Derive the mm-ANOVA model
Conventional ANOVA model: Yijk = μ + τi + Rj + Ck + (τR)ij + (τC)ik + (RC)jk + (τRC)ijk + εijk, i = 1, …, t; j = 1, …, r; k = 1, …, c, with variance components , and and constraint . Define .
-
Mm-ANOVA model (note: Ỹij = Yij•):
where and
Mm-ANOVA error variance and covariances expressed in terms of conventional ANOVA variance components: ,
,
,
, where i ≠ i′, j ≠ j′
Covariance constraints: Cov1 ≥ Cov3; Cov2 ≥ Cov3; Cov3 ≥ 0
Derive the mm-ANOVA test statistic and its null distribution
Mm-ANOVA model hypothesis of equal test accuracies: H0 : θ1 = ⋯ = θt where θi = E (Ỹi•)
Conventional ANOVA model hypothesis: θi = E (Yi••) = μ + τi ⇒ H0 : τ1 = ⋯ = τt
Conventional ANOVA expected mean squares
Mean square |
Expected mean square |
MS(T) |
|
MS(R) |
|
MS(C) |
|
MS(T * R) |
|
MS(T * C) |
|
MS(R * C) |
|
MS(T * R * C) |
|
Conventional ANOVA test statistic:
where
Under H0, FOR ≈ Ft−1,df2 where
Derive confidence intervals
-
(a)
Mm-ANOVA test accuracy parameters: θ = (θ1, …, θt)′, with θi = E (Ỹi•), i = 1, …, t
-
(b)
Corresponding conventional ANOVA parameters: θi = E (Yi••) = μ + τi
-
(c)
Conventional ANOVA estimate: θ̂ i = Yi••
-
(d)
-
(e)
-
(f)
where
-
(g)
-
(h)
-
(i)
(same as df2 in step 2j)
-
(j)
θ̂i = Ỹi•
-
(k)
-
(d)
-
(e)
-
(f)
-
(g)
-
(h)
-
(i)
-
(j)
θ̂i = Ỹi•
-
(k)
Derive the non-null distribution Fdf1,df2;λ of the step-2 F statistic
Step 2d F numerator: MSnum = MS(T), , df (MS (T)) = t − 1,
Step 2h ,
FOR ~˙ Ft−1,df2;λ
|