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Abstract

This paper explores a time-resolved functional imaging method based on Monte Carlo model for 

whole-body functional imaging of small animals. To improve the spatial resolution and 

quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution 

spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed 

approach are employed on an anatomically accurate mouse model where the optical properties 

range and volume limitations of the diffusion equation model exist. We investigate the 

performances of using time-gated data type and spatial priors to quantitatively image the 

functional parameters of multiple organs. Accurate reconstructions of the two main functional 

parameters of the blood volume and the relative oxygenation are demonstrated by using our 

method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to 

imaging small organs such as the heart.

1. Introduction

Preclinical or small-animal in-vivo imaging has experienced an exponential phase of growth 

in the last decade [1, 2]. In vivo pre-clinical imaging enables researchers to identify biologic 

processes, monitor the efficacy of compounds and measure the effects of disease progression 

over time in intact host environments. It is becoming an essential translational tool between 

in vitro research and clinical application.

The blooming use of optical techniques for in vitro and in vivo research has generated great 

interest in developing new imaging platforms, with clear potential for translation into the 

clinic [3]. As a non-linear process dominated by scattering, light propagation in tissue is 

highly dependent on the optical properties of the sample imaged [4]. Thus, optical imaging 

technique requires accurate quantification of the absolute optical properties of the probed 

specimen, which is essential for rigorous photon propagation modeling in tissue and, hence, 

important for improving optical reconstruction fidelity [5, 6].

Diffuse Optical Tomography (DOT) is a well established technique enabling thick-tissue 

three-dimensional imaging that offers the unique benefit of direct quantitative recovery of 

functional tissue properties [7, 8]. The technique relies on sequentially exciting multiple 
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points on the tissue boundary and on collecting diffuse light exiting a few centimeters away 

from the excitation points with multiple detectors. Combined with sophisticated illumination 

and detection schemes, physical or mathematical models of photon propagation in tissue are 

employed to quantitatively interrogate the volume to be imaged. The technique has been 

explored broadly in clinical settings and has been applied successfully to small animal 

fluorescence imaging [9].

However, pre-clinical implementation of DOT faces several unique challenges that need to 

be addressed in order to produce robust and truly quantitative imaging platforms for 

widespread acceptance of this new modality. First, data type selection plays an important 

role in the DOT technique. Three optical technology domains exist in the diffuse optical 

imaging field. Continuous wave (CW) is the most wide-spread technique due to its 

simplicity to implement and low cost components; however it provides limited information 

content leading to non-unique solution in the inverse problem [10]. Frequency domain (FD) 

measures modulation amplitude attenuation and phase shift due to light propagation which 

allows one to separate the contributions of absorption and scattering [11, 12]. However, 

producing instruments with dense source- detectors arrays working at multiple frequencies 

in the range of a few MHz to 1 GHz is extremely challenging [13]. Time-domain (TD) 

methods illuminate tissue with ultrafast photon pulses and resolve the arrival of the photons 

as a function of time at different locations around the tissue boundary. The temporal 

distribution of photons detected after propagation is known as the temporal point spread 

function (TPSF). TD technology offers a rich data set that is unmatched by CW and FD 

methods for quantitative accuracy, minimal cross talk between chromophores, and improved 

resolution [14–17]. Furthermore, TD systems are more sensitive than their CW counterparts 

[18].

The second challenge facing pre-clinical DOT is the structural complexity of the volume to 

be imaged. Whole body small animal imaging is characterized by complex boundaries and 

complex spatial distribution of small organs that exhibit a wide range of optical properties. 

Employing forward models based on the diffusion approximation in such highly 

heterogeneous medium, where low scattering and high absorption regions exist, leads to 

erroneous data interpretation [19, 20]. The perturbation Monte Carlo (pMC) method is 

proposed as an alternative to the diffusion approximation based tomographic formulation 

[21]. The Monte Carlo technique is easy to implement, flexible, proven to be accurate over a 

large span of optical properties (or conversely over a large spectral range), accurate for small 

interrogated volumes and appropriate for complex boundaries. Since it is a statistical 

method, a large number of packets of photons need to be simulated to obtain simulations 

with adequate signal to noise ratio. This translates into large computing power requirements 

to achieve acceptable simulations within hours. This drawback has confined the Monte 

Carlo method to simulate light propagation as a validating tool for other forward models or 

to be used to estimate bulk optical properties of tissues. However, thanks to recent advances 

in parallel computing, optical tomography of small animals based on a computationally 

efficient parallel Monte Carlo forward model has lately been achieved in the time domain 

[22].
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The third challenge lies in the ill-posed nature of the inverse problem leading to poor spatial 

resolution and reconstructions that are highly sensitive to noise. This ill-posedness can be 

mitigated by a priori knowledge of the spectral and structural properties of the imaged 

sample [12]. Many strategies capitalizing on anatomical priors from a high resolution 

imaging modality such as MRI or X-ray have been devised for optical tomography to 

improve the recovery of optical features and contrast [23], with methods that combine both 

anatomical and functional priors to guide the optical reconstruction offering superior 

quantitative performances for functional imaging applications [24].

Towards high resolution whole body quantitative functional imaging of small animals, we 

explore the combination of new optical data types, rigorous photon propagation model and 

anatomy guided inverse problem formulation. In this in silico investigative work, a 

multispectral time-gated perturbation Monte Carlo method and a hierarchical Bayesian 

reconstruction are applied on an anatomically accurate mouse model. This paper is 

structured as follows: Section 2 briefly describes the forward Monte Carlo model, the direct 

functional imaging method and the implementation of the Bayesian method. Section 3 

describes the mouse phantom and outline of the simulation configurations. Section 4 reports 

the results on the computational efficiency, the sensitivity map computations, and the 

simulated image reconstruction and accuracy gains of the proposed method on the mouse 

model. Section 5 summarizes the innovations and describes the ongoing work to implement 

this new approach.

2. Methodology

2.1 Time-resolved perturbation Monte Carlo

The perturbation Monte Carlo (pMC) method provides an efficient framework to perform 

optical tomography based on the MC forward model. In this work we extend the pMC 

approach to construct time-resolved Jacobian for time-gated diffuse optical tomography. A 

comprehensive description of the photon propagation rules in MC modeling can be found in 

previous studies [25–27].

In the MC simulations, with a set of initial optical properties, the unperturbed measurement 

w of one photon packet at a detector can be obtained. If the optical properties change in a 

certain region (perturbed region) along the photon path, w should be modified to a perturbed 

measurement ŵ. A prediction for ŵ of this perturbed photon packet at the detector can be 

estimated by:

(1)

where μ̂
s = μ̂

s + δμs, μ̂
a = μa + δμa, μt = μa + μs and μ̂

t =μ̂
a + μ̂

s, with μa and μs being the 

initial values of the absorption and scattering coefficient, P is the number of scattering 

events and L is the path length in the perturbed region with absorption change δμa and 

scattering change δμs. This equation provides an accurate means to calculate the weight for 

every single photon exiting the sample and efficiently compute the absorption and scattering 

Jacobians [21, 28] to perform DOT.

Chen and Intes Page 3

Opt Express. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is straightforward to extend the pMC method to time resolved studies. Assuming that the 

perturbations are time invariant over the propagation time (~ns), the time dependent photon 

weight becomes:

(2)

where ŵ(t) and w(t) are the photon weights detected in a time-bin. When time-gated pMC is 

applied to voxelized three dimensional imaging, each voxel is considered to be an 

independent perturbed region. Therefore storing all photon paths as in the classic pMC 

becomes inextricable. To cope with the large number of unknown regions, we collect the 

photons exiting at each detector position for each time-gate. We store the accumulated 

detector readings and the weighted average number of collisions and length at each voxel. 

The final estimation of the accumulated weight Ŵ(t) can then be expressed as:

(3)

where W(t) is the unperturbed detector reading, P(rj,t) is the number of collisions and L(rj,t) 

is the path length in voxel rj at time gate t. n is the total number of the voxels. With δμ(rj) 

the perturbation in optical coefficients (either μa or μs) at rj, Eq. (3) provides a means to 

estimate the changes in photon weight introduced by changes in δμ(rj) and is then used to 

find the terms of the Jacobian matrix J(t) with Jij(t) = ∂Ŵi(t)/∂δμ(rj) for this time gate. At a 

specific time-gate t, the problem can be then casted in the formulation:

(4)

where ΔWi(sd,t) =Ŵi(sd,t) − Wi(sd,t) is the total photon weight difference for the ith 

selection of source-detector pair sd and time-gate t and J(t) is the Jacobian matrix. This 

equation can be easily expanded for the multiple gates case:

(5)

where k is the number of selected gates and m × k is the total number of selections of 

measurements. According to the method discussed above, two sets of Monte Carlo 

simulations are required for in silico investigations; one is to perform a simulation with the 

initial guess (or background) of optical properties. It is worthy to note that the initial guess 

does not have to be homogeneous; any heterogeneity in the phantom model can be 

considered. This simulation generates the unperturbed detector readings W and the Jacobian 

J. The other set is to compute the perturbed measurement Ŵ with changes in optical 

properties. A linear system can be formed after these two simulations are completed. Such 
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an approach has the benefit to provide a set of measurements that are based on the most 

rigorous forward model of light propagation.

2.2 Functional imaging

Assuming that deoxy-hemoglobin (Hb), oxy-hemoglobin(HbO2) and water (H2O) are the 

only chromophores contributing to the global absorption in the spectral window considered, 

the physiological information or the changes in the concentration of Hb, HbO2 and H2O at 

different wavelengths for jth voxel are linearly related to the absorption coefficients as 

follows:

(6)

where  is the differential absorption coefficient at the kth wavelength λk and for the 

jth voxel,  and  are the extinction coefficient of the corresponding 

chromophores at the kth wavelength. Combining this relationship to Eq. (6), we obtain:

(7)

where δ[Hb] = [δ[Hb(r1)]…δ[Hb(rn)]]′, δ[HbO2] = [δ[HbO2(r1)]…δ[HbO2(rn)]]′ and 

[δ[H2O] = [δ[H2O(r1)]…δ[H2O(rn)]]′.  and Jλk are the differential detector 

reading and the Jacobian at the kth wavelength λk, respectively. Multispectral priors can 

thwus be incorporated into the tomographic inverse problem to directly retrieve functional 

maps [29].

2.3 Inverse problem

To overcome the ill-posedness associated with whole body imaging, we employ a Bayesian 

formulation to incorporate anatomical and functional priors. This formulation constrains the 

space of unknowns with a spatially varying probability density function derived from high-

resolution anatomical maps and physiological priors that are implicitly defined to constrain 

the reconstructions in physiologically meaningful ranges. The full derivation of the 

theoretical developments for the inverse formulation and algorithm is presented in detail in 

references [24, 30]. A brief description of the method is provided below.

Having designed the hierarchical noise and image models, we formulate the joint 

distribution of the measurements, the image and the unknown hyper-parameters associated 

with the noise and image models. In order to estimate the hyper-parameters, we use a 

conjugate gradient (CG) algorithm for a hyper-parameter estimation step followed by an 

image update. The maximum a posteriori (MAP) estimates of the hyper-parameters at each 

CG iteration prior to the image update is:
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(8)

where y is the measurement vector, p(y|x) is the data likelihood, σ is the vector of variance of 

sub-images and p(x,σ|C) is the conditional probability prior on the unknown image x and 

variance σ given the tissue label information C. The label information C can be taken into 

account by considering one sub-image with the same label at a time. The optimization 

problem can be solved by alternatively updating these two parameters image x and the 

variance σ. Assuming a Gaussian distribution for x, the probability density function of ith 

sub-image xi is:

(9)

where M is the number of sub-regions, Ni is the number of voxels in the ith sub-image, and 

μi is the mean value of this sub-image, Similarly, assuming a Gaussian distribution for the 

standard deviation σi of the ith sub-image, we have:

(10)

where γi is the variance and σ̄
i is the mean value of variance σi. γi and σ̄i are predefined as 

the physiological prior allowing to constrain the reconstruction. The image and noise are 

accommodated by respectively applying Eq. (9) and (10) for all sub-images at each update 

along with the solution process.

3. Simulation configuration

3.1 Geometric model and optode settings

We tested our newly developed pMC scheme using an anatomically accurate 3D mouse atlas 

created from CT and cryosection slices at University of Southern California [31, 32]. The 

mouse model is discretized to 91×35× 22 voxels with size 1mm3. Simulations were 

performed under a transmittance geometry mimicking the configuration of our time resolved 

multi-spectral non-contact imaging platform [33].

3.1.1 Computational efficiency—We evaluated the computational efficiency of the 

time-gated forward MC versus the number of CPUs, number of gates and number of 

detectors used in the simulations. The motivation of this evaluation is due to (a) the low 

computational efficiency of MC method and (b) the temporally and spatially dense data sets 

required in time-resolved whole body imaging.

First, we tested the computational feasibility of the proposed method using different 

numbers of CPUs for one source-detector pair. For this case, the source and detector were 

facing each other in a transmittance geometry (2cm separation), probing an homogenous 

media. Second, we evaluated the effect on time cost caused by changes in the number of 

detector and gate simulated. The recent developments in ultra-fast gated CCD cameras allow 

acquiring spatially dense time-resolved data sets. Such sub-millimeter spaced arrays of 
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sources and detectors (that is, data to the order of 104 – 106 measurements or more) are 

required for high-fidelity, small animal imaging [18]. In the pMC simulations, multiple 

detector readings and the corresponding Jacobian can be obtained simultaneously for all 

gates. We investigated the time cost associated with simulating 16, 64, 256 or 1024 evenly 

spaced detectors. Sources and detectors were simulated with a 1mm diameter in all 

simulations herein. The area covered by the different detector sets is fixed at 16mm × 

16mm. Additionally, for each of these source-detector settings, time-gated Jacobians for 1, 

10, 20, 30, 40, 50 gates were recorded and the time cost for each simulation was evaluated.

3.1.2 Anatomically accurate simulations—To assess the performances of time-gated 

functional imaging based on pMC formulation for whole-body small animal imaging, we 

generated a synthetic mouse model bearing five organs (heart, stomach, liver, kidneys and 

non-inflated lungs). The original high-resolution and derived synthetic phantom employed in 

this work are provided in Fig. 1. We limited the volume to be imaged to the upper torso-mid 

section (including kidneys), leading to a 33×41× 20 voxels discritized volume to reconstruct, 

with 1mm3 voxels.

Due to memory limitations associated with the significant size of the linear system to invert, 

we selected a subset of 100 sources and 144 detectors for all reconstructions herein. We 

investigated two heuristic strategies to select sources and detectors positions. First, we 

selected a linear distribution of sources and detectors that covered all the volume to be 

imaged. In this configuration, sources were evenly spaced at 4mm intervals whereas the 

detectors were evenly separated by 3.6mm (cf Fig. 4a). Such homogenous distribution is the 

optimal configuration according to Singular Value Anlysis (SVA) [11].

Second, the same number of sources-detectors were selected but with a non-linear spatial 

sampling distribution. Guided by the structural prior, denser source-detector pairs were 

employed around the area of significant overlap between the (i) lungs and the heart and (ii) 

the liver and the stomach,. The denser source-to-source separation was 2mm and detector-

to-detector separation was 1.8mm while in other area the separation of sources or detectors 

was doubled (cf. Fig. 4b).

3.2 Computational settings

The computations are distributively performed on a supercomputer BlueGene (CCNI at RPI) 

with 16384 nodes (dual CPU at 700MHz). For all simulations herein, the forward 

computations were running on 1024 nodes. Based on previous work [22], we launched 109 

photons per source. This is the optimal number of photons considering time-cost and 

adequate photon statistics to reliably compute time resolved Jacobians in mouse model.

Photon profiles were computed over a 1ns time period. Time gates were simulated with a 

200ps width and with 20ps gate delay, leading to overall 50 simulated time gates per 

detector. Moreover, simulations were performed at six wavelengths evenly spanned from 

700nm to 950 nm.

The inverse calculations were executed on a personal computer (i7 3GHz, 8Gb of RAM), 

under matlab, using a Polack Ribiere Conjugate Gradient algorithm developed in house. Due 
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to memory limitations, only three gates were employed for the reconstructions. From the 

time gate profiles (TPSFs), the time-gate with the maximum photon count is selected. The 

gates having photon count of half the maximum value before and after the maximum gate 

are selected as well (cf. Fig. 3).

3.3 Functional and optical parameters

The in vivo functional properties of the murine organs are still unknown to date. Average 

optical properties of small animals have been reported in transmittance but in vivo organ 

specific values have not been reported yet due to the difficulty to resolve locally such 

parameters. To model realistic optical properties, we simulated optical properties based on 

functional parameters derived from the litterature [34, 35]. Note that these values are 

obtained mainly from ex-vivo measurements and we expect significant deviations from in 

vivo values.

Although the initial guess of optical properties can be heterogeneous in the unperturbed 

simulations, we considered homogeneous initial optical properties in the unperturbed 

simulations. That is, all organs are assigned identical optical parameters as the background. 

This approach is consistent with the normalized Born or Rytov approaches commonly 

employed in the field.

For simplicity, in this investigative study, we considered the scattering parameter spatially 

homogenous in both unperturbed and perturbed simulations, but spectrally following a 

power law μs′ = Aλ−SP ( A = 10600 and SP = 1.43 ) [36]. For the volume considered herein 

and with the transmittance geometry, no diffeerences were found between simulations based 

on the anisotropy factor g = 0.9 or g = 0. Thus g was kept constant at 0 over the full body to 

reduce the computational burden in the Monte Carlo simulations. The refractive index of the 

tissue was set at 1.37. The functional parameters that were simulated for each organs are 

provided in Table 1. These functional parameters were used to calculate the corresponding 

optical absorption values of each organ at the six wavelenghts simulated. The correspoding 

values are tabulated in Table 2.

4 Results

4.1 Computational feasibility

Fig. 2a depicts the time cost using different nodes. On a single CPU, a one source-one 

detector time-resolved Monte Carlo simulation using 109 photons takes 62 hours for 

completion while it can be completed under 5 minutes if 1024 nodes are used on BlueGene. 

It clearly shows the dramatic increase of computational efficiency thanks to parallel 

computing techniques.

Fig. 2b shows the time cost of simulations using different numbers of detectors and gates. It 

is worthwhile to note that the time cost increases non-linearly as the gate number increases, 

which indicates that the proposed approach allows one to simulate large number of gates 

without significant time cost penalty. Moreover, although parallel data transfer occurs in 

parallel computing, the time shift of using different number detectors in the forward model 

is within 10%, which allows to simulate dense detectors simultaneously. These two 
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particulars higlight the potential of time-gated pMC modeling for processing dense spatial 

and temporal data sets such as those obtained with a time-gated CCD camera.

4.2 Time-gated reconstruction

As an example, we provide the time-resolved Jacobian for the center source-detector pair in 

Fig. 3. As expected, the Jacobian shape expands as time increases. Photons collected shortly 

after the pulse experience significantly fewer scattering events and probe a small volume, 

whereas late photons sample larger volumes. This difference in probing volumes provides 

unique information for reconstruction and is at the origin of the superior performances of 

time-gated data types compared to CW data types for DOT [37].

Functional direct reconstructions were performed on the synthetic mouse model bearing six 

organs for a variety of scenarios using six wavelengths. Due to the high dynamical range 

encountered in the different projections computed, we employed a SNR cut-off filter on the 

measurements selected to compute the inverse problem. Based on heuristic tests, all gates 

below 500 counts were not considered.

We investigated the effects of data type (CW or TG), source-detector sampling and soft 

prior constraints on the accuracy of DOT to retrieve the quantitative biodistribution of the 

main functional parameters simulated. The paraneters that are reported in this work are the 

blood volume (BV), the relative oxygen saturation (StO2) and the water content (H2O). The 

relative errors for the ith sub-image associated with these parameters are defined by:

(11)

where  is the mean of the reconstructed image over the ith sub-region and Xi the expected 

value in this sub-region (X being BV or H2O respectively). As the StO2 is already a 

percentage, we provide here the absolute error:

(12)

for X being StO2. The standard deviation for the image of the ith region are calculated as

(13)

where Ni is the number of voxels and X̂
i is the reconstructed image in the ith sub-image. 

These error and standard deviation functions were computed over the reference volume of 

each organ derived from the mouse atlas. The values of these error functions for all cases 

investigated are provided in Table 3.

An example of functional reconstructions for the case of linear and non-liner source-detector 

sampling with a priori constraints is provided in Fig. 4.
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In all cases investigated herein, the reconstruction using time-gated data with anatomical a 

priori presents overall higher accuracy. Especially, combining TG and spatial constraints 

provides better estimates than unconstrained CW or TG reconstructions (even though 

spectral a priori was used). Without spatial priors, TG data outperforms CW data, leading to 

more accurate mean estimates, but suffers from large quantitative spatial deviations within 

the volume of the organs. This is in good agreement with previous results reported in 

reference [20].

A significant improvement in the quantitative estimation of the blood volume and the 

saturation was observed when non-linear dense source patterns were employed. As seen in 

Fig. 4, even source distributions over the whole body lead to under-sampling of important 

small heterogeneous volume. In this case, the non-linear pattern led to accurate parameters 

estimation (within 6% for each organ) whereas linearly distributed patterns did not resolve 

the heart or the stomach despite the soft spatial constraint.

5. Discussion

In this work, simulations were performed to asses the potential of time-resolved functional 

DOT for whole body small animal imaging. To tackle the challenges of small animal 

imaging, we explored in silico the feasiblity to combine Monte Carlo based reconstructions, 

time-gated data type and soft a priori constraints to quantitatively image the endogenous 

functional properties of murine model organs.

First, we demonstrated that the perturbative Monte Carlo formulation is suitable and feasible 

for functional DOT in preclinical scenarios, where the specimens present a small optically 

complex model with multiple close organs of significantly low-scattering (bladder and 

lungs) or highly absorbing tissues. The method reconstructs wide range of coefficients in 

tissue accurately and provides satisfactory results synthetically. While only functional 

parameters related to absorption coefficients are reconstructed, perturbations of structural 

parameters related to scattering coefficient can be addressed [37]. We also argue that the 

time cost for the reconstruction is acceptable for in vivo imaging applications. The low time 

efficiency limitation in Monte Carlo simulations is resolved by the use of massively parallel 

computing. We plan to further decrease computational cost by investigating other method or 

hardware to reduce the timecost of the forward model computations [38].

Second, we investigate a new data type for functional imaging: time gates. Such data type 

provides a unique set of information to perform quantitative DOT. Thanks to the different 

volumes probed by different time gates, Time-Gated DOT offers superior quantification and 

resolution compared to CW reconstructions. Time-resolved technology is a promising 

modality with strength relying on its ability to estimate absolute characterization of tissue 

optical properties as well as the structural information more precisely. Especially, time-gated 

technology permits one to acquire both spatially and temporally dense data sets for high-

fidelity three-dimensional imaging. However, careful instrumental calibration and 

normalization should be applied when experimental data are employed to reduce the 

temporal errors. We are currently investigating new inverse formulations to reduce this 

experimental drawback. Also, all reconstructions herein have been performed based on a 
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subjective gate selection. We plan to futher explore the optimal selection of time gates, 

especially in the context of functional and structural parameters cross-talk.

Last, incorporating a-priori anatomical constraints provided stable reconstructions and 

improved quantification. The 3D optical parameters estimation suffers from low resolution, 

partial volume effect and inter-parameter cross-talk due to the ill-posed nature of DOT. 

Casting spectral and structural priors into a Bayesian framework yields more accurate and 

stable calculations to provide enhanced in-vivo functional estimates. Without anatomical 

guidance, DOT is unable to recover accurately the functional properties of all the organs 

probed despite spectral priors and dense spatial and temporal data sets. In addition, the 

present article provides the first insights on the importance of anatomically guided probe 

settings.

The reconstruction of high absorbing and overlapping tissues is difficult in transmittance 

settings due to the poor contrast information obtained by non-optimized source-detector 

configurations. Therefore, image reconstructions from linear source locations suffer not only 

from fewer photon counts but also from limited sampling of the different organs to be 

imaged. Even though engineering optimization such as SVA analysis will suggest that linear 

sampling provide a better conditioned inverse problem, non-linear probe settings is of 

paramount importance to imaging organs such as the heart.

In conclusion, this research presents computational evidence that the combination of time-

gated pMC and spatial a-priori significantly improve the accuracy of diffuse optical 

tomography in pre-clinical imaging where the diffusion theory fails [37]. The proposed 

method is easy to implement, flexible and can be easily extended to fluorescemce molecular 

imaging. Thanks to the concurent development of a multi-spectral time-gated imager [33], 

we hope to use this new reconstruction strategy to construct an in-vivo functional atlas of 

murine model. Such an atlas will be extremely valuable for the biomedical community.
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Fig. 1. 
(a) The original high resolution mouse model (b) The resized mouse model with five organs 

(heart {teal}, stomach {green}, liver {yellow}, kidneys {red} and lungs {purple} extracted 

from Fig. 1(a))
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Fig. 2. 
(a) Time cost with increasing number of nodes, from 105 to 1010 with homogeneous optical 

properties. (b) Computational time when simulating different gates and detectors.
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Fig. 3. 
Typical Jacobians for three different time gates in a mouse model. First column: TPSF 

simulated and selected time gates (first half maximum, maximum and last half maximum of 

TPSFs). Second column: Sagittal plane of the synthetic phantom and normalized Jacobians 

corresponding to each selected time gate. Third column: Transverse plane of the murine 

model with associated normalized Jacobian. The Jacobians are plotted in log scale to 

provide better visualization.
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Fig. 4. 
Anatomically guided nonlinear sampling: (a) Evenly spanned source (black dots) and 

detectors (red dots) configuration and reconstructed (c) blood volume and (d) oxygen 

saturation; (b) dense source and detector pairs around the overlapping organs and the 

reconstructed (e) blood volume and (f) oxygen saturation. The heart and stomach have been 

delineated with white lines.
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