Skip to main content
. Author manuscript; available in PMC: 2015 Nov 10.
Published in final edited form as: Stat Med. 2013 Aug 23;33(2):330–360. doi: 10.1002/sim.5926

Table 2.

Obuchowski-Rockette analysis of Kundel et al [9] data for soft- and hard-copy computed radiographs using trapezoid AUC estimation and jackknife covariance estimation for t = 2 tests, r = 4 readers, c = 95 cases (66 nondiseased, 29 diseased).

  1. Trapezoid AUCs:
    Test

    1 (Soft-copy) 2 (Hard-copy)
    Reader (j) θ̂1j θ̂2j
    1 0.815 0.854
    2 0.767 0.812
    3 0.831 0.900
    4 0.803 0.798

    θ̂ = .804 θ̂ = .841
  2. ANOVA table:
    Source df Sum of squares Mean square
    T 1 0.00281054 0.00281054
    R 4 0.00715054 0.00238351
    T*R 4 0.00140392 0.00046797
  3. Fixed-reader covariance and corresponding correlation estimates computed from jackknife covariance matrix:
    σ^ε2=.0022034331,Cov^1=.0011163046,Cov^2=.0.0008438255,Cov^3=.0008871752,ρ^1=0.507,ρ^2=0.383,ρ^3=0.403
  4. Variance component estimates using Table 1b formulas:
    σ^R2=1t{MS(R)MS(T*R)}Cov^1+Cov^3=0.0007286397
    σ^TR2=MS(T*R)σ^ε2+Cov^1+max(Cov^2Cov^3,0)=0.000662504(typically this would be changed to zero)
  5. FOR=MS(T)MS(T*R)+rmax(Cov^2Cov^3,0)=6.00576
  6. Denominator degrees of freedom:
    ddfH=[MS(T*R)+max[r(Cov^2Cov^3),0]]2[MS(T*R)]2(t1)(r1)=3
  7. P -value for H0: θ1 = θ2: p = Pr (F(t−1), ddfHFOR) = .092

  8. 95% CI for θ2θ1:θ^2·θ^1·±tddfH2r{MS(T*R)+rmax(Cov^2Cov^3,0)}=(0.0111940,.086168)

  9. Single-test 95% confidence intervals based on all of the data. Note: StdErr=1tr[MS(R)+(t1)MS(T*R)+trmax(Cov^2,0)].
    i θ̂i StdErr df2 95% CI
    1 (Soft-copy) 0.804 .0346 46.9 0.734, 0.874
    2 (Hard-copy) 0.841 .0346 46.9 0.772, 0.911
  10. Single test 95% confidence intervals using only corresponding test data. Note: StdErr(i)=1r[MS(R)(i)+r*max(Cov^2(i),0)] .
    i θ̂i
    Cov^2(i)
    MS(R)(i) StdErr(i)
    df2(i)
    95% CI
    1 (Soft-copy) 0.804 0.000880 0.000735 0.0326 100.4 0.739, 0.867
    2 (Hard-copy) 0.841 0.000808 0.002116 0.0366 19.2 0.765, 0.918