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Summary

We propose a method of effective dimension reduction for functional data, emphasizing the sparse 

design where one observes only a few noisy and irregular measurements for some or all of the 

subjects. The proposed method borrows strength across the entire sample and provides a way to 

characterize the effective dimension reduction space, via functional cumulative slicing. Our 

theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and 

decaying structures of the predictor process and the effective dimension reduction space. A 

simulation study and an application illustrate the superior finite-sample performance of the 

method.
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1. Introduction

In functional data analysis, one is often interested in how a scalar response  varies 

with a smooth trajectory X(t), where t is an index variable defined on a closed interval ; 

see Ramsay & Silverman (2005). To be specific, one seeks to model the relationship Y = 

M(X; ϵ), where M is a smooth functional and the error process ϵ has zeromean and finite 

variance σ2 and is independent of X. Although modelling M parametrically can be restrictive 

in many applications, modelling M nonparametrically is infeasible in practice due to slow 

convergence rates associated with the curse of dimensionality. Therefore a class of 

semiparametric index models has been proposed to approximate M(X; ϵ) with an unknown 

link function ; that is,

(1)

where K is the reduced dimension of the model, β1, … , βK are linearly independent index 

functions, and ⟨u, v⟩ = ∫ u(t)v(t) dt is the usual L2 inner product. The functional linear model 
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Y = β0 + ∫ β1(t)X(t) dt + ϵ is a special case and has been studied extensively (Cardot et al., 

1999; Müller & Stadtmüller, 2005; Yao et al., 2005b; Cai & Hall, 2006; Hall & Horowitz, 

2007; Yuan & Cai, 2010).

In this article, we tackle the index model (1) from the perspective of effective dimension 

reduction, in the sense that the K linear projections ⟨β1, X⟩, … , ⟨βK , X⟩ form a sufficient 

statistic. This is particularly useful when the process X is infinite-dimensional. Our primary 

goal is to discuss dimension reduction for functional data, especially when the trajectories 

are corrupted by noise and are sparsely observed with only a few observations for some, or 

even all, of the subjects. Pioneered by Li (1991) for multivariate data, effective dimension 

reduction methods are typically link-free, requiring neither specification nor estimation of 

the link function (Duan & Li, 1991), and aim to characterize the K-dimensional effective 

dimension reduction space SY∣X = span(β1, … , βK ) onto which X is projected. Such index 

functions βk are called effective dimension reduction directions, K is the structural 

dimension, and SY∣X is also known as the central subspace (Cook, 1998). Li (1991) 

characterized SY∣X via the inversemean E(X ∣ Y) by sliced inverse regression, which has 

motivated much work for multivariate data. For instance, Cook & Weisberg (1991) 

estimated var(X ∣ Y), Li (1992) dealt with the Hessian matrix of the regression curve, Xia et 

al. (2002) proposed minimum average variance estimation as an adaptive approach based on 

kernel methods, Chiaromonte et al. (2002) modified sliced inverse regression for categorical 

predictors, Li & Wang (2007) worked with empirical directions, and Zhu et al. (2010) 

proposed cumulative slicing estimation to improve on sliced inverse regression.

The literature on effective dimension reduction for functional data is relatively sparse. Ferré 

& Yao (2003) proposed functional sliced inverse regression for completely observed 

functional data, and Li & Hsing (2010) developed sequential χ2 testing procedures to decide 

the structural dimension of functional sliced inverse regression. Apart from effective 

dimension reduction approaches, James & Silverman (2005) estimated the index and link 

functions jointly for an additive form 

, assuming that the trajectories are 

densely or completely observed and that the index and link functions are elements of a 

finite-dimensional spline space. Chen et al. (2011) estimated the index and additive link 

functions nonparametrically and relaxed the finite-dimensional assumption for theoretical 

analysis but retained the dense design.

Jiang et al. (2014) proposed an inverse regression method for sparse functional data by 

estimating the conditional mean  with a two-dimensional smoother applied 

to pooled observed values of X in a local neighbourhood of . The computation 

associated with a two-dimensional smoother is considerable and further increased by the 

need to select two different bandwidths. In contrast, we aim to estimate the effective 

dimension reduction space by drawing inspiration from cumulative slicing for multivariate 

data (Zhu et al., 2010). When adapted to the functional setting, cumulative slicing offers a 

novel and computationally simple way of borrowing strength across subjects to handle 

sparsely observed trajectories. This advantage has not been exploited elsewhere. As we will 

demonstrate later, although extending cumulative slicing to completely observed functional 
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data is straightforward, it adopts a different strategy for the sparse design via a one-

dimensional smoother, with potentially effective usage of the data.

2. Methodology

2·1. Dimension reduction for functional data

Let  be a compact interval, and let X be a random variable defined on the real separable 

Hilbert space  endowed with inner product  and norm ‖f‖ 

= ⟨f, f⟩1/2. We assume that:

Assumption 1—X is centred and has a finite fourth moment, ∫τ E{X4(t)} dt < ∞.

Under Assumption 1, the covariance surface of X is ∑(s, t) = E{X(s)X(t)}, which generates a 

Hilbert–Schmidt operator ∑ on H that maps f to (∑f)(t) = ∫τ ∑(s, t) f (s) ds. This operator can 

be written succinctly as ∑ = E(X ⊗ X), where the tensor product u ⊗ v denotes the rank-one 

operator on H that maps w to (u ⊗ v)w = ⟨u, w⟩v. By Mercer’s theorem, ∑ admits a spectral 

decomposition , where the eigenfunctions {ϕj}j=1,2,… form a complete 

orthonormal system in H and the eigenvalues {αj}j=1,2,… are strictly decreasing and 

positive such that . Finally, recall that the effective dimension reduction 

directions β1, … , βK in model (1) are linearly independent functions in H, and the response 

 is assumed to be conditionally independent of X given the K projections ⟨β1, X⟩, … , 

⟨βK , X⟩.

Zhu et al. (2010) observed that for a fixed , using two slices  and 

 would maximize the use of data and minimize the variability in each slice. The 

kernel of the sliced inverse regression operator var{E(X ∣ Y)} is estimated by the two-slice 

version , where  is an 

unconditional expectation, in contrast to the conditional expectation E{X(t) ∣ Y} of 

functional sliced inverse regression. Since Λ0 with a fixed  spans at most one direction of 

SY∣X, it is necessary to combine all possible estimates of  by letting  run across the 

support of , an independent copy of Y. Therefore, the kernel of the proposed functional 

cumulative slicing is

(2)

where  is a known nonnegative weight function. Denote the corresponding integral 

operator of Λ(s, t) by Λ also. The following theorem establishes the validity of our proposal. 

Analogous to the multivariate case, a linearity assumption is needed.

Assumption 2—For any function b ∈ H, there exist constants  such that
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This assumption is satisfied when X has an elliptically contoured distribution, which is more 

general than, but has a close connection to, a Gaussian process (Cambanis et al., 1981; Li & 

Hsing, 2010).

Theorem 1: If Assumptions 1 and 2 hold for model (1), then the linear space spanned by 

 is contained in the linear space spanned by {∑β1, … , ∑βK}, i.e., 

.

An important observation from Theorem 1 is that for any b ∈ H orthogonal to the space 

spanned by {∑β1, … , ∑βK} and for any x ∈ H, we have ⟨b, Λx⟩ = 0, implying that range(Λ) 

⊆ span(∑β1, … , ∑βK). If has K nonzero eigenvalues, the space spanned by its 

eigenfunctions is precisely span(∑β1, … , ∑βK). Recall that our goal is to estimate the central 

subspace SY∣X, even though the effective dimension reduction directions themselves are not 

identifiable. For specificity, we regard these eigenfunctions of ∑−1Λ associated with the K 

largest nonzero eigenvalues as the index functions β1, … , βK, unless stated otherwise.

As the covariance operator ∑ is Hilbert–Schmidt, it is not invertible when defined from H to 

H. Similarly to Ferré & Yao (2005), let R∑ denote the range of ∑, and let 

. Then ∑ is a one-to-one mapping from 

 onto R∑, with inverse . This is reminiscent of finding a 

generalized inverse of a matrix. Let ξj = ⟨X, ϕj⟩ denote the jth principal component, or 

generalized Fourier coefficient, of X, and assume that:

Assumption 3—

.

Proposition 1: Under Assumptions 1–3, the eigenspace associated with the K nonnull 

eigenvalues of ∑−1 Λ is well-defined in H.

This is a direct analogue of Theorem 4.8 in He et al. (2003) and Theorem 2.1 in Ferré & Yao 

(2005).

2·2. Functional cumulative slicing for sparse functional data

For the data {(Xi, Yi) : i = 1, … , n}, independent and identically distributed as (X, Y), the 

predictor trajectories Xi are observed intermittently, contaminated with noise, and collected 

in the form of repeated measurements {(Tij, Uij) : i = 1, … , n; j = 1, … , Ni}, where Uij = Xi 

(Tij) + εij with measurement error εij that is independent and identically distributed as ε with 

zero mean and constant variance , and independent of all other random variables. When 

only a few observations are available for some or even all subjects, individual smoothing to 

recover Xi is infeasible and one must pool data across subjects for consistent estimation.

To estimate the functional cumulative slicing kernel Λ in (2), the key quantity is the 

unconditional mean . For sparsely and irregularly observed Xi, 
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cross-sectional estimation as used in multivariate cumulative slicing is inapplicable. To 

maximize the use of available data, we propose to pool the repeated measurements across 

subjects via a scatterplot smoother, which works in conjunction with the strategy of 

cumulative slicing. We use a local linear estimator  (Fan & Gijbels, 1996), 

solving

(3)

where K1 is a nonnegative and symmetric univariate kernel density and h1 = h1(n) is the 

bandwidth to control the amount of smoothing. We ignore the dependence among data from 

the same individual (Lin & Carroll, 2000) and use leave-one-curve-out crossvalidation to 

select h1 (Rice & Silverman, 1991). Then an estimator of the kernel function Λ(s, t) is its 

sample moment

(4)

The distinction between our method and that of Jiang et al. (2014) lies in the inverse 

function m(t, y) which forms the effective dimension reduction space. It is notable that (4) is 

a univariate smoother that includes the effective data satisfying {Tij ∈ (t − h1, t + h1), Yi ≤ 

y}, roughly at an order of (nh1)1/2 for estimating m(t, y) = E{X(t)1(Y ≤ y)} for a sparse 

design with E(Nn) < ∞, where Nn is the expected number of repeated observations per 

subject. By contrast, equation (2·4) in Jiang et al. (2014) uses the data satisfying {Tij ∈ (t − 

ht, t + ht), Yi ∈ (y − hy, y + hy)} for estimating m(t, y)= E{X(t) ∣ Y = y}, roughly at an order of 

(nhthy)1/2. This is reflected in the faster convergence of the estimated operator  compared 

with  in Jiang et al. (2014), indicating potentially effective usage of the data based on 

univariate smoothing. The computation associated with a two-dimensional smoother is 

considerable and further exacerbated by the need to select different bandwidths ht and hy.

For the covariance operator ∑, following Yao et al. (2005a), denote the observed raw 

covariances by Gi(Tij, Til) = UijUil. Since E{Gi(Tij, Til) ∣ Tij, Til} = cov{X(Tij), X(Til)} + 

σ2δjl, where δjl is 1 if j = l and 0 otherwise, the diagonal of the raw covariances should be 

removed. Solving

(5)

yields , where K2 is a nonnegative bivariate kernel density and h2 = h2(n) is the 

bandwidth chosen by leave-one-curve-out crossvalidation; see Yao et al. (2005a) for details 

on the implementation. Since the inverse operator ∑−1 is unbounded, we regularize by 

projection onto a truncated subspace. To be precise, let sn be a possibly divergent sequence 

and let  and  denote the orthogonal projectors onto 

the eigensubspaces associated with the sn largest eigenvalues of ∑ and , respectively. Then 
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∑sn = πsn∑πsn and  are two sequences of finite-rank operators converging to ∑ 

and  as n → ∞, with bounded inverses  and 

, respectively. Finally, we obtain the eigenfunctions associated with 

the K largest nonzero eigenvalues of  as the estimates of the effective dimension 

reduction directions .

The situation for completely observed Xi is similar to the multivariate case and considerably 

simpler. The quantities  and ∑(s, t) are easily estimated by their respective 

samplemoments  and , 

while the estimate of Λ remains the same as (4). For densely observed Xi, individual 

smoothing can be used as a pre-processing step to recover smooth trajectories, and the 

estimation error introduced in this step can be shown to be asymptotically negligible under 

certain design conditions, i.e., it is equivalent to the ideal situation of the completely 

observed Xi (Hall et al., 2006).

For small values of  obtained by (3) may be unstable due to the smaller number 

of pooled observations in the slice. A suitable weight function w may be used to refine the 

estimator . In our numerical studies, the naive choice of w ≡ 1 performed fairly well 

compared to other methods. Analogous to the multivariate case, choosing an optimal w 

remains an open question.

Ferré & Yao (2005) avoided inverting ∑ with the claim that for a finite-rank operator Λ, 

range(Λ−1∑) = range(∑−1 Λ); however, Cook et al. (2010) showed that this requires more 

stringent conditions that are not easily fulfilled.

The selection of Kn and sn deserves further study. For selecting the structural dimension K, 

the only relevant work to date is Li & Hsing (2010), where sequential χ2 tests are used to 

determine K for the method of Ferré & Yao (2003). How to extend such tests to sparse 

functional data, if feasible at all, is worthy of further exploration. It is also important to tune 

the truncation parameter sn that contributes to the variance-bias trade-off of the resulting 

estimator, although analytical guidance for this is not yet available.

3. Asymptotic properties

In this section we present asymptotic properties of the functional cumulative slicing kernel 

operator and the effective dimension reduction directions for sparse functional data. The 

numbers of measurements Ni and the observation times Tij are considered to be random, to 

reflect a sparse and irregular design. Specifically, we make the following assumption.

Assumption 4

The Ni are independent and identically distributed as a positive discrete random variable Nn, 

where E(Nn) < ∞, pr(Nn ≥ 2) > 0 and pr(Nn ≤ Mn) = 1 for some constant sequence Mn that is 
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allowed to diverge, i.e., Mn → ∞ as n → ∞. Moreover, ({Tij, j ∈ Ji}, {Uij, j ∈ Ji}) are 

independent of Ni for Ji ⊆ {1, … , Ni}.

Writing Ti = (Ti1, … , TiNi)
T and Ui = (Ui1, … , UiNi)

T, the data quadruplets Zi = {Ti, Ui, Yi, 

Ni} are thus independent and identically distributed. Extremely sparse designs are also 

covered, with only a few measurements for each subject. Other regularity conditions are 

standard and listed in the Appendix, including assumptions on the smoothness of themean 

and covariance functions of X, the distributions of the observation times, and the bandwidths 

and kernel functions used in the smoothing steps. Write  for 

.

Theorem 2—Under Assumptions 1, 4 and A1–A4 in the Appendix, we have

The key result here is the L2 convergence of the estimated operator , in which we exploit 

the projections of nonparametric U-statistics together with a decomposition of  to 

overcome the difficulty caused by the dependence among irregularly spaced measurements. 

The estimator  is obtained by averaging the smoothers  over Yi, which is crucial in 

order to achieve the univariate convergence rate for this bivariate estimator. The 

convergence of the covariance operator ∑ is presented for completeness, given in Theorem 2 

of Yao & Müller (2010).

We are now ready to characterize the estimation of the central subspace SY∣X = span(β1, … , 

βK). Unlike the multivariate or finite-dimensional case, where the convergence of 

follows immediately from the convergence of  and  given a bounded ∑−1, we have to 

approximate ∑−1 with a sequence of truncated estimates , which introduces additional 

variability and bias inherent in a functional inverse problem. Since we specifically regarded 

the index functions {β1, … , βK} as the eigenfunctions associated with the K largest 

eigenvalues of ∑−1Λ, their estimates are thus equivalent to . For some constant C > 0, 

we require the eigenvalues of ∑ to satisfy the following condition:

Assumption 5

αj > αj+1 > 0, , and αj − αj+1 ≥ C−1 j−a−1 for j ≥ 1.

This condition on the decaying speed of the eigenvalues αj prevents the spacings between 

consecutive eigenvalues from being too small, and also implies that αj ≥ Cj−a with a > 1 

given the boundedness of ∑. Expressing the index functions as  (k = 1, … , 

K), we impose a decaying structure on the generalized Fourier coefficients bkj = ⟨βk, ϕj⟩:

Assumption 6

∣bkj∣ ≤ Cj−b for j ≥ 1 and k = 1, … , K, where b > 1/2.
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In order to accurately estimate the eigenfunctions ϕj from , one requires 

, i.e., that the distance to αj from the nearest eigenvalue 

does not fall below  (Hall & Hosseini-Nasab, 2006); this implicitly places an 

upper bound on the truncation parameter sn. Given Assumption 5 and Theorem 2, we 

provide a sufficient condition on sn. Here we write c1n ≍ c2n when c1n = O(c2n) and c2n = 

O(c1n).

Assumption 7

As n → ∞, ; moreover, if h2 ≍ n−1/6, sn = o{n1/(3a+3)}.

Theorem 3—Under Assumptions 1–7 and A1–A4 in the Appendix, for all k = 1, … , K,

(6)

This result associates the convergence of  with the truncation parameter sn and the 

decay rates of αj and bkj, indicating a bias-variance trade-off with respect to sn. One can 

view sn as a tuning parameter that is allowed to diverge slowly and which controls the 

resolution of the covariance estimation. Specifically, the first two terms on the right-hand 

side of (6) are attributed to the variability of estimating  with , and the last term 

corresponds to the approximation bias of . The first term of the variance is due to 

 and becomes increasingly unstable with a larger truncation. 

The second part of the variance is due to , and the approximation 

bias is determined by the smoothness of βk; for instance, a smoother βk with a larger b leads 

to a smaller bias.

4. Simulations

In this section we illustrate the performance of the proposed functional cumulative slicing 

method in terms of estimation and prediction. Although our proposal is link-free for 

estimating index functions βk, a general index model (1) may lead to model predictions with 

high variability, especially given the relatively small sample sizes frequently encountered in 

functional data analysis. Thus we follow Chen et al. (2011) in assuming an additive structure 

for the link function g in (1), i.e., . In each Monte Carlo run, a 

sample of n = 200 functional trajectories is generated from the process 

, where ϕj(t) = sin(πtj/5)/ √5 for j even and ϕj(t)=cos(πtj/5)/ √5 for j 

odd, the functional principal component scores ξij are independent and identically 

distributed as N(0, j−1·5), and . For the setting of sparsely observed functional 

data, the number of observations per subject, Ni, is chosen uniformly from {5, … , 10}, the 

observational times Tij are independent and identically distributed as Un[0, 10], and the 
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measurement error εij is independent and identically distributed as N(0, 0·1). The effective 

dimension reduction directions are generated by , where bj = 1 for j = 

1, 2, 3 and bj = 4(j − 2)−3 for j = 4, … , 50, and β2(t)=0·31/2(t/5 − 1), which cannot be 

represented with finite Fourier terms. The following single- and multiple-index models are 

considered:

where the regression error ϵ is independent and identically distributed as N(0, 1) for all 

models.

We compare our method with that of Jiang et al. (2014) for sparse functional data in terms 

of estimation and prediction. Denote the true structural dimension by K0. Due to the 

nonidentifiability of the βk, we examine the projection operator of the effective dimension 

space, i.e.,  and . To assess the estimation of 

the effective dimension reduction space, we calculate  as the estimation error. 

To assess model prediction, we estimate the link functions gk nonparametrically by fitting a 

generalized additive model  (Hastie & Tibshirani, 1990), where 

 with  being the best linear unbiased predictor of Xi (Yao et al., 2005a). 

We generate a validation sample of size 500 in each Monte Carlo run and calculate the 

average of the relative prediction errors, 500−1 , over different values 

of (K, sn), where σ2 = 1 and  with , the  being 

the underlying trajectories in the testing sample. We report in Table 1 the average estimation 

and prediction errors, minimized over (K, sn), along with their standard errors over 100 

Monte Carlo repetitions. For estimation and prediction, both methods selected (K, sn) = (1, 

3) for the single-index models I and II, and selected (K, sn) = (2, 2) for the multiple-index 

models III and IV. The two approaches perform comparably in this sparse setting, which 

could be due to the inverse covariance estimation that dominates the overall performance. 

Our method takes one-third of the computation time of the method of Jiang et al. (2014) for 

this sparse design.

We also present simulation results for dense functional data, where Ni = 50 and the Tij are 

sampled independently and identically from Un[0, 10]. With (K, sn) selected so as to 

minimize the estimation and prediction errors, we compare our proposal with the method of 

Jiang et al. (2014), functional sliced inverse regression (Ferré & Yao, 2003) using five or ten 

slices, and the functional index model of Chen et al. (2011). Table 2 indicates that our 

method slightly outperforms the method of Jiang et al. (2014), followed by the method of 

Chen et al. (2011), while functional sliced inverse regression (Ferré & Yao, 2003) is seen to 
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be suboptimal. Our method takes only one-sixth of the time required by Jiang et al. (2014) 

for this setting.

5. Data application

In this application, we study the relationship between the winning bid price of 156 Palm 

M515 PDA devices auctioned on eBay between March and May of 2003 and the bidding 

history over the seven-day period of each auction. Each observation from a bidding history 

represents a live bid, the actual price a winning bidder would pay for the device, known as 

the willingness-to-pay price. Further details on the bidding mechanism can be found in Liu 

& Müller (2009). We adopt the view that the bidding histories are independent and 

identically distributed realizations of a smooth underlying price process. Due to the nature of 

online auctions, the jth bid of the ith auction usually arrives irregularly at time Tij, and the 

number of bids Ni can vary widely, from nine to 52 for this dataset. As is usual in modelling 

prices, we take the log-transform of the bid prices. Figure 1 shows a sample of nine 

randomly selected bid histories over the seven-day period of the respective auction. 

Typically, the bid histories are sparse until the final hours of each auction, when bid sniping 

occurs. At this point, snipers place their bids at the last possible moment to try to deny 

competing bidders the chance of placing a higher bid.

Since our main interest is in the predictive power of price histories up to time T for the 

winning bid prices, we consider the regression of the winning price on the history trajectory 

X(t) (t ∈ [0, T]), and set T = 4·5, 4·6, 4·7, … , 6·8 days. For each analysis on the domain [0, 

T], we select the optimal structural dimension K and the truncation parameter sn by 

minimizing the average five-fold crossvalidated prediction error over 20 random partitions. 

Figure 2(a) shows the minimized average crossvalidated prediction errors, compared with 

those obtained using the method of Jiang et al. (2014). With the increasing prediction power 

as the bidding histories encompass more data, the proposed method appears to yield more 

favourable prediction across different time domains.

As an illustration, we present the analysis for T = 6. The estimated model components using 

the proposed method are shown in Fig. 2(b), with the parameters chosen as K = 2 and sn = 2. 

The first index function assigns contrasting weights to bids made before and after the first 

day, indicating that some bidders tend to underbid at the beginning only to quickly overbid 

relative to the mean. The second index represents a cautious type of bidding behaviour, 

entering at a lower price and slowly increasing towards the average level. These features 

contribute most towards the prediction of the winning bid prices. Also seen are the nonlinear 

patterns in the estimated additive link functions. Using these estimated model components, 

we display in Fig. 3(a) the additive surface . We also fit 

an unstructured index model g(⟨β1, X⟩, ⟨β2, X⟩), where g is nonparametrically estimated 

using a bivariate local linear smoother; this is shown in Fig. 3(b), and is seen to agree 

reasonably well with the additive regression surface.
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Appendix

Regularity conditions and auxiliary lemmas

Without loss of generality, we assume that the known weight function is w(·) = 1. Write 

 and  for some δ > 0; denote a single observation time by T and a 

pair of observation times by (T1, T2)T, with densities f(t) and f2(s, t), respectively. Recall the 

unconditional mean function m(t, y) = E{X(t)1(Y ≤ y)}. The regularity conditions for the 

underlying moment functions and design densities are as follows, where ℓ1 and ℓ2 are 

nonnegative integers. We assume that:

Assumption A1

∂2∑/(∂sℓ1∂tℓ2) is continuous on  for ℓ1 + ℓ2 = 2, and ∂2m/∂t2 is bounded and 

continuous with respect to  for all .

Assumption A2

 is continuous on  with f1(t) > 0, and ∂f2/(∂sℓ1∂tℓ2) f2 is continuous on 

for ℓ1 + ℓ2 = 1 with f2(s, t) > 0.

Assumption A1 can be guaranteed by a twice-differentiable process, and Assumption A2 is 

standard and implies the boundedness and Lipschitz continuity of f. Recall the bandwidths 

h1 and h2 used in the smoothing steps for  in (3) and  in (5), respectively; we assume 

that:

Assumption A3

h1 → 0, h2 → 0, , and .

We say that a bivariate kernel function K2 is of order (ν, ℓ), where ν is a multi-index ν = (ν1, 

ν2)T, if

where ∣ν∣ = ν1 + ν2 < ℓ. The univariate kernel K is said to be of order (ν, ℓ) for a univariate ν 

= ν1 if this definition holds with ℓ2 = 0 on the right-hand side, integrating only over the 

argument u on the left-hand side. The following standard conditions on the kernel densities 

are required.
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Assumption A4

The kernel functions K1 and K2 are nonnegative with compact supports, bounded, and of 

order (0, 2) and {(0, 0)T, 2}, respectively.

Lemma A1 is a mean-squared version of Theorem 1 in Martins-Filho & Yao (2006), which 

asserts the asymptotic equivalence of a nonparametric V-statistic to the projection of the 

corresponding U-statistic. Lemma A2 is a restatement of Lemma 1(b) of Martins-Filho & 

Yao (2007) adapted to sparse functional data.

Lemma A1—Let  be a sequence of independent and identically distributed random 

variables, and let un and vn be U- and V-statistics with kernel function ψn(Z1, … , Zk). In 

addition, let , where ψ1n(Zi)= E{ψn(Zi1, … , Zik) ∣ Zi} 

for i ∈ {i1, … , ik} and ϕn = E{ψn(Z1, … , Zk)}. If , then 

.

Lemma A2—Given Assumptions 1–4 and A1–A4, let

Then  for k = 0, 1, 2.

Proofs of the theorems

Proof of Theorem 1

This theorem is an analogue of Theorem 1 in Zhu et al. (2010); thus its proof is omitted.

Proof of Theorem 2

For brevity, we write Mn and Nn as M and N, respectively. Let

where . The local linear estimator of  with kernel K1 is
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Let 

. Then

Denote a point between Tij and t by ; by Taylor expansion, 

. Finally, let 

. Then

where

This allows us to write , where

which implies, by the Cauchy–Schwarz inequality, that 

. In the rest of the proofs, we drop the subscript H 

and the dummy variable in integrals for brevity. Recall that we defined Zi as the underlying 

data quadruplet (Ti, Ui, Yi, Ni). Further, let ∑(p) hi1,…,ip denote the sum of hi1,…,ip over the 

permutations of i1, … , ip. Finally, by Assumptions A1, A2 and A4, write 

 for the lower and upper bounds of the density function of T, ∣K1(x)

∣ ≤ BK < ∞ for the bound on the kernel function K1, and ∣∂2m/∂t2∣ ≤ B2m < ∞ for the bound 

on the second partial derivative of  with respect to t.

(a) We further decompose I1n(s, t) into I1n(s, t) = I11n(s, t) + I12n(s, t) + I13n(s, t), where
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which we analyse individually below.

We first show that . We write I11n(s, t) as

where vn(s, t) is a V-statistic with symmetric kernel ψn(Zi, Zk; s, t) and

Since E{eij(Yk) ∣ Tij, Yk} = 0, it is easy to show that E{hik(s, t)} = E{hik(t, s)} = E{hki(s, t)} = 

E{hki(t, s)} = 0. Thus θn(s, t) = E{ψn(Zi, Zk; s, t)} = 0. Additionally,

If , Lemma A1 gives , where 

 is the projection of the corresponding U-statistic. Since 

the projection of a U-statistic is a sum of independent and identically distributed random 

variables ψ1n(Zi; s, t), E‖I11n‖2 ≤ 2n−1 ∫∫ var[E{hik(s, t) ∣ Zi}] + 2n−1 ∫∫ var[E{hik(t, s) ∣ Zi}] 

+ o(n−1), where
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where the first line follows from the Cauchy–Schwarz inequality, the second line is obtained 

by letting  and observing that Tij is independent of Xi, Yi and εi, and the third 

line follows from a variant of the dominated convergence theorem (Prakasa Rao, 1983, p. 

35) that allows us to derive rates of convergence for nonparametric regression estimators. 

Thus , provided that  for all i and k, 

which we will show below. For i ≠ k,

Observe that

For j = l, applying the dominated convergence theorem to the expectation on the right-hand 

side gives , and hence 

 by Assumption A3. For j ≠ l, a similar argument gives n−1 

. The next two terms,  and 

E{hik(s, t)hik(t, s)}, can be handled similarly, as well as E{hik(s, t)hki(s, t)} = o(n) and the 

case of i = k. Thus .

Using similar derivations, one can show that .

We next show that . Following Lemma 2 of Martins-Filho & Yao 

(2007),
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Lemma A2 gives . Next, Rn(t, 

Yk) ≤ ∣Rn1(t, Yk)∣ + ∣Rn2(t, Yk)∣ + ∣Rn3(t, Yk)∣ + ∣Rn4(t, Yk)∣, where

Thus n−1 ∑k m(s, Yk) Rn1(t, Yk) = h1fT(t)I11n(s, t) leads to ‖h1 fT I11n‖2 = Op(n−1h1), and n−1 

∑k m(s, Yk)Rn2(t, Yk) = h1 fT(t)I12n(s, t) leads to . It follows similarly 

that the third and fourth terms are Op(n−1h1) and , respectively. Hence, 

. Combining the previous results gives .

(b) These terms are of higher order and are omitted for brevity.

(c) By the law of large numbers, .

Combining the above results leads to .

Proof of Theorem 3

To facilitate the theoretical derivation, for each k = 1, … , K let ηk = ∑1/2 βk and 

 be, respectively, the normalized eigenvectors of the equations ∑−1 Λ 

∑−1/2ηk = λkβk and . Then
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using the fact that . Applying standard theory for self-adjoint 

compact operators (Bosq, 2000) gives

where C > 0 is a generic positive constant. Thus , where

It suffices to show that 

. The calculations 

for I2n are similar and yield that I2n = op(I1n).

Observe that I1n ≤ 3I11n + 3I12n + 3I13n, where 

 and 

. Recall that  is the orthogonal 

projector onto the eigenspace associated with the sn largest eigenvalues of ∑. Let I denote 

the identity operator and  the operator perpendicular to πsn, i.e.,  is the 

orthogonal projector onto the eigenspace associated with eigenvalues of ∑ that are less than 

αsn. Thus  allows us to write 

. Since ∑−1Λ ∑−1/2ηk = λkβk,

similarly, .

We decompose I12n as I12n ≤ 3I121n + 3I122n + 3I123n, where 

 and 
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. Note that I121n ≤ 6‖Λ∑−1/2πsn‖2(I1211n + 

I1212n), where

Under Assumption 7, for all 1 ≤ j ≤ sn,  implies that 

, i.e.,  for some C > 0. Thus

For I1212n, using the fact that  (Bosq, 2000), where δ1 = α1 − 

α2 and δj = min2≤ℓ≤j (αℓ−1 − αℓ, αℓ − αℓ+1) for j > 1, we have that  and

Using Λ∑−1/2ηk = λk∑βk, we obtain 

. 

Thus . Using decompositions similar to the one for I121n, 

both I122n and I123n can be shown to be . This leads to 

.

Note that , where 

 and, similarly, . 

From Theorem 2, we have . Combining the above results 

leads to (6).
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Fig. 1. 
Observed bid prices over the seven-day auction period of nine randomly selected auctions, 

after log-transform.
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Fig. 2. 
(a) Average five-fold crossvalidated prediction errors for functional cumulative slicing 

(circles) and the method of Jiang et al. (2014) (diamonds) over 20 random partitions across 

different time domains [0, T], for sparse eBay auction data. (b) Estimated model components 

for eBay auction data using functional cumulative slicing with K = 2 and sn = 2; the upper 

panels show the estimated index functions, i.e., the effective dimension reduction directions, 

and the lower panels show the additive link functions.
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Fig. 3. 
Fitted regression surfaces for the eBay data: (a) additive; (b) unstructured.
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Table 1

Estimation error and relative prediction error, multiplied by 100, obtained from 100 Monte Carlo repetitions 

(with standard errors in parentheses) for sparse functional data

Model Metric FCS IRLD Metric FCS IRLD

I

Estimation
error

61·1 (1·1) 61·3 (1·1)

Prediction
error

17·7 (0·6) 17·9 (0·5)

II 59·3 (1·0) 59·5 (1·0) 19·6 (0·6) 19·4 (0·5)

III 63·7 (0·8) 63·9 (0·9) 18·8 (0·5) 19·5 (0·4)

IV 63·8 (0·8) 63·9 (0·9) 45·2 (1·1) 45·4 (1·1)

FCS, functional cumulative slicing; IRLD, the method of Jiang et al. (2014), where (K, sn) is selected by minimizing the estimation and prediction 

errors.
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Table 2

Estimation error and relative prediction error, multiplied by 100, obtained from 100 Monte Carlo repetitions 

(with standard errors in parentheses) for dense functional data

Metric Model FCS IRLD FSIR5 FSIR10 FIND

Estimation
error

I 39·2 (1·6) 45·5 (1·5) 59·4 (2·1) 61·7 (2·2) 47·1 (1·6)

II 35·5 (1·4) 38·1 (1·3) 56·1 (1·8) 57·8 (1·9) 44·5 (1·5)

III 59·6 (0·8) 63·1 (0·8) 72·6 (1·1) 74·1 (1·3) 63·6 (0·9)

IV 57·2 (0·6) 59·0 (0·6) 69·3 (1·0) 68·9 (0·9) 61·0 (0·8)

Prediction
error

I 11·1 (0·6) 12·7 (0·5) 17·1 (0·7) 16·7 (0·6) 16·1 (1·1)

II 9·8 (0·5) 10·5 (0·4) 15·5 (0·7) 16·9 (1·0) 14·9 (0·8)

III 13·5 (0·5) 15·2 (0·5) 15·8 (0·6) 16·6 (0·5) 14·7 (0·6)

IV 19·9 (0·7) 21·9 (0·7) 31·1 (1·4) 32·2 (1·4) 24·2 (1·2)

FCS, functional cumulative slicing; IRLD, inverse regression for longitudinal data (Jiang et al., 2014); FSIR5, functional sliced inverse regression 
(Ferré & Yao, 2003) with five slices; FSIR10, functional sliced inverse regression (Ferré & Yao, 2003) with ten slices; FIND, functional index 
model (Chen et al., 2011).
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