Skip to main content
. Author manuscript; available in PMC: 2015 Nov 10.
Published in final edited form as: Biometrika. 2015 Apr 2;102(2):421–437. doi: 10.1093/biomet/asv006

Table 2.

Estimation error and relative prediction error, multiplied by 100, obtained from 100 Monte Carlo repetitions (with standard errors in parentheses) for dense functional data

Metric Model FCS IRLD FSIR5 FSIR10 FIND
Estimation
error
I 39·2 (1·6) 45·5 (1·5) 59·4 (2·1) 61·7 (2·2) 47·1 (1·6)
II 35·5 (1·4) 38·1 (1·3) 56·1 (1·8) 57·8 (1·9) 44·5 (1·5)
III 59·6 (0·8) 63·1 (0·8) 72·6 (1·1) 74·1 (1·3) 63·6 (0·9)
IV 57·2 (0·6) 59·0 (0·6) 69·3 (1·0) 68·9 (0·9) 61·0 (0·8)
Prediction
error
I 11·1 (0·6) 12·7 (0·5) 17·1 (0·7) 16·7 (0·6) 16·1 (1·1)
II 9·8 (0·5) 10·5 (0·4) 15·5 (0·7) 16·9 (1·0) 14·9 (0·8)
III 13·5 (0·5) 15·2 (0·5) 15·8 (0·6) 16·6 (0·5) 14·7 (0·6)
IV 19·9 (0·7) 21·9 (0·7) 31·1 (1·4) 32·2 (1·4) 24·2 (1·2)

FCS, functional cumulative slicing; IRLD, inverse regression for longitudinal data (Jiang et al., 2014); FSIR5, functional sliced inverse regression (Ferré & Yao, 2003) with five slices; FSIR10, functional sliced inverse regression (Ferré & Yao, 2003) with ten slices; FIND, functional index model (Chen et al., 2011).