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Abstract

The correlated-error ANOVA method proposed by Obuchowski and Rockette (OR) has been a 

useful procedure for analyzing reader-performance outcomes, such as the area under the receiver-

operating-characteristic curve, resulting from multireader multicase radiological imaging data. 

This approach, however, has only been formally derived for the test-by-reader-by-case factorial 

study design. In this paper I show that the OR model can be viewed as a marginal-mean ANOVA 

model. Viewing the OR model within this marginal-mean ANOVA framework is the basis for the 

marginal-mean ANOVA approach, the topic of this paper. This approach (1) provides an intuitive 

motivation for the OR model, including its covariance-parameter constraints; (2) provides easy 

derivations of OR test statistics and parameter estimates, as well as their distributions and 

confidence intervals; and (3) allows for easy generalization of the OR procedure to other study 

designs. In particular, I show how one can easily derive OR-type analysis formulas for any 

balanced study design by following an algorithm which only requires an understanding of 

conventional ANOVA methods.

Keywords

Receiver operating characteristic (ROC) curve; correlated ANOVA; diagnostic radiology

1. INTRODUCTION

Receiver operating characteristic (ROC) curve analysis is a well established method for 

evaluating and comparing the performance of diagnostic tests. In radiological imaging 

studies such tests typically involve a human reader (usually a radiologist) evaluating an 

image or images resulting from an imaging modality (such as mammography for breast 

cancer) for a case (i.e., subject) with respect to confidence of disease. In such situations it is 

important that conclusions generalize to both the case and reader populations. A typical 

design for comparing diagnostic tests is the balanced test×reader×case factorial study design 

where each image is assigned a disease-confidence rating by each reader using each 

diagnostic test. Throughout I use test to refer to a diagnostic test, modality, or treatment.
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The methods proposed by Obuchowski and Rockette (OR) [1, 2] and Dorfman, Berbaum, 

andMetz (DBM) [3, 4] are the most commonly used methods for analyzing such multireader 

multicase studies (often referred to as MRMC studies) and have performed well in 

simulations. The OR procedure fits a correlated-error test×reader ANOVA to reader-

performance outcomes such as the area under the ROC curve (AUC), while the DBM 

procedure fits a test×reader×case conventional ANOVA to case-specific pseudovalues. 

Although the two methods have been shown to be equivalent [5, 6] when based on the same 

procedural parameters, I find the OR procedure more intuitive and its parameters more 

interpretable because it models observed reader-performance outcomes rather than 

pseudovalues. For this reason the OR procedure will be the focus of this paper.

Previously published derivations of OR model statistical properties [6] are tedious to derive, 

do not provide motivation for the model, and have been derived only for the balanced 

text×reader×case factorial study design. In this paper I show that the OR model is the same 

as the model for the marginal mean of a conventional ANOVA model with independent 

errors, where the mean is computed across cases. Viewing the OR model within this 

marginal-mean ANOVA framework is the basis for the marginal-mean ANOVA approach 

(mm-ANOVA approach), the topic of this paper. This approach (1) provides an intuitive 

motivation for the OR model, including its covariance-parameter constraints; (2) provides 

easy derivations of OR test statistics and parameter estimates, as well as their distributions 

and confidence intervals; and (3) allows for easy generalization of the OR procedure to other 

study designs.

In particular, I show how one can easily derive OR-type analysis formulas for any balanced 

study design by following an algorithm which only requires an understanding of 

conventional ANOVA methods. This development is important because for many situations 

other designs are more suitable than the text×reader×case factorial study design. For 

example, diagnostic tests may be mutually exclusive for various reasons, such as high 

radiation dose or invasiveness of the test, and thus can not be given to each patient; readers 

may be trained to read under only one of the tests; or power considerations may show that it 

is advantageous to have replicated readings or to have groups of readers read different cases.

The outline of this paper is as follows. I review the OR method in Section 2. In Sections 3–4 

and Appendices A–C I describe and justify steps of an algorithm for motivating the OR 

model and deriving its properties using the marginal-mean ANOVA approach. Steps are 

stated in a general form so that analogous OR-type procedures can be formulated for other 

study designs. In Section 5 I summarize the algorithm and illustrate how the algorithm can 

be used to develop OR-type procedures for six other study designs. A discussion and 

concluding remarks are given in Section 6.

2. THE OBUCHOWSKI-ROCKETTE (OR) METHOD

2.1. Design and notation

Throughout this section I assume the data have been collected using a balanced 

test×reader×case study factorial design. This commonly used diagnostic-radiology study 

design specifies that each case be subjected to each test, with the resulting images evaluated 
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once by each reader. In addition, each case is classified as diseased or nondiseased 

according to an available reference standard. Typically the number of cases is 25–200 while 

the number of readers is 3–15. Let Zijk denote a confidence-of-disease rating assigned to the 

kth case by the jth reader using the ith test. For example, often an ordinal five-level ordinal 

integer scale or a quasi-continuous 0% to 100% confidence scale is used. The observed 

rating data consists of the Zijk, with i = 1, …, t, j = 1, …, r, k = 1, …, c, where t is the 

number of tests, r the number of readers, and c the number of cases.

2.2. Model and test statistic

Let θîj denote the AUC estimate (or other ROC-curve accuracy estimate) for the ith test and 

jth reader. Obuchowski and Rockette [1] use a test × reader factorial ANOVA model for the 

AUC estimates, but unlike a conventional ANOVA model they allow the errors to be 

correlated to account for correlation due to each reader evaluating the same cases. Their 

model, which I refer as the OR model, can be written as

(1)

i = 1, …, t, j = 1, …, r, where τi denotes the fixed effect of test i, Rj denotes the random 

effect of reader j, (τR)ij denotes the random test × reader interaction, and εij is the error term. 

Without loss of generality I assume . The Rj and (τR)ij are assumed to be 

mutually independent and normally distributed with zero means and respective variances 

and . The εij are assumed to be normally distributed with zero mean and variance  and 

are assumed independent of the Rj and (τR)ij. Equi-covariance of the errors between readers 

and tests is assumed, resulting in three possible covariances given by

It follows from model (1) that , Cov1, Cov2, and Cov3 are also the variance and 

corresponding covariances of the AUC estimates, conditional on the reader and test × reader 

effects. Based on clinical considerations Obuchowski and Rockette [1] suggest the following 

ordering for the covariances:

(2)

In Section 3.4 I show that these constraints can replaced by the less restrictive constraints

(3)

Alternatively, the model can be described in terms of the error correlations, defined by 

.

When Cov2 and Cov3 are known, the OR statistic for testing the null hypothesis of no test 

effect (H0: τi = 0; i = 1, … t) is given by
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(4)

where MS(T) and MS(T * R) are the test and test × reader mean squares; i.e., 

 and 

. A subscript replaced by a 

dot indicates that values are averaged across the missing subscript index; for example, 

.

In practice the statistic actually used is

(5)

where  and  denote estimates for Cov2 and Cov3, respectively. Note that (5) 

incorporates the constraints specified by (3) by setting  to zero if it is negative. 

Since Cov2 and Cov3 are also the corresponding covariances of the AUC estimates 

conditional on the reader and test × reader effects, they can be estimated using methods that 

treat cases as random but readers as fixed, such as jackknifing, bootstrapping, parametric 

methods, or the method proposed by DeLong et al [7] for trapezoidal-rule (or empirical) 

AUC estimates [8]. The OR estimates obtained from averaging corresponding fixed-reader 

AUC variances and covariances are denoted by , and . Hillis [6] shows 

that FOR has an approximate Ft−1;ddfH null distribution, where

(6)

More generally, FOR has an Ft−1,df2;λ distribution where 

 and 

.

Letting θi denote the expected reader performance measure for test i (i.e., θi = E(θ̂i•)), an 

approximate (1 − α) 100% confidence interval for contrast  is given 

by  where 

. An approximate (1 − α) 100% 

confidence interval for θi, using a standard error computed from all of the data, is given by 

Hillis Page 4

Stat Med. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



, where  and 

. Alternatively, an 

approximate (1 − α) 100% confidence interval for test i, using a standard error computed 

only from data for test i, is given by , where 

 and ; here 

MS (R)(i) and  are computed only from test i data. I recommend this latter formula for 

single AUC confidence intervals, since it does not depend on assuming equal error 

covariances and variances for each test. All of these results have been previously presented 

[6].

Expected mean squares are given in Table 1a; proofs for these results are given by Hillis [6]. 

Expressions for the variance components, in terms of the expected mean squares and 

covariances are presented in Table 1b; these relationships follow directly from Table 1a. 

Estimated variance components result by replacing expected mean squares by mean squares 

and covariance parameters by estimates; for example,

Typically the variance component estimates are changed to zero if the computed values are 

negative.

2.3. Real-data example

To illustrate the OR method for the factorial design, I compare reader AUCs for hard- and 

soft-copy computed radiography chest images selected randomly from a medical intensive 

care unit. In the study [9] four radiologists blindly read both hard- and soft-copy images 

obtained with computed radiography from the same patients. Six months separated the end 

of the hard-copy readings and the start of the soft-copy readings. A five-point ordinal scale 

was used to rate the likelihood of presence of the condition (which I will refer to as 

“disease”) implied by the reason for requesting the corresponding examination. Ninety-five 

images, consisting of 29 diseased and 66 nondiseased images, were read under each test 

condition.

The analysis of this study using empirical AUC estimates and jackknife covariance 

estimates is displayed in Table 2. The AUCs for soft- and hard-copy images, averaged 

across the four readers, are 0.804 and 0.841, respectively. The test for the null hypothesis of 

no test effect (i.e., the population average AUC across readers is the same for soft- and hard-

copy images) is not significant (FOR = 6.01, ddfH = 3, p = .092); the 95% confidence 

interval for the difference of the population AUCs (hard- minus soft-copy) is (−0.011, 

0.086). Parts (i) and (j) give 95% confidence intervals for the single-test AUCs, based on all 
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of the data and only on data for the specific test, respectively. The confidence intervals from 

the two methods are similar; this is expected because the AUCs are similar.

Although this study showed a nonsignificant difference between soft- and hard-copy image 

reader performance, the confidence interval for the difference of the AUCs showed a 

difference as large as 0.086 to be commensurate with the data. In such a situation, the 

researcher may decide to design a future study that would produce a more precise estimate 

of the difference. Increased precision could result from an increase in the number of cases, 

the number of readers, or from replicated readings where each reader reads each image 2 or 

more times. If increasing the number of cases and readers is not feasible, then a replicated 

study is a natural choice for increasing power; however, OR analysis methodology has been 

developed only for the nonreplicated factorial design. I use the algorithm described in this 

paper to derive the OR-type procedure for the replicated factorial design, including the test-

statistic nonnull distribution, which allows for power and sample size estimation. Using this 

result, I illustrate efficiency computations comparing the nonreplicated and replicated 

designs in Section 5.6.

In this study the same radiologists also similarly rated 95 hard-copy chest images obtained 

with screen-film; these images were from different patients than the computed radiographs. 

Because the original OR method assumes a factorial study design with readers reading the 

same cases under each test, it cannot be used to compare the screen-film AUC outcomes 

with the AUC outcomes from either the soft- or hard-copy computed radiograph images. In 

Section 5.3 I show how the OR approach can be adapted for this situation, which represents 

a split-plot study design with cases nested within test, and illustrate the analysis of these 

data.

2.4. Previous derivations of OR properties

Derivations of OR-procedure properties have previously been derived starting with the OR 

model (1, 2). For what is essentially the OR model, Pavur and Nath [10] show that, for 

testing the null hypothesis of equal tests, the F statistic that is appropriate when the errors 

are independent can be used if corrected by a multiplicative factor. The multiplicative factor 

is a function of the correlations, which are assumed known, and the distribution for this 

corrected F statistic is the same as for the uncorrected F statistic when the errors are 

independent. The approach taken by Obuchowski and Rockette [1] was to modify this result 

by replacing the assumed-known correlations by estimated correlations. This approach 

yielded valid ANOVA statistics but unsatisfactory degrees of freedom, resulting in overly 

conservative tests [6]. Alternatively, Hillis [6] directly derived properties, but the proofs are 

tedious and nonintuitive.

3. MM-ANOVA APPROACH – STEP 1: DERIVE THE MM-ANOVA MODEL

In Sections 3–4 and Appendices A–C I show how the properties of the OR model can easily 

be derived using an algorithm, based on the mm-ANOVA approach, that only requires 

knowing how to determine conventional ANOVA test statistics and expected mean squares. 

I describe and illustrate the steps in the algorithm for the typical balanced test×reader×case 

study design discussed in the previous section. The steps are stated in a general form so that 
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they can be applied to other balanced study designs. The mm-ANOVA approach and 

corresponding algorithm have not been previously described and are the main contribution 

of this paper.

3.1. Step 1a: Define the conventional ANOVA model that corresponds to the study design 
as if each reader-performance measure was the mean of case outcomes

Let Yijk denote a hypothetical outcome for test i, reader j, and case k. For our purposes Yijk is 

used only to illustrate the marginal ANOVA model approach; i.e., it does not represent an 

actual study outcome and should be distinguished from the observed rating Zijk. I assume 

that the Yijk follow a three-way conventional ANOVA model that corresponds to the study 

design.

Thus the distribution of Yijk is given by the following test × reader × case ANOVA model 

that treats test as a fixed factor and reader and case as random factors:

(7)

i = 1, …, t, j = 1, …, r, k = 1, …, c, where τi denotes the fixed effect of test i with 

, Rj denotes the random effect of reader j, Ck denotes the random effect of case k, 

the multiple symbols in parentheses denote random interactions, and εijk is the error term. 

The random effects are assumed to be mutually independent and normally distributed with 

zero means and respective variances , and . Because there are 

no replications, for estimation purposes  and  are inseparable; hence I define

Results for this model, such as mean square distributional properties and ANOVA test 

statistics, are well known (e.g., [11]) and will be stated without references.

3.2. Step 1b: From the conventional ANOVA model defined in step 1a, derive the mm-
ANOVA model by averaging across cases and defining the mm-ANOVA model error term 
equal to the mean, across cases, of the sum of the conventional ANOVA model error term 
and random effects involving case

I say that a random effect “involves case” if it is subscripted according to case. Let Ỹij 

denote the marginal mean resulting from averaging over cases; i.e.,

(8)

I use the term marginal-mean ANOVA model (mm-ANOVA model) to refer to the model 

implied by the conventional 3-way ANOVA model (7) for the marginal mean (8). It follows 

from (7) that

(9)
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where

(10)

the Rj and (τR)ij are mutually independent and normally distributed with zero means and 

respective variances  and , and the ε̃
ij are independent of the Rj and (τR)ij.

3.3. Step 1c: Express the mm-ANOVA model error variance and covariances in terms of 
the conventional ANOVA model variance components

From (10) it follows that the ε̃
ij are normally distributed with mean 0, variance

(11)

and equi-correlated with

(12)

(13)

and

(14)

where i ≠ i′ and j ≠ j′.

3.4. Step 1d: Determine the mm-ANOVA model covariance constraints implied by step 1c

The covariance constraints given by (3) follow from (12–14). Thus the mm-ANOVA model 

for Ỹij is defined by (9) and (3). It also follows from (11–14) that 

, but I do not include this constraint as part of the definition of the 

mm-ANOVA model because this constraint is implied from the relationship Var(ε̃
11 − ε̃

12 − 

ε̃
21 + ε̃

22) ≥ 0.

3.5. Remarks

3.5.1. One-to-one relationship between parameters of the 3-way conventional 
ANOVA and corresponding mm-ANOVA models—In terms of the mm-ANOVA 

model parameters (μ, τi, , Cov1, Cov2, and Cov3), the parameters for the 

corresponding three-way ANOVA model (7) are given by μ, τi, 

, and 

. Thus there is a one-to-one relationship between the parameters of the 

two models. Hence for any mm-ANOVA model, defined by (9) and (3), there is a 
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corresponding conventional 3-way ANOVA model (7) that implies that model for the 

marginal means. These relationships between the two models are presented in Table 3.

3.5.2. Equivalence of the OR and mm-ANOVA models—Note that the mm-ANOVA 

model (9, 3) has the same form as the OR model (1, 2), with the only difference being that 

the mm-ANOVA model covariance constraints (3) are less restrictive. Since the OR 

covariance constraints (2) were suggested by Obuchowski and Rockette [1] based only on 

clinical considerations, to simplify comparison of the models I now modify the definition of 

the OR model to include the less restrictive mm-ANOVA model constraints (3); i.e., the OR 

model is now considered to be defined by equations (1) and (3). With this change the OR 

and the mm-ANOVA model become equivalent.

3.5.3. Definition of the mm-ANOVA approach—Because the OR and mm-ANOVA 

model are identical, statistical properties for the ROC accuracy estimates, the θîj, are the 

same as for the marginal means, the Ỹij, for an mm-ANOVA model having the same 

parameter values as the OR model. The mm-ANOVA approach consists of deriving 

statistical properties for the OR model (1, 3) by recognizing that it is equivalent to the mm-

ANOVA model (9, 3), and then deriving properties of the mm-ANOVA model by utilizing its 

relationship with the conventional three-way ANOVA model. The advantage of this approach 

is that properties of the conventional three-way ANOVA model are well known.

3.5.4. Motivation for the OR model—The mm-ANOVA approach provides an intuitive 

motivation for the OR model (1, 3) as follows. Suppose, hypothetically, that the reader 

performance outcome θ̂
ij is the mean of case-specific outcomes; that is, suppose that θ̂ij = 

Yij• for some outcome Yijk, with k = 1, …, c. A typical way to account for variation in θ̂
ij due 

to readers and cases would be to assume the three-way ANOVA model (7), which implies 

the mm-ANOVA model (9, 3) and hence also the equivalent OR model (1, 3) for θ̂ij. Of 

course, in practice θîj is not a marginal mean, but rather a nonlinear function of the case-

specific confidence-of-disease ratings and truth-state (i.e., reference standard) indicator 

values. However, the mm-ANOVA approach shows that the OR model accounts for reader 

and case variation using the covariance structure implied by a conventional three-way 

ANOVA model, as if the accuracy estimate was a marginal mean.

4. MM-ANOVA APPROACH – STEP 2: DERIVE THE MM-ANOVA MODEL 

TEST STATISTIC AND ITS NULL DISTRIBUTION FOR A HYPOTHESIS 

EXPRESSED IN TERMS OF TEST ACCURACIES

In this section I show how to derive the mm-ANOVA model test statistic and its null 

distribution for testing the null hypothesis of equal test accuracies. I define test accuracy as 

the expected reader-performance measure for a particular test level. However, more 

generally these steps can be applied to any hypothesis that can be expressed in terms of 

linear functions of expected reader-performance outcomes.
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4.1. Step 2a: State the hypothesis of interest in terms of the mm-ANOVA model

For the mm-ANOVA model (9, 3) let θi denote the test accuracy for test i; i.e., θi = E (Ỹi•) is 

the expected reader-performance outcome for test i across the population of readers. The 

hypothesis of interest is the global null hypothesis of equal test accuracies, i.e., H0 : θ1 = … 

= θt, or equivalently, H0 : τ1 = … = τt = 0.

4.2. Step 2b: Express the hypothesis from step 2a in terms of the conventional ANOVA 
model

Noting that

it follows that H0 : θ1 = … = θt is equivalent to H0 : τ1 = … = τt = 0 for the conventional 

ANOVA model (7).

4.3. Step 2c: Create the expected-mean-square table for the conventional ANOVA model

Let MS(T), MS(R), and MS(C) denote the conventional ANOVA mean squares due to test, 

reader, and case, respectively, with interaction mean squares notated in the usual manner. 

The expected mean squares for the conventional ANOVA model are presented in Table 4. 

These relationships will be utilized in other steps.

4.4. Step 2d: Determine the conventional ANOVA F statistic corresponding to the step 2b 
hypothesis

The conventional ANOVA test statistic for testing for H0 : τ1 = … = τt = 0 is given by

(15)

I refer to F as an ANOVA statistic because its numerator and denominator have the same 

expectation under H0, but the numerator has a larger expectation than the denominator under 

H1 : τi ≠ τj for some i ≠ j.

4.5. Step 2e: Express mm-ANOVA mean squares in terms of conventional ANOVA mean 
squares

For the mm-ANOVA model let , and  denote the test, reader, and 

test×reader mean squares; i.e., 

 and 
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. Noting that 

, it follows that

(16)

(17)

4.6. Step 2f: Express F from step 2d in terms of mm-ANOVA model mean squares and U, 
where U is a linear function of conventional ANOVA model mean squares that involve case

It follows from (16–17) that (15) can be written in the form

(18)

where

Note that U is a linear function of conventional ANOVA model mean squares involving 

case and (18) is an ANOVA statistic.

4.7. Step 2g: Express E (U) in terms of conventional ANOVA model variance components, 
and then in terms of mm-ANOVA model error covariance parameters using the 
relationships from step 1c

From Table 4 we have  and E [MS (T * R * C)] = σ2. It follows that

(19)

Using (13) and (14) we can write the right side of (19) in terms of the mm-ANOVA 

covariances: . Hence

Hillis Page 11

Stat Med. Author manuscript; available in PMC 2015 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(20)

4.8. Step 2h: Modify F (18) from step 2f to produce the mm-ANOVA statistic  by 
replacing U by E (U), expressed as a linear function of mm-ANOVA covariance parameters

Replacing U in equation (18) by its expectation (20) results in

(21)

which is the OR test statistic  (4) when we treat the Ỹij as the OR model outcomes θîj. 

Because (18) is an ANOVA statistic, it follows that  (21) is also an ANOVA statistic.

4.9. Step 2i: Derive FOR by replacing covariance parameters in FOR* by estimates that take 
into account the constraints from step 1d

An obvious estimate of Cov2−Cov3 that takes into account covariance constraints (3) is 

given by , where  and  are estimates as discussed in 

Section 2.2. Replacing Cov2−Cov3 in (21) by this estimate results in

(22)

which is the OR statistic FOR (5) when we replace the Ỹij by the OR model outcomes θ̂
ij.

4.10. Step 2j: Determine the approximate null distribution of FOR

Null-distribution result—Write the denominator of FOR in the form

(23)

where the , i = 1, …, I are mm-ANOVA mean squares, d̂ is a function of the covariance 

parameter estimates and the ai and b are constants. Then FOR will have an approximate 

Fdf1,df2 null distribution, where df1 is the numerator degrees of freedom for the conventional 

ANOVA model test statistic in step 2d and df2 is given by

(24)

where  is the degrees of freedom for , and hence also for MSi. I have stated this 

result generally so that it can be easily applied to other designs. See Appendix A for a 

derivation of this result.
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To apply this result to the balanced test×reader×case factorial study design, note that the 

denominator of FOR (22) is given by (23) with I = 1, a1 = 1, b = 1, , and 

. Using (24), the null-distribution result states that FOR (22) 

has an approximate Ft−1,df2 null distribution, where

(25)

Note that the equation for df2 (25), with Ỹij replaced by θ̂
ij, is the same as the equation for 

ddfH (6) for the OR model.

4.11. Remark: Derivation of mm-ANOVA expected mean square and variance component 
expressions

For the mm-ANOVA model an expected mean square table, such as Table 1a, can be created 

as follows. Write the mm-ANOVA expected mean squares in terms of the conventional 

ANOVA variance components and fixed effects using the relationships given in steps 2c and 

2e. For example, for the factorial model we have

(26)

From step 1c it follows that the conventional ANOVA variance components in (26) 

involving case (i.e., the corresponding random effects are subscripted according to case) can 

be written in terms of the mm-ANOVA covariances:  and 

. Replacing these variance components in (26) by their 

corresponding mm-ANOVA covariance expressions yields 

, the first line in Table 

1a. Similarly, the other expressions in Table 1a can be derived. A table of mm-ANOVA 

variance component formulas, such as Table 1b, can then be created from the mm-ANOVA 

expected mean square table by solving for the variance components.

5. Mm-ANOVA algorithm summary and examples

In Sections 3–4 steps 1 and 2 of the mm-ANOVA algorithm were presented. These two 

steps illustrated the essence of the mm-ANOVA approach. Steps 3 and 4, which are 

presented later in Appendices B and C, extend this approach by showing how to derive 

confidence intervals and the non-null distribution of the test statistic.

Table 5 presents a succinct summary of the mm-ANOVA algorithm. This summary is 

intended to make it easy to use the algorithm to determine the properties of OR-type models 

corresponding to other study designs. Note that Table 5 shows the steps for deriving the 

confidence interval formula, not only for a linear combination of test accuracy parameters, 
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but also for a single accuracy parameter. Table 6 illustrates the application of Table 5 to the 

typical test×reader×case study design previously discussed in Sections 3 and 4.

Using the algorithm in Table 5, I derive results for several other study designs and 

summarize these results in the remainder of this section. For each study design the 

corresponding algorithm results, in a format similar to Table 6, are presented in the 

referenced supplementary tables that are available in the online version of this article. Note 

that in the summaries below the reader performance measure is denoted by θîj instead of Ỹij 

to make it clear that, although these are mm-ANOVA models, the outcome is not restricted 

to a marginal mean but can be any reader-performance measure. In addition, I omit the tilde 

symbol over the mean squares and error term since it is clear that they are for the mm-

ANOVA model rather than the corresponding conventional ANOVA model. Standard 

nesting notation is used; e.g., subscript (i) j denotes that the factor indexed by j is nested 

within the factor indexed by i, and MS[R (T)] is the mean square for reader nested within 

test.

5.1. Example 1: Reader×case study design (one test)

In this study design there is only one test and each reader reads each case. Derivation of 

results using the mm-ANOVA algorithm is presented in Supplementary Table S1. The 

derivation begins with a conventional reader×case study-design ANOVA model that treats 

reader and case as random factors and includes their interaction. Averaging across cases 

produces the corresponding mm-ANOVA model: a one-way ANOVA model with reader as 

its only factor.

This mm-ANOVA model is given by θ̂
j = μ + Rj + εij, j = 1, …, r, where r is the number of 

readers. The Rj are mutually independent and normally distributed with zero mean and 

variance ; the εij are normally distributed with zero mean and variance  and are 

independent of the Rj; and Cov2 ≡ Cov (εj, εj′) ≥ 0, j ≠ j′. Thus reader is a random factor and 

the covariance between error terms is assumed constant. Because there is only one test, only 

the formula for computing a confidence interval for the single test accuracy is presented.

An approximate (1 − a) 100% confidence interval for a single test accuracy, θ = E (θ̂j), is 

given by , where 

, and 

. A hypothesis test for the single test accuracy can be based on 

this confidence interval. Although Hillis [6] discusses this single-test confidence interval 

formula, he does not provide a derivation of the result.

This confidence interval result can also be used with the test×reader×case study design to 

yield single test confidence intervals, each based only on data for the corresponding test, as 

was illustrated in the analysis of the example data in Section 2.3. Because properties of this 

confidence interval do not depend on assumptions about the variance components and 
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covariances corresponding to the other tests, we expect these single-test confidence intervals 

to be more robust than those where the standard error is based on all of the data.

5.2. Example 2: Reader-nested-within-test study design

In this study design readers read images from only one test; i.e., readers are nested within 

test. This study design is natural when readers are trained to read under only one of the tests. 

The study design is balanced with an equal number of readers reading all cases using each 

test. Thus reader is nested within test and is crossed with case. Obuchowski [12] discusses 

this design and refers to this as a paired-case, unpaired-reader design. This can be viewed 

as a split-plot design with readers being the “whole plots,” case the split-plot (or within-plot) 

factor, and test the whole-plot (or between-plot) factor. This design is schematically 

illustrated in Table 7a.

Derivation of results using the mm-ANOVA algorithm is presented in Supplementary Table 

S2. The derivation begins with a conventional split-plot ANOVA model corresponding to 

the study design (i.e., with reader nested within test and crossed with case) that treats reader 

and case as random factors and includes all possible interactions. Averaging across cases 

produces the corresponding mm-ANOVA model: a reader-nested-within-test ANOVA 

model with reader as a random factor.

The mm-ANOVA model is given by θîj = μ + τi + R(i)j + εij, i = 1, …, t, j = 1, …, r where t 

is the number of tests, r is the number of readers, τi denotes the fixed effect of test, and 

. The reader effects, the R(i)j, are mutually independent and normally distributed 

with zero mean and variance , where “R(T)” is read “reader nested within test”. The εij 

are normally distributed with zero mean and variance . The εij are independent of the R(i)j; 

Cov2 = Cov (εij, εi′j′) with j ≠ j′ and Cov3 = Cov (εij, εij′) with i ≠ i′, with Cov2 ≥ Cov3 ≥ 0.

Thus there are two error covariances, Cov2 and Cov3, Cov2 ≥ Cov3 ≥ 0, defined as the 

covariances between errors for the same test and different readers, and for different tests and 

different readers, respectively. Note that the definition Cov3 ≡ Cov (εij, εi′j′), i ≠ i′ does not 

require j ≠ j′ because i ≠ i′ implies different readers. There is no Cov1 parameter because the 

design does not allow for one reader reading under two tests.

Let θi ≡ E (θ̂
i•) denote the expected reader performance measure for test i. The test statistic 

for the null hypothesis of equal test accuracies (H0 : θ1 = … = θt) is

where MS(T) is defined as for the factorial model and 

. Under H0, FOR ~˙ Ft−1,df2 where
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(27)

More generally, FOR ~˙ Ft−1,df2;λ, where  and 

.

An approximate (1 − α) 100% confidence interval for contrast  is given by 

 where 

and df2 is given by (27). An approximate (1 − α) 100% confidence interval for θi is given by 

, where  and 

. Alternatively, an approximate (1 − α) 100% 

confidence interval for θi, using a standard error computed only from data for test i, is given 

by , where  and 

, where MS (R)(i) and  are computed only from 

test i data; note that this is the result from Section 5.1.

5.3. Example 3: Case-nested-within-test split-plot study design

In this study design each case is imaged under only one test, with the same number of cases 

imaged for each test. Each reader interprets all of the images from each test. This is often 

called a paired-reader, unpaired-case design. Obuchowski [12] notes that this design is 

needed when the diagnostic tests are mutually exclusive, e.g., if they are invasive, 

administer a high radiation dose, or carry a risk of contrast reactions. This can be viewed as 

a split-plot design with cases being the whole plots, reader the split-plot factor, and test the 

whole-plot factor. This design is schematically illustrated in Table 7b.

Derivation of results using the mm-ANOVA algorithm is presented in Supplementary Table 

S3. The derivation begins with a conventional split-plot ANOVA model corresponding to 

the study design that treats reader and case as random factors and includes all possible 

interactions. Averaging across cases produces the corresponding mm-ANOVA model, 

which is the same as the factorial mm-ANOVA model but with Cov1 and Cov3 constrained 

to zero; i.e., the model is defined by equation (1) and constraints Cov2 ≥ 0, Cov1 = Cov3 = 0. 

It follows that hypotheses-test, confidence-interval and sample-size formulas can be derived 

from those for the factorial model by setting Cov1 =Cov3 = 0.
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Thus the test statistic for the null hypothesis of equal test accuracies is

Under H0, FOR ~˙ Ft−1,df2 where

(28)

More generally, FOR ~˙ Ft−1,df2;λ, where  and 

.

Letting θi denote E (θ̂
i•), an approximate (1 − α) 100% confidence interval for contrast 

 is given by , where df2 is given by (28) and 

. An approximate (1 − α) 100% confidence 

interval for θi is given by , where 

 and 

. Alternatively, an 

approximate (1 − α) 100% confidence interval for θi, using a standard error computed only 

from data for test i, is given by , where 

 and , where 

MS (R)(i) and  are computed only from test i data. Note that these single-test 

confidence-interval formulas are the same as those for the factorial design.

5.3.1. Real-data example—Using the Kundel et al [9] data that were discussed in Section 

2.3, I now compare soft-copy computed radiographs with screen-film radiographs. The 

images are from different patients for each type of radiograph, with 95 images in each group 

(soft-copy computed radiograph: 66 nondiseased, 29 diseased; screen-film radiograph: 68 

nondiseased, 27 diseased). Because the images for each method are from different patients, 

this is an example of a case-nested-within-test study design. The analysis of this study using 

empirical AUC estimates and jackknife covariance estimates is displayed in Table 8. The 

AUCs for soft-copy and screen-film images, averaged across the four readers, are 0.804 and 
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0.829, respectively. The test for the null hypothesis of no AUC difference between soft-copy 

and screen-film is not significant (FOR = 0.31, df2 = 164.4, p = 0.58); the 95% confidence 

interval for the difference of the population AUCs (screen-film minus soft-copy) is (−0.064, 

0.114). Part (h) gives 95% confidence intervals for the single-test AUCs based only on data 

for the specific test.

5.4. Example 4: Case-nested-within-reader split-plot study design

In this study design each reader interprets a different set of cases using all of the diagnostic 

tests. The study design is balanced with each reader reading the same number of cases under 

each test. This can be viewed as a split-plot design with cases being the whole plots, reader 

the whole-plot factor, and test the split-plot factor. Obuchowski [12] refers to this as a 

hybrid design. The advantage of this design is that for equivalent power each reader must 

interpret fewer cases than for the factorial design, but the disadvantage is that the total 

number of cases is higher [13]. Thus this design is appropriate when a large number of 

verified cases are available and reading time per reader is limited or relatively expensive. 

This design is schematically illustrated in Table 7c.

Derivation of results using the mm-ANOVA algorithm is presented in Supplementary Table 

S4. The derivation begins with a conventional split-plot ANOVA model corresponding to 

the study design that treats reader and case as random factors and includes all possible 

interactions. Averaging across cases produces the corresponding mm-ANOVA model, 

which is the same as the factorial model except with Cov2 and Cov3 constrained to zero; i.e., 

the model is defined by (1) and constraints: Cov1 ≥ 0, Cov2 = Cov3 = 0. Because this model 

is the same as the factorial model with Cov2 and Cov3 constrained to zero, hypotheses-test, 

confidence-interval, and sample-size formulas can be derived from those for the factorial 

model by setting Cov2 =Cov3 = 0.

Thus the test statistic for the null hypothesis of equal test accuracies is

Under H0, FOR ~˙ Ft−1,df2 where

(29)

More generally, FOR ~˙ Ft−1,df2;λ, where  and df2 is given by (29).

Letting θi denote E (θ̂
i•), an approximate (1 − α) 100% confidence interval for contrast 

 is given by , where df2 is given by (29) and 

. An approximate (1 − α) 100% confidence interval for θi is 

given by , where  and 
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. Alternatively, an 

approximate (1 − α) 100% confidence interval for θi, using a standard error computed only 

from data for test i, is given by , where  and df2 = r − 1.

5.5. Example 5: Reader-and-case-crossed-and-nested-within-group split-plot study design

In this study design there are several groups (or blocks) of readers and cases such that (1) 

each reader and each case belongs to only one group and (2) within each group all readers 

read all cases under each test. I assume a balanced design where each group has the same 

number of readers and cases. Obuchowski [13] discusses this design and refers to it as a 

mixed design; I will refer to it as a mixed split-plot design. The motivation for this study 

design is to reduce the number of reader interpretations for each reader, compared to the 

factorial study, without requiring as many cases to be verified as the hybrid design. This 

design is schematically illustrated in Table 7d. Although not explicitly stated, Obuchowski 

[13] assumes that there is no group effect for this design; e.g., cases and readers are 

randomly assigned to the groups (personal communication, Nancy Obuchowski, 2012). In 

contrast, I allow for a group effect; e.g., readers are assigned to groups according to 

experience level. Obuchowski et al [14] provide a real-data example that shows how this 

design can be particularly useful for studying multiple imaging tests.

Derivation of results using the mm-ANOVA algorithm is presented in Supplementary Table 

S5. The derivation begins with a conventional split-plot ANOVA model corresponding to 

the study design (reader and case crossed and nested within group) that treats reader and 

case as random factors and group and test as fixed factors. All possible interactions are 

included. Averaging across cases produces the corresponding mm-ANOVA model: a three-

way ANOVA model with group, test, and reader as factors.

Let θĥij denote the reader-performance estimate for reader j under test i, with both belonging 

to group h. The mm-ANOVA model is given by θĥij = μ + γh + τi + (γτ)hi + R(h)i + (τR)(h)ij + 

εhij, h = 1, …, g, i = 1, …, t, j = 1, …, r, where g is the number of groups, t is the number of 

tests, r is the number of readers, τi denotes the fixed effect of test i, γh denotes the fixed 

effect of group h, and (γτ)hi denotes the fixed group-by-test interaction with 

. The R(h)j and (τR)(h)ij are random 

reader and test-by-reader effects, nested within group; they are mutually independent and 

normally distributed with zero means and respective variances  and . The εhij are 

normally distributed with zero mean and variance . The εhij are independent of the R(h)j 

and (τR)(h)ij. In summary, the mm-ANOVA model contains fixed effects for group, test, and 

their interaction, and random effects for reader nested within group and the test-by-reader 

interaction nested within group.

Cov1, Cov2, and Cov3 are defined and constrained similar to corresponding covariances for 

the typical test×reader×case factorial design, but with this difference: here they are not 

defined between errors corresponding to different groups because the covariance of those 
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errors is zero. Specifically, Cov1 ≡ Cov (εhij, εhi′j), Cov2 ≡ Cov (εhij, εhij′), and Cov3 ≡ Cov 

(εhij, εhij) where i ≠ i′, j ≠ j′ and Cov1 ≥ Cov3, Cov2 ≥ Cov3, and Cov3 ≥ 0.

The null hypothesis of equal test accuracies is H0 : θ1 =…= θt, where θi = E (θ̂
•i•). The 

corresponding test statistic is

Under H0, FOR ~˙ Ft−1,df2 where

(30)

and MS[T * R(G)] denotes the mean square for test-by-reader interaction nested within 

group. More generally, FOR has an approximate Ft−1,df2;λ distribution, where 

 and 

.

An approximate (1 − α) 100% confidence interval for contrast  is given by 

, where df2 is given by (30) and 

. An approximate (1 − α) 100% 

confidence interval for θi is given by , where 

 and 

.

5.6. Example 6: Replicated factorial study design

This study design is the same as the factorial study design except that each reader reads each 

case n times. Typically sessions corresponding to different readings are separated by a 

suitable period of time to reduce the probability that the reader will recognize cases from the 

earlier session. This study design has two advantages over the factorial design with one 

replication: it allows for estimation of within-reader reliability between two readings of the 

same cases, and it provides more power for the same number of cases and readers. This last 

aspect can be important if the number of available cases and readers is limited. In the 

example later in this section, I show how to estimate the gain in power based on pilot data.
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Derivation of results using the mm-ANOVA algorithm is presented in Supplementary Table 

S6. The derivation begins with a conventional three-way replicated factorial ANOVA model 

with reader and case as random factors and test as a fixed factor. There are n replications. 

All possible interactions are included between reader, case and test. Averaging across cases 

for each replication produces the corresponding mm-ANOVA model: a two-way replicated 

factorial ANOVA model with test and reader as factors.

Let θîjm denote the reader-performance estimate for reader j under test i based on the mth 

reading of the data. The mm-ANOVA model is given by θ̂
ijm = μ + τi + Rj + (τR)ij + εijm i = 

1, …, t, j = 1, …, r, m = 1, …, n where t is the number of tests, r is the number of readers, n 

is the number of replications, τi denotes the fixed effect of test i, Rj denotes the random 

effect of reader j, (τR)ij denotes the random test×reader interaction, εijm is the error term, and 

. The Rj and (τR)ij are assumed to be mutually independent and normally 

distributed with zero means and respective variances  and . The εij are assumed to be 

normally distributed with zero mean and variance  and are assumed independent of the Rj 

and (τR)ij. The errors are equi-covariant with four possible covariances given by

and subject to the following constraints:

Let θi ≡ E (θ̂
i••) denote the expected reader performance measure for test i. The test statistic 

for the null hypothesis of equal test accuracies (H0 : θ1 =…= θt) is

where  and 

. Under H0, FOR ~˙ 

Ft−1,df2 where

(31)

More generally, FOR ~˙ Ft−1,df2;λ, where
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(32)

and

(33)

An approximate (1 − α) 100% confidence interval for contrast  is given by 

 where 

 and df2 is given by (31). An 

approximate (1 − α) 100% confidence interval for θi is given by , where 

 and 

.

Consider Cov2 ≡ cov (θ̂ijm, θij′m′) where j ≠ j′ and either m = m′ or m ≠ m′. It follows that 

Cov2 can be computed from one set of replications (m = m′) or from different sets of 

replications (m ≠ m′). For example, for test i and readers j and j′, with n = 2 we have Cov2 = 

cov (θîj1, θij′1) = cov (θ̂ij1, θij′2) = cov (θ̂ij2, θij′1) = cov (θij2, θij′2). Thus an obvious estimate 

for Cov2 that utilizes all of the data is given by

where  is a fixed-reader covariance estimate, as discussed in Section 2.2. 

Similarly, estimates for Cov1 and Cov3 can be estimated by averaging fixed-reader 

covariance estimates, computed for each of the n2 possible (m, m′) pairs of replications, 

across corresponding test-reader combinations. Obvious estimates for Cov0 and  are 

 and 

, where .

5.6.1. Real-data example—In Section 2.3 I compared AUCs for hard- and soft-copy 

computed radiography chest images. Both types of images were obtained for each patient 

and were read by each of the readers. Thus this was a factorial study design, which could be 

analyzed by the standard OR procedure. Although there was not a significant difference 
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between the two types of images, the resulting confidence interval showed that an AUC 

difference as large as 0.086 was commensurate with the data. In such a situation the 

researcher might want to plan a similar experiment that is sized to have more power.

Increased power can be obtained by increasing the number of readers, the number of cases, 

or the number of replications. I now compute the number of cases needed to obtain .80 

power to detect an AUC difference of .04 with alpha = .05. Because FOR ~˙ Ft−1,df2;λ, power 

is approximated by Pr (F1,df2,λ > F.95;1,df2) where λ and df2 are defined by (32) and (33) and 

F.95;1,df2 is the 95th percentile of a central F distribution with degrees of freedom 1 and df2.

For the power computations I use the following estimates, obtained from Section 2.3: 

, and 

. An estimate of Cov0 is not available from the data because there are no replicated 

readings; however, the similarity of the two tests (hard- and soft-copy) suggests that the 

within-reader correlation between replications for the same test and reader, , 

should be only slightly higher than the within-reader correlation based on one replication 

between two tests, given by  from Table 2. Thus I set ρ0 = 0.60 for the 

power computations; it follows that . Following Hillis et al [15] I 

assume that the covariances are inversely proportion to the number of cases c, and hence 

multiply  and  by the factor  (recall that 95 is the number of cases for 

the example); the resulting values are used in place of , Cov1, Cov2, and Cov3 in (32) and 

(33) when computing power for c cases.

The numbers of cases need to achieve 0.80 power for combinations of 4–8 readers and 1–2 

replications are presented in Table 9. For example, achieving 0.80 power with 8 readers and 

one replication requires 173 cases versus 103 cases with two replications. Thus if cases are 

expensive to obtain or validate and it is difficult to obtain more than 8 readers, then using 

two replications appears to be an attractive option.

6. Discussion

The mm-ANOVA approach allows for analysis of ROC and other reader-performance 

outcomes that result from any balanced study design that has reader and case as random 

factors and any number of fixed factors. In addition, by providing the non-null distribution 

of the test statistic it allows for sample size estimation for such studies and efficiency 

comparisons between different types of studies. Although steps were fully justified only for 

the test×reader×case factorial study design, justification can be similarly established for 

other designs. Until now researchers have been limited to using the test×reader×case study 

design with the OR method because analysis methods were not developed for other designs. 

This work allows researchers to choose designs that are most appropriate for their study. A 

SAS macro for fitting some of these designs using the mm-ANOVA approach is available 

on request from the author.
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As noted in Section 2.4, Obuchowski and Rockette [1] derived their F statistic by modifying 

the F statistic described by Pavur and Nath [10]. Although Pavur and Nath [10] give results 

only for two-factor models, their approach, which is based on results given by Pavur and 

Lewis [19], could conceivably be applied to other correlated-error ANOVA models; as such 

it would provide an alternative to the approach described in this paper. However, the results 

of Pavur and Lewis do not extend beyond specifying the correct form for the F test when 

correlations are known; in particular, they do not indicate how to implement their approach 

when the correlations must be estimated, do not discuss derivation of confidence interval 

formulas for contrasts, give little motivation for the correlated error models, and do not 

discuss power computations.

Explicit formulas can be derived [20, 21, 22] for the variances of reader-performance 

outcomes that are U-statistics [23], such as reader empirical-AUC averages and their 

differences. Replacing parameters in these formulas by sample estimates yields variance 

estimates with excellent statistical properties. However, this approach is limited to U-

statistic estimators, such as the empirical AUC and presently incorporates an adaptation of 

the OR degrees of freedom formula. Advantages include explicit variance formulas and 

applicability to a wide variety of multireader study designs, including unbalanced designs.

Another alternative approach for analyzing multireader data is the marginal model approach 

proposed by Song and Zhou [24] for empirical AUC estimates. An advantage of their 

approach is that case-specific covariates can be included; disadvantages include being 

limited to empirical AUC outcomes, based on large-sample inferences, and thus far 

developed only for the factorial model.

Limitations of the mm-ANOVA approach include the following: (1) It is presently limited to 

balanced study designs; i.e., the number of levels for each factor does not depend on any 

other factor. However, because case is treated as one factor it is possible to have different 

numbers of normal and abnormal cases. I am currently investigating models that are not 

balanced with regard to case. (2) It assumes that the number of cases is large enough so that 

covariance estimates can be treated like known values for computing the denominator 

degrees of freedom. (3) It assumes that the fixed-reader measurement errors, the εij, are 

normally distributed. This is a reasonable assumption when the number of cases is moderate 

because most typical reader-performance outcomes, such as AUC, have asymptotic normal 

distributions for a fixed reader. (4) It assumes that the latent reader-performance outcomes 

(i.e., Rj + (τR)ij) have a normal distribution. If these normal distribution assumptions do not 

appear to be reasonable, one possible remedy is to transform the outcome, e.g., using a 

logarithmic or logit transformation for AUC. (5) It assumes the errors have an equi-

covariance structure. I am currently investigating the robustness of the mm-ANOVA 

approach to this assumption.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A. DERIVATION OF THE NULL-DISTRIBUTION RESULT USED IN STEP 2J

To derive the null-distribution result given in step 2j, I approximate the distribution of FOR 

(22) by deriving an approximate distribution for  (21), where Cov2 and Cov3 are known. 

Each  is equal to its corresponding conventional three-way ANOVA model mean 

square, denoted by MSi, multiplied by , with  under H0 : θ1 

= … = θt. It follows that the  are mutually independent, each  has the same degrees 

of freedom as its corresponding MSi and .

In general, a chi-squared-distribution approximation [25, 26] for a random variable X is 

given by

where

It follows that a chi-square approximation for

where the ai, b and d are constants, is given by

(A1)

where

(A2)
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Replacing  by  and d by an estimate d̂ in (A2) results in the approximation for 

df given by df2 (24).

It follows using (A1) with i = 1, a1 = 1, , d = r (Cov2 − Cov3) and (A2) 

estimated by (24) that a chi-squared approximation for , the 

denominator of F* (21), is given by

(A3)

where df2 is given by (25) and “~˙” stands for “is approximately distributed as.” See 

Reference [6] for a more detailed derivation and justification of df2 (referred to as ddfH in 

the reference.)

Because  (21) is an ANOVA statistic, 

under H0. Combining this result with the chi-squared approximation (A3) for 

 and the independence of  and , it follows 

under H0 that

where , W is approximately , and U and W are independent. Thus  has an 

approximate F(t−1),df2 null distribution, with df2 given by (25). Because FOR (22) 

approximates  (21), it is reasonable to approximate the null distribution of FOR by 

F(t−1),df2, which is the null distribution derived by Hillis [6] for FOR, discussed in Section 

2.2.

B. MM-ANOVA APPROACH STEP 3: DERIVE CONFIDENCE INTERVALS 

FOR A LINEAR FUNCTION g(θ) OF TEST ACCURACIES

In this section I show how to compute a confidence interval for a linear function of test 

accuracy parameters. Specifically, for the balanced test×reader×case factorial study design 

with θi ≡ E(θ̂i•) denoting the expected reader-performance outcome for test i across readers, 

θ = (θ1, …, θt)′, and l = (l1, …, lt)′ denoting a t-dimensional contrast vector (i.e., 

), I illustrate how to derive a confidence interval for g (θ) ≡ l′θ. More generally 

this step can be used to determine a confidence interval for g (θ), where g (·) is any linear 

function and θ any vector of test accuracy parameters; this general result is given in step 3k.

B.1. Step 3a: Write the test accuracy parameter vector θ in terms of the mm-ANOVA model

In terms of the mm-ANOVA model parameterization, treating Ỹij as θ̂
ij, we have θi = E (Ỹi•) 

= μ + τi.
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B.2. Step 3b: Write θ in terms of the conventional ANOVA model

Since θi = E (Ỹi•) = E (Yi••) = μ + τi, then in terms of the conventional ANOVA model we 

also have θi = μ + τi.

B.3. Step 3c: Determine the conventional ANOVA estimate for θ, denoted by θ̂

The conventional unbiased ANOVA estimate for θ is given by θ̂ = (θ̂1, …, θ̂
t)′ with θ̂i = Yi••.

B.4. Step 3d: Determine the variance V of g (θ̂) in terms of conventional ANOVA 
parameters

From (7) it follows that

Thus

Because θ̂ has a multivariate normal distribution, it follows that

where

B.5. Step 3e: Write V from step 3d in the form V = bE (∑aiMSi) for constants b and ai

Expected values of the conventional ANOVA mean squares are given in Table 4. It follows 

that

B.6. Step 3f: Write V from step 3e in the form  where b ̃ and ãi are 
constants and U is a linear function of conventional ANOVA mean squares that involve 
case

We have
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where

B.7. Step 3g: Express E (U) in terms of conventional ANOVA model variance components 
and then in terms of mm-ANOVA model error covariance parameters, using the 
relationships from step 1c; then rewrite V using this expression for E (U)

We did the first part of this step in step 2g where we showed

Using this expression we have

B.8. Step 3h: Derive the variance estimate V ̂ from V by replacing expected mean squares 
by mean squares and replacing covariances by estimates that take into account the 
constraints from step 1d

We have

B.9. Step 3i: Derive the degrees of freedom df2 for V̂ using the general formula for df2 (24) 
given in step 2j

It follows that the degrees of freedom is given by (25), which is the same as ddfH (6).

B.10. Step 3j: Write θ̂ from step 3c in terms of the mm-ANOVA model

Since θî = Yi•• = Ỹi•, then in terms of the mm-ANOVA model θ̂i = Ỹi•.

B.11. Step 3k: General confidence-interval result: In terms of the mm-ANOVA model, an 

approximate (1 − α) 100% confidence interval for g (θ) is given by  where 
V̂ is determined in step 3h, df2 in step 3i and θ̂ in step 3j

This result yields the following (1 − α) 100% confidence interval for l′θ:
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(B1)

where ddfH is given by (25). Letting “FOR-test denominator” denote the denominator of the 

FOR statistic (22) for testing H0 : θ1 = … = θt, we can write (B1) as

B.12. Derivation of the general confidence-interval result given in step 3k

I now derive the step 3k result for the test×reader×case factorial study design with g (θ) ≡ l

′θ and l = (l1, …, lt)′ denoting a t-dimensional contrast vector (i.e., ). We have 

shown in the previous steps that g (θ̂) ~ N [g (θ), V], where

Define V* by replacing  by :

Using the same argument as given in Appendix A and noting that V = E (V*), we can show 

that a chi-squared-distribution approximation for V* is given by  with df2 given by 

(25). Furthermore, independence of g (θ̂) and  for the mm-ANOVA model, and 

hence independence of g (θ̂) and V*, follows from the independence of g (θ̂) and MS(T * R) 

for the conventional ANOVA model (7). Thus for the mm-ANOVA model

where Z ~ N (0, 1), W is approximately , and Z and W are independent. Thus
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has an approximate tdf2 distribution with df2 given by (25). In practice we replace r (Cov2 − 

Cov3) by  and base tests and confidence intervals on

(B2)

which we treat as having an approximate tdf2 distribution; the confidence interval result in 

step 3k follows.

The general result for with g (·) being any linear function can be similarly proved, with the 

main difference being the formula for V.

C. MM-ANOVA APPROACH – STEP 4: DERIVE THE NON-NULL 

DISTRIBUTION OF FOR

Power and sample size estimation for the step 2a hypothesis requires specification of the 

distribution of the FOR statistic, derived in step 2i, when the null hypothesis is not true. A 

noncentral F distribution approximation for the non-null distribution is specified by steps 

4a–d below. These steps are justified in Section C.5.

C.1. Step 4a: Compute the noncentrality parameter in terms of the conventional ANOVA 
model

Express the noncentrality parameter in terms of the conventional ANOVA model using

(C1)

where MSnum is the numerator mean square from the conventional ANOVA F statistic given 

in step 2d, df(MSnum) is its degrees of freedom, E (MSnum |H0) is its expected value under 

H0, and MSnum|Y= E(Y) is the mean square evaluated with outcomes replaced by their 

expected values.

For the balanced test×reader×case factorial design we have MSnum = MS (T) from step 2d. 

From Table 4 we have . Thus 

 under H0:τ1 = … = τt = 0. Noting that E (Yijk) = μ + τi, we 

have . Noting that 

df[MS (T)] = t − 1, then from (C1) it follows that

(C2)
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C.2. Step 4b: Express λ in terms of mm-ANOVA parameters

Replace variance components in (C2) corresponding to random effects involving case by 

mm-ANOVA covariances. From the relationships determined in step 1c and presented in 

Table 3 we have

(Recall that  is the error variance for the mm-ANOVA model.) Thus in terms of mm-

ANOVA parameters

(C3)

C.3. Step 4c: Determine the denominator degrees of freedom in terms of mm-ANOVA 
parameters

Write the denominator of  from step 2h in the form . The 

denominator degrees of freedom is given by

(C4)

which is the same as (A2). Note that (C4) contains the expected mean square values and the 

true value of d, in contrast to approximation (24) that replaces these values by sample 

estimates. The reason for this difference is that approximation (24) will be used for 

hypotheses testing and confidence intervals for a study data set; in contrast, (C4) will be 

used for sample-size and power estimation for a future study and will be based on parameter 

values that are either conjectured or estimated from pilot data.

Express the expected mean squares in (C4) in terms of mm-ANOVA model parameters by 

determining their expected values in terms of the conventional ANOVA parameters and then 

replacing variance components that involve case by mm-ANOVA covariances. For example, 

for the balanced test×reader×case factorial study design, the denominator of  from step 

2h is given by . From (17) and Tables 3–4 it 

follows that

with . Thus
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and hence, using (C4),

(C5)

Hillis et al [15] illustrate how these formulas can be used in practice to estimate power and 

sample size using pilot-data or conjectured parameter estimates.

C.4. Step 4d: General non-null distribution result

An approximation for the non-null distribution of FOR is given by

where λ is given in step 4b, df1 is the degrees of freedom for the numerator mean square 

from the conventional ANOVA F statistic given in step 2d and df2 is given by (C4), 

expressed in terms of the mm-ANOVA parameters. Thus for the balanced test×reader×case 

factorial study design, λ is given by (C3),df1 = t − 1, and df2 is given by (C5).

C.5. Justification of steps 4a–d

The non-null distribution result given in step 4d can derived for the test×reader×case study 

design along the same lines as the derivation of the null distribution result given in Section 

A. One difference is that , the numerator numerator mean square in FOR (22) has a 

noncentral chi-square distribution when appropriately normalized under H1. The distribution 

for MS(T) is given by

where λ is given by (C3). Because , it follows that

Using the Section A approach but with this one difference, we can show that
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where  W is approximately  with df2 given by (C5), and U and W are 

independent. Thus  has an approximate F(t−1),df2;λ distribution. Because FOR (22) 

approximates  (21), it is reasonable to approximate the null distribution of FOR by 

F(t − 1),df2;λ.
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Table 1

Expected mean square and variance component formulas for the Obuchowski-Rockette model.

a. Expected mean squares

Mean square Expected mean square

MS(T)

MS(R)

MS(T * R)

b. Variance components

Variance component Equivalent function of expected mean squares and covariances
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Table 2

Obuchowski-Rockette analysis of Kundel et al [9] data for soft- and hard-copy computed radiographs using 

trapezoid AUC estimation and jackknife covariance estimation for t = 2 tests, r = 4 readers, c = 95 cases (66 

nondiseased, 29 diseased).

a. Trapezoid AUCs:

Test

1 (Soft-copy) 2 (Hard-copy)

Reader (j) θ1̂j θ2̂j

1 0.815 0.854

2 0.767 0.812

3 0.831 0.900

4 0.803 0.798

θ1̂· = .804 θ2̂· = .841

b. ANOVA table:

Source df Sum of squares Mean square

T 1 0.00281054 0.00281054

R 4 0.00715054 0.00238351

T*R 4 0.00140392 0.00046797

c. Fixed-reader covariance and corresponding correlation estimates computed from jackknife covariance matrix:

σ̂ε
2 = .0022034331, Cov^

1 = .0011163046, Cov^
2 = .0.0008438255, Cov^

3 = .0008871752, ρ̂1 = 0.507, ρ̂2 = 0.383, ρ̂3 = 0.403

d. Variance component estimates using Table 1b formulas:

σ̂R
2 =

1
t

{MS(R) − MS(T * R)} − Cov^
1 + Cov^

3 = 0.0007286397

σ̂TR
2 = MS(T * R) − σ̂ε

2 + Cov^
1 + max(Cov^

2 − Cov^
3, 0) = − 0.000662504(typically this would be changed to zero)

e.

FOR =
MS(T )

MS(T * R) + rmax(Cov^
2 − Cov^

3, 0)
= 6.00576

f. Denominator degrees of freedom:
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ddfH =
MS(T * R) + max r(Cov^

2 − Cov^
3), 0 2

MS(T * R) 2

(t − 1)(r − 1)

= 3

g. P -value for H0: θ1 = θ2: p = Pr (F(t−1), ddfH ≥ FOR) = .092

h.

95% CI for 

i. Single-test 95% confidence intervals based on all of the data. Note: 

.

i θî StdErr df2 95% CI

1 (Soft-copy) 0.804 .0346 46.9 0.734, 0.874

2 (Hard-copy) 0.841 .0346 46.9 0.772, 0.911

j. Single test 95% confidence intervals using only corresponding test data. Note: 

 .

i θî MS(R)(i) StdErr(i) 95% CI

1 (Soft-copy) 0.804 0.000880 0.000735 0.0326 100.4 0.739, 0.867

2 (Hard-copy) 0.841 0.000808 0.002116 0.0366 19.2 0.765, 0.918
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Table 3

Relationships between the 3-way ANOVA (7) and corresponding mm-ANOVA (9, 3) model parameters

3-way ANOVA parameter Equivalent function of mm-ANOVA parameters

μ = μ

τi = τi

= cCov3

= c (Cov2 − Cov3)

= c (Cov1 − Cov3)

mm-ANOVA parameter Equivalent function of 3-way ANOVA parameters

μ μ

τi τi

Cov1

Cov2

Cov3

These relationships assume covariance constraints (3) for the mm-ANOVA model and the same linear constraints for the τi (i.e., ∑ τi = 0) for both 

models.
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Table 4

Expected mean squares for the conventional test-by-reader-by-case factorial ANOVA model (7).

Mean square Expected mean square

MS (T)

MS (R)

MS (C)

MS (T * R)

MS (T * C)

MS (R * C)

MS (T * R * C)
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Table 5

Algorithm for deriving mm-ANOVA formulas

1 Derive the mm-ANOVA model

a. Define the conventional ANOVA model that corresponds to the study design as if each reader-performance measure was 
the mean of case-level outcomes. (Note: Since reader-performance measures are measures of discrimination between 
diseased and nondiseased cases, disease status should not be included as a factor.)

b. From the conventional ANOVA model defined in step 1a, derive the mm-ANOVA model by averaging across cases. 
Define the mm-ANOVA model error term equal to the mean, across cases, of the sum of the conventional ANOVA model 
error term and random effects involving case.

c. Express the mm-ANOVA model error variance and covariances in terms of the conventional ANOVA model variance 
components.

d. Determine the mm-ANOVA model covariance constraints implied by step 1c.

2 Derive the mm-ANOVA model test statistic and its null distribution for a hypothesis express in terms of test accuracies (i.e., 
expected reader-performance measures)

a. State the hypothesis of interest in terms of the mm-ANOVA model.

b. Express the hypotheses from step 2a in terms of the conventional ANOVA model.

c. Create the expected-mean-square table for the conventional ANOVA model

d. Determine the conventional ANOVA F statistic corresponding to the step 2b hypotheses.

e. Express mm-ANOVA mean squares in terms of conventional ANOVA mean squares.

f. Express F from step 2d in terms of the mm-ANOVA model mean squares and U, where U is a linear function of 
conventional ANOVA model mean squares that involve case.

g. Express E (U) in terms of conventional ANOVA model variance components, and then in terms of mm-ANOVA model 
error covariance parameters using the relationships from step 1c.

h. Modify F from step 2f to produce the mm-ANOVA statistic  by replacing U by E (U), expressed as a linear function 
of mm-ANOVA covariance parameters.

i. Derive FOR by replacing covariance parameters in  by estimates that take into account the constraints from step 1d.

j. Determine the approximate null distribution of FOR in the following way: Write the denominator of FOR in the form 

 where the  are mm-ANOVA model mean squares, d̂ is a function of the covariance parameter 
estimates, and the ai and b are constants. Then FOR will have an approximate Fdf1,df2 null distribution, where df1 is the 
numerator degrees of freedom for the conventional ANOVA model test statistic in step 2d and df2 is given by

df2 =
∑i aiMSĩ + d̂ 2

∑i

aiMSĩ
2

df(MSĩ)

where  is the degrees of freedom for , and hence also for MSi.

3 Derive confidence intervals for a linear function g (θ) of test accuracy parameters.

a. Write the test accuracy parameter vector θ in terms of the mm-ANOVA model.

b. Write θ in terms of the conventional ANOVA model.

c. Determine the conventional ANOVA estimate for θ, denoted by θ̂.

d. Determine the variance V of g (θ̂) in terms of conventional ANOVA parameters.

e. Write V from step 3d in the form V = bE (∑ aiMSi) for constants b and ai.

f.
Write V from step 3e in the form  where b̃ and ãi are constants and U is a linear function of 
conventional ANOVA mean squares that involve case.
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g. Express E (U) in terms of conventional ANOVA model variance components and then in terms of mm-ANOVA model 
error covariance parameters, using the relationships from step 1c; then rewrite V using this expression for E (U).

h. Derive the variance estimate V̂ from V by replacing expected mean squares by mean squares and replacing covariances by 
estimates that take into account the constraints from step 1d.

i. Derive the degrees of freedom df2 for V̂ using the general formula for df2 given in step 2j.

j. Write θ̂ from step 3c in terms of the mm-ANOVA model.

k.

An approximate (1 − α) 100% confidence interval for g (θ) is given by , where V̂ is determined 

in step 3h, df2 in step 3i and θ̂ in step 3j.

4 Derive the non-null distribution of FOR from step 2i

a.

Compute the noncentrality parameter in terms of the conventional ANOVA model: 
where MSnum is the numerator mean square from the conventional ANOVA F statistic given in step 2d.

b. Express λ in terms of mm-ANOVA parameters by replacing variance components involving case by mm-ANOVA 
covariances.

c. Determine the denominator degrees of freedom in terms of mm-ANOVA parameters using 

 where  is the denominator of  from step 2h

d. The non-null distribution is given by Fdf1,df2;λ, where df1 = df (MSnum), df2 is determined in step 4c and λ in step 4b.
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Table 6

Mm-ANOVA approach for typical test×reader×case factorial study design

1 Derive the mm-ANOVA model

a. Conventional ANOVA model: Yijk = μ + τi + Rj + Ck + (τR)ij + (τC)ik + (RC)jk + (τRC)ijk + εijk, i = 1, …, t; j = 1, …, r; k = 

1, …, c, with variance components σR
2, σC

2, σTR
2 , σTC

2 , σRC
2 , στRC

2
, and σε

2
 and constraint ∑i=1

t τi = 0. Define 

σ 2 = σTRC
2 + σε

2
.

b. Mm-ANOVA model (note: Ỹij = Yij•):

Ỹij = μ + τi + Rj + (τR)ij + ε̃ij where ε̃ij = C• + (τC)i• + (RC) j• + (τRC)ij• + εij• and ∑i=1
t τi = 0

c. Mm-ANOVA error variance and covariances expressed in terms of conventional ANOVA variance components: 

σ̃ε
2 =

1
c

(σC
2 + σTC

2 + σRC
2 + σ 2), Cov1 ≡ cov(ε̃ij, ε̃i′ j) =

1
c

(σC
2 + σRC

2 ), 

Cov2 ≡ cov(ε̃ij, ε̃ij′) =
1
c

(σC
2 + στC

2 ), Cov3 ≡ cov(ε̃ij, ε̃i′ j′) =
1
c
σC

2
, where i ≠ i′, j ≠ j′

d. Covariance constraints: Cov1 ≥ Cov3; Cov2 ≥ Cov3; Cov3 ≥ 0

2 Derive the mm-ANOVA test statistic and its null distribution

a. Mm-ANOVA model hypothesis of equal test accuracies: H0 : θ1 = ⋯ = θt where θi = E (Ỹi•)

b. Conventional ANOVA model hypothesis: θi = E (Yi••) = μ + τi ⇒ H0 : τ1 = ⋯ = τt

c. Conventional ANOVA expected mean squares

Mean square Expected mean square

MS(T)

MS(R)

MS(C)

MS(T * R)

MS(T * C)

MS(R * C)

MS(T * R * C)

d.
Conventional ANOVA test statistic: F =

MS(T )
MS(T * R) + MS(T * C) − MS(T * R * C)

e.

MS̃(T ) =
1
c

MS(T ), MS̃(T * R) =
1
c

MS(T * R), MS̃(R) =
1
c

MS(R)

f.
F =

MS̃(T )
MS̃(T * R) + U

 where U =
1
c

{MS(T * C) − MS(T * R * C)}
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g.

E{MS(T * C)} = rσTC
2 + σ 2, E{MS T * R * C } = σ 2 ⇒ E (U ) =

1
c

(rσTC
2 ) = r(Cov2 − Cov3).

h.

FOR
* =

MS̃(T )
MS̃(T * R) + r(Cov2 − Cov3)

i.

FOR =
MS̃(T )

MS̃(T * R) + rmax(Cov^
2 − Cov^

3, 0)

j.

Under H0, FOR ≈ Ft−1,df2 where df2 =
MS̃ T * R + rmax(Cov^

2 − Cov^
3, 0) 2

MS̃ T * R 2 / (t − 1)(r − 1)

3 Derive confidence intervals

(a) Mm-ANOVA test accuracy parameters: θ = (θ1, …, θt)′, with θi = E (Ỹi•), i = 1, …, t

(b) Corresponding conventional ANOVA parameters: θi = E (Yi••) = μ + τi

(c) Conventional ANOVA estimate: θ̂
i = Yi••

CI for l′ (θ) with l = (l1, …, lt)′, ∑i=1
t li = 0:

(d)

l ′ (θ̂) = ∑i=1
t

liθ̂i = ∑i=1
t

liYi•• = ∑i=1
t

liτi + ∑i=1
t

li (τR)i• + (τC)i• + (τRC)i•• + εi•• ⇒ V = ∑i=1
t

li
2
σTR

2

r
+
σTC

2

c
+
σ 2

rc
=

1
rc

∑i=1
t

li
2 cσTR

2 + rσTC
2 + σ 2

(e)

V =
1
rc

∑i=1
t

li
2E MS(T * R) + MS(T * C) − MS(T * R * C)

(f)
V =

1
r

∑i=1
t li

2E MS̃(T * R) + U  where U =
1
c

{MS(T * C) − MS(T * R * C)}

(g)

E (U ) =
rσTC

2

c
= r(Cov2 − Cov3) ⇒ V =

1
r

∑i=1
t

li
2{E MS̃(T * R) + r(Cov2 − Cov3)}

(h)

V̂ =
1
r

∑i=1
t

li
2{MS̃(T * R) + max r(Cov^

2 − Cov^
3), 0 }

(i)

df2 =
MS̃(T * R) + rmax(Cov^

2 − Cov^
3, 0) 2

MS̃(T * R) 2 / (t − 1)(r − 1)
 (same as df2 in step 2j)

(j) θ̂i = Ỹi•

(k)

CI : ∑i=1
t

liỸi• ± tα/2;df2

1
r

∑i=1
t

li
2{MS̃(T * R) + max r(Cov^

2 − Cov^
3), 0 }
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CI for θi

(d)

θ̂i = Yi•• = τi + R• + C• + (τR)i• + (τC)i• + (RC)•• + (τRC)i•• + εi•• ⇒ V =
σR

2

r
+
σC

2

c
+
σTR

2

r
+
σTC

2

c
+
σRC

2

rc
+
σ 2

rc
=

1
rc

(cσR
2 + rσC

2 + cσTR
2 + rσTC

2 + σRC
2 + σ 2)

(e)

V =
1

trc
E MS(R) + (t − 1)MS(T * R) + MS(C) − MS(R * C) + (t − 1)MS(T * C) − (t − 1)MS(T * R * C)

(f)

V =
1
tr

E MS̃(R) + (t − 1)MS̃(T * R) + U

where

U =
1
c

{MS(C) − MS(R * C) + (t − 1)MS(T * C) − (t − 1)MS(T * R * C)}

(g)

E (U ) =
tr
c

(σC
2 + σTC

2 ) = trCov2 ⇒ V =
1
tr {E MS̃(R) + (t − 1)MS̃(T * R) + trCov2}

(h)

V̂ =
1
tr

MS̃(R) + (t − 1)MS̃(T * R) + trmax(Cov^
2, 0)

(i)

df2 =
MS̃(R) + (t − 1)MS̃(T * R) + trmax(Cov^

2, 0) 2

MS̃(R) 2

r − 1
+

(t − 1)MS̃(T * R) 2

(t − 1)(r − 1)

(j) θî = Ỹi•

(k)

CI : Ỹi• ± tα/2;df2

1
tr

MS̃(R) + (t − 1)MS̃(T * R) + trmax(Cov^
2, 0)

4 Derive the non-null distribution Fdf1,df2;λ of the step-2 F statistic

a.
Step 2d F numerator: MSnum = MS(T), E MS(T ) =

rc
(t − 1)

∑i=1
t τi

2 + cσTR
2 + rσTC

2 + σ 2
, df (MS (T)) = t − 1, 

E (Y ijk ) = μ + τi ⇒ λ =
df(MSnum)MSnum |

Y=E (Y)
E (MSnum | H0)

=
rc∑i=1

t τi
2

cσTR
2 + rσTC

2 + σ 2

b.

rσTC
2 + σ 2 = c σε̃

2 − Cov1 + (r − 1)(Cov2 − Cov3) ⇒ λ =
r∑i=1

t τi
2

σTR
2 + σε̃

2 − Cov1 + (r − 1)(Cov2 − Cov3)
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c.
Step 2h FOR

* denominator = MS̃(T * R) + r(Cov2 − Cov3), 

E

(
MS̃(T * R)

)
=

1
c

E (MS̃(T * R)) =
1
c

(cσTR
2 + σ 2) = (σTR

2 + σε̃
2 − Cov1 − Cov2 + Cov3

) ⇒ df2

=
σTR

2 + σε̃
2 − Cov1 + (r − 1)(Cov2 − Cov3) 2

σTR
2 + σε̃

2 − Cov1 − Cov2 + Cov3
2

(t − 1)(r − 1)

d. FOR ~˙ Ft−1,df2;λ
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Table 8

Obuchowski-Rockette split-plot (cases nested within test) analysis of Kundel et al [9] data for soft-copy 

computed radiographs and screen-film radiographs using trapezoid AUC estimation and jackknife covariance 

estimation for t = 2 tests, r = 4 readers. The images were from different patients for each type of radiograph, 

with 95 images in each group (soft-copy computed radiograph: 66 nondiseased, 29 diseased; screen-film 

radiograph: 68 nondiseased, 27 diseased).

a. Trapezoid AUCs:

Test

1 (Soft-copy computed radiograph) 2 (Screen-film)

Reader (j) θ1̂j θ2̂j

1 0.815 0.818

2 0.767 0.836

3 0.831 0.828

4 0.803 0.834

θ1̂· = .804 θ2̂· = .829

b. ANOVA table:

Source df Sum of squares Mean square

T 1 0.00125969 0.00125969

R 4 0.00076530 0.00025510

T*R 4 0.00164974 0.00054991

c. Fixed-reader covariance estimates computed from jackknife covariance matrix: 

σ̂ε
2 = 0.0023651313, Cov^

2 = 0.0008800774

d.

FOR =
MS(T )

MS(T * R) + max(rCov^
2, 0)

= 0.31

e. Denominator degrees of freedom:

df2 =
MS(T * R) + max(rCov^

2, 0) 2

MS(T * R) 2

(t − 1)(r − 1)

= 164.4

f. P-value for H0: θ1 = θ2: p = Pr (F(t−1), df2 ≥ FOR) = 0.579

g.

95% CI for θ2 − θ1: 
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h. Single test 95% confidence intervals using only corresponding data. Note: 

i θî MS(R)(i) StdErr(i) 95% CI

1(Soft-copy) 0.804 0.000880 0.000735 0.0326 100.4 0.739, 0.867

2(Screen-film) 0.829 0.000881 0.000070 0.0300 7997.2 0.770, 0.888
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Table 9

Number of replications, readers, and cases needed to achieve .80 power to detect a .04 AUC difference 

between soft- and hard-copy radiographs using a factorial study design, based on estimates from the Kundel et 

al [9] data, an assumed within-reader within-replication correlation of 0.60, and alpha = .05.

replications (n) readers (r) cases (c) power

1 4 585 0.800

1 5 366 0.801

1 6 266 0.800

1 7 210 0.802

1 8 173 0.801

2 4 348 0.800

2 5 218 0.801

2 6 158 0.800

2 7 125 0.802

2 8 103 0.802
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