D) w-pCASL. White voxels indicate
computed CBF values less than 0. PASL, pulsed ASL; pCASL, pseudo-continuous ASL.
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the second pCASL run. We subjected these frame displacement values to a
run by sequence repeated measures analysis of variance and found no
effect or run (F1,56 = 1.55, P= 0.21), sequence (F1,56 = 2.25, P=0.14), or an
interaction (F1,56 = 0.08, P=0.77). Thus, the reported results were not
significantly affected by differential movement in the different scans.

Cerebral Blood Flow Calculation
Cerebral blood flow was calculated using a previously defined mathema-
tical model.9–11 Variables and constants are defined in Table 1. Cerebral
blood flow for PASL was calculated using a single blood-compartment
model:

CBFp ¼ 6000Uλ
2UαUTI1Ue - TI=T1b

U
Cp - Tp
Mo

¼ ZU
Cp - Tp
Mo

ð1Þ

Similarly, CBF for pCASL was calculated using a single blood-compartment
model:

CBFp ¼ 6000Uλ
2UαUT1bU e - PLD=T1b - e - PLDþτð Þ=T1bð ÞU

Cp - Tp
M0

¼ ZU
Cp - Tp
M0

ð2Þ

The expression parameterized as Z accounts for the serial acquisition
of slices.
The sliced nature of the ASL acquisition used in this study introduces a

time dependence on the axial slice number with slices closer to the vertex
acquired at a later time than those closer to the base of the brain. Tagged
blood decays over time. In participant space, correcting for this decay is a
function of position along the axial dimension. However, alignment to atlas
space disrupts this relationship. To compensate, an image was generated
where each voxel contained the appropriate Z value (defined above). This
Z image was aligned for both PASL and pCASL to yield a Z�

p image. Z�
p

represents the Z image for the tagged volume in the ASL pair corrected for
the effects of atlas alignment. Accordingly, Z�

p replaces Z in the above
equations for calculated CBF. Equations (1) and (2) would not apply to
other techniques that do not exhibit the same slide number time
dependence (e.g., 3D GRASE).

Weighted Cerebral Blood Flow Calculation
Given multiple samples of the same quantity plus additive noise, the least
squares estimate is achieved by averaging the individual samples
weighted inversely in proportion to noise power.12 Arterial spin labeling
data are contaminated by multiple sources of noise, the most important
being head motion.5 In overview, weighting consists of computing a
weighted mean of CBF measures derived from tagged/untagged frame

Table 2. Weighting comparison

Sequence Pearson
correlation

Slope Intercept

PASL 0.98 0.961 [0.959, 0.962] − 0.75 [− 0.851, − 0.657]
pCASL 0.98 0.917 [0.975, 0.978] − 0.976 [− 0.995, − 0.839]

Abbreviations: PASL, pulsed ASL; pCASL, pseudo-continuous ASL. Regres-
sing results comparing unweighted and weighted CBF. Quantities in
square brackets are 95% confidence intervals.
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Figure 2. Intra-class correlation coefficient (ICC) calculated between duplicate ASL runs, evaluated in (15mm3) cubes. Values near 1 indicate
perfect repeatability. (A) uw-PASL. (B) uw-pCASL. (C) w-PASL. (D) w-pCASL. ASL, arterial spin labeling; PASL, pulsed ASL; pCASL, pseudo-
continuous ASL; uw, unweighted; w, weighted.
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pairs, where the weight is inversely proportional to estimated noise. In
conventional CBF computation, all tagged/untagged frame pairs are
equally weighted. We estimated noise using the temporal derivative of the
frame-to-frame variance (DVARS) measure,4,13 defined as the root mean
square change in voxel intensity within the whole brain across successive
frames:

DVARSt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
r¼1

It rð Þ - It - 1 rð Þð Þ2
vuut ; ð3Þ

where I represents image intensity within a particular voxel r at frame t. M
is the number of voxels in the brain mask. For the purpose of DVARS
calculation only, the data were pre-blurred with a Gaussian kernel (10 mm
full width half maximum in each direction).
As CBF is computed using an ASL pair (tag/control pairs), the noise

power associated with each CBF estimate is computed as:

pDVARS2p ¼
1
M

XM
r¼1

It rð Þ - It - 1 rð Þ½ �2 þ Itþ1 rð Þ - It rð Þ½ �2
n o

ð4Þ

where t indexes the tagged frame and p indexes the tag/control pair. Thus,
the weight assigned to each tag/control pair was computed as

wp ¼ c=pDVARS2p; ð5Þ
where c ¼ P

p
1=pDVARS2p . Thus,

P
p
wp ¼ 1. In the unweighted condition,

wp=1/p, where p is the number of tag/control pairs. Mean weighted CBF is
calculated as the inner product of wp and CBFp. Thus,

CBF ¼
X
p

wpUCBFpU ð6Þ

The first tag/control pair was excluded because pDVAR (see below) for a
given frame is only defined if a previous tag/control pair exists. For pCASL,
the equilibrium image is computed by taking the mean across all control
frames in the run. We reduce motion contamination in the equilibrium
image by applying a similar weighting scheme for ASL pair using DVARS
for control frames instead of pDVARS.

Statistics
The principal analytic question assessed here is the repeatability of
measured blood flow across immediately successive measurements
assuming that the mean CBF measured in both runs is identical. Any
difference in calculated CBF between runs is attributed to noise and
measurement error. We quantified the similarity between runs (two each
for PASL and pCASL) using a two-way random effects intra-class correlation
coefficient (ICC).14 To reduce the effects of noise, ICC was calculated within
15mm isotropic cubic ROIs spanning the entire brain. Regional ICC was
calculated separately for PASL and pCASL with and without DVARS
weighting.

RESULTS
Group average CBF images derived from PASL and pCASL with
and without DVARS weighting are shown in Figure 1. Pulsed ASL-
and pCASL-derived CBF estimates produced correlated topogra-
phies but the range of computed CBF values was greater for PASL.
In particular, PASL-derived CBF from white matter approached
zero whereas gray matter regions near the brain surface exhibited
very high values. These differences most likely represent divergent
biases depending on ASL technique. Exemplar single subject

ICC of uw−PASL

IC
C

 o
f u

w
−

pC
A

S
L

ICC of w−PASL

IC
C

 o
f w

−
pC

A
S

L

ICC of uw−PASL

IC
C

 o
f w

−
P

A
S

L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.2

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

w-PASL vs w−pCASLuw-PASL vs uw−pCASL

uw−PASL vs w-PASL uw−pCASL vs w−pCASL

ICC of uw−pCASL

IC
C

 o
f w

−
pC

A
S

L

Figure 3. ICC comparisons. Paired ICC comparisons across conditions. (A) uw-PASL versus uw-pCASL. (B) w-PASL versus w-pCASL. (C) uw-PASL
versus w-PASL. (D) uw-pCASL versus w-pCASL. Open and closed circles represent predominantly white and gray matter cubes, respectively.
These data are treated statistically in Table 3. ICC, ICC, intra-class correlationcoefficient; PASL, pulsed arterial spin labeling; pCASL, pseudo-
continuous arterial spin labeling; uw, unweighted; w, weighted.
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results are shown in Supplementary Materials (Supplementary
Figure 1).
DVARS-based weighting did not appreciably change mean

computed CBF values for either PASL or pCASL (Figure 1).
Voxelwise CBF before and after weighting was highly correlated
for PASL and pCASL images (Table 2). Further, linear regression of
the weighted result onto the unweighted result revealed a nearly
zero intercept and a slope of near unity.
Test–retest repeatability of each technique was quantified

using ICC (Figure 2). Inspection of Figure 2 suggests that ICC was
generally greater in the gray matter as compared with the
white matter. Before DVARS weighting, pCASL results tended to
have slightly higher ICC compared with PASL results (Figure 3A).
However, following DVARS weighting, the ICC values for PASL and
pCASL were nearly equivalent (Figure 3B). DVARS weighting
improved the ICC for both techniques (Figures 3C and 3D). A
sequence (PASL; pCASL) by weighting (unweighted; weighted) by
tissue type (gray matter; white matter) analysis of variance using
ROIs as repeated measures generated the following outcomes
(Table 3). There was no average difference between the sequences
but DVARS weighting within the gray matter was associated with
higher ICC values. There was a significant sequence ×weighting
interaction wherein PASL ICC values were significantly more
improved by weighting than pCASL ICC values.

DISCUSSION
We demonstrate that the DVARS-weighting approach described
here is effective at improving the repeatability of ASL by reducing
within-participant variance. Evidence derived from resting-state
fMRI suggests that this variance is largely a consequence of head
motion.4,15 Importantly, DVARS weighting of ASL data does not
bias empirically calculated mean CBF. DVARS weighting improves
the repeatability of PASL more than pCASL. This result implies that
pCASL is less sensitive to corruption by head motion. We also
observed that DVARS weighting is less effective in white matter.
This difference most likely is attributable to the relatively low
signal to noise in white matter.

Head Motion in Functional Imaging
It has been recognized for nearly two decades that movement
corrupts blood oxygen level-dependent fMRI, the physical basis
being the interaction of head motion with echo planar imaging
(spin history effects).7 This artifact manifests as spurious changes
in reconstructed image intensity that cannot be corrected by
simple realignment. Extant approaches for mitigating the effects

of motion in blood oxygen level-dependent fMRI include
regression of realignment time-series,2,8 censoring of movement-
contaminated frames,4 independent component analysis,16 and
regression of global signals.17,18 Reported approaches for reducing
spurious noise in ASL include correcting for known sources of
physiologic noise,19,20 low pass filtering subtracted image pairs,21

suppression of background signal,22 regression of nuisance time-
series,2 and removal of motion-contaminated frames.5 Removal of
contaminated frames is conceptually close to DVARS weighting.
However, here we extensively characterize the effect of DVARS
weighting in terms of ICC in a cohort of 57 normal adults.

SUMMARY AND CONCLUSIONS
We demonstrate that DVARS weighting of ASL data improves ICC,
more so with PASL in comparison with pCASL. DVARS weighting
does not significantly bias measures of CBF. Moreover, this
technique is easily implemented and does not involve arbitrary
constants (e.g., filter settings). Our results were obtained by
systematically discounting frames with low SNR. Such a SNR-
weighting approach improves mean estimates generally. In
principle, the inverse SNR weighting is applicable to other ASL
implementations (e.g., multiple post-labeling delays/inversion
times or three-dimensional acquisitions), although the weighting
scheme would have to be appropriately modified.
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