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Abstract

We have developed a theranostic nanoparticle delivering the model radionuclide 177Lu based on 

the versatile lipid-calcium-phosphate (LCP) nanoparticle delivery platform. Characterization 

of 177Lu-LCP has shown that radionuclide loading can be increased by several orders of 

magnitude without affecting the encapsulation efficiency or the morphology of 177Lu-LCP, 

allowing consistency during fabrication and overcoming scale-up barriers typical of 

nanotherapeutics. The choice of 177Lu as a model radionuclide has allowed in vivo anticancer 

therapy in addition to radiographic imaging via the dual decay modes of 177Lu. Tumor 

accumulation of 177Lu-LCP was measured using both SPECT and Cerenkov imaging modalities in 

live mice, and treatment with just one dose of 177Lu-LCP showed significant in vivo tumor 

inhibition in two subcutaneous xenograft tumor models. Microenvironment and cytotoxicity 

studies suggest that 177Lu-LCP inhibits tumor growth by causing apoptotic cell death via double-

stranded DNA breaks while causing a remodeling of the tumor microenvironment to a more 

disordered and less malignant phenotype.

Graphical abstract

*Corresponding author. Tel.: 919 843 0736, leafh@unc.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Control Release. Author manuscript; available in PMC 2016 November 10.

Published in final edited form as:
J Control Release. 2015 November 10; 217: 170–182. doi:10.1016/j.jconrel.2015.08.048.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Cancer; Theranostic; Nanoparticle; High Specific Drug Loading

Introduction

Standard cancer treatment regimens use combinations of surgery, chemotherapy, and 

radiation therapy to eradicate the disease. The majority of patients receiving radiation 

treatments undergo external beam radiation therapy, but systemic internal radiotherapy has 

also achieved substantial clinical success in the last decade [1]. Unlike external beam 

therapy, which generally bombards the tumor area with photons or electrons emitted from an 

external source, systemic radiotherapy targets radionuclides to the tumor site via intravenous 

injection. The radiation source therefore resides inside the body, and the low radiation 

emission distance only allows the therapy to affect cells positioned close to particle 

deposition. This is in contrast to external beam therapy in which x-rays or gamma rays pass 

through the body from an external source. The current gold standard in systemic 

radiotherapy, called radioimmunotherapy, chelates the radioisotope to a tumor-targeted 

monoclonal antibody. The radio-immunotherapeutic Zevalin, which is labeled with the 

radioisotope 90Yttrium, was the first of its kind, approved by the FDA in 2002 for use 

against B-cell lymphoma [2], but its clinical success has been tempered because of its high 

cost and antibody-mediated toxicity [3–5].

In this paper we describe a novel method for systemic internal radiotherapy. We have 

previously developed a targeted and versatile nanoparticle platform termed Lipid Calcium 

Phosphate (LCP) [6]. LCP is formulated by mixing two reverse microemulsions containing 

concentrated calcium and phosphate, and can encapsulate phosphorylated small molecules, 

peptides, and nucleic acids through their co-precipitation into the amorphous calcium-

phosphate precipitate [7–9]. In this report we have now extended the application of this LCP 

platform by developing a theranostic nanoparticle with high specific drug loading for cancer 

therapy via the encapsulation of the model radioisotope 177Lutetium (177Lu). Trivalent 

cations such as lutetium can be driven into LCP, as their solubilities with phosphate are 

many orders of magnitude lower than the solubility of calcium phosphate. Phosphate then 
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prefers to precipitate with these radioisotopes and even a trace amount can be encapsulated 

with high efficiency.

High encapsulation efficiency of a drug is often attainable only when a low amount of drug 

is loaded into each particle, requiring large doses of the particle to achieve a therapeutic 

effect. This can cause particle-mediated toxicity and make clinical scale-up very difficult 

and expensive. Our method of radioisotope loading does not encounter these issues. 

Because 177Lu can be driven into LCP due to its low solubility with phosphate, and because 

only a small mass of 177Lu is needed to provide a therapeutic effect, the drug loading 

window for a batch of LCP can span several orders of magnitude without affecting the 177Lu 

encapsulation efficiency or LCP morphology, and without requiring a change in any other 

input parameters.

177Lu was chosen as a model radionuclide because of its ability to provide simultaneous 

imaging and therapy: γ-radiation from 177Lu is detectible using Single Photon Emission 

Computed Tomography (SPECT), while β-decay from 177Lu causes DNA damage to nearby 

cells in addition to inducing Cerenkov radiation that is detectible using optical imaging 

techniques. Targeted delivery of these radionuclides therefore allows measurement of tumor 

accumulation in live mice while simultaneously treating the tumor mass. Unlike 

chemotherapeutics, radioisotopes like 177Lu decay at a constant rate independent of their 

environment, providing a low, continuous dose to the tumor consistent with their decay rate. 

We therefore tested the ability of 177Lu-LCP to achieve a sustained and quantifiable 

therapeutic effect in vivo after just a single dose.

Materials and Methods

2.0.1: Materials
177LuCl3 was purchased from PerkinElmer (Waltham, MA). 1,2-dioleoyl-sn-glycero-3-

phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were purchased 

from Avanti Polar Lipids (Alabaster, AL). N-(Carbonyl-methoxypolyethyleneglycol 

2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG2000) was 

purchased by NOF America Corporation (White Plains, NY). DSPE-PEG2000-Anisamide 

(DSPE-PEG-AA) was synthesized in our lab as described previously [10]. Other chemicals 

were purchased from Sigma-Aldrich (St. Louis, MO).

2.0.2: Cell Lines

Three different cell lines were used in the experiments described below: NCI-H460 (H460) 

human non-small cell lung cancer cells, UMUC3 human bladder cancer cells, and NIH/3T3 

(3T3) murine fibroblasts. In some experiments, 3T3 cells that had been stably transfected 

with green fluorescent protein (GFP) were used.

2.0.3: Experimental Animals

6–8 week old female athymic nude mice were used for all experiments presented in this 

manuscript. These mice were purchased from the National Cancer Institute (Bethesda, MD) 

and bred at the Division of Laboratory Animal Medicine at the University of North 
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Carolina-Chapel Hill. All work performed on these animals was approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina-Chapel 

Hill.

2.1: 177Lu-LCP Fabrication and Characterization
177Lu-LCP fabrication has been modified [6, 11] from what is described in previous 

publications. Two reverse microemulsions were prepared in round-bottom flasks. Both 

microemulsion oil phases contained 73.7:6.7:9.7:10 

Cyclohexane:Hexanol:IgepalCO520:TritonX-100 (v:v:v:v). 25mg/ml DOPA was added in 

chloroform to one oil phase (1:0.023 oil:DOPA v:v). A Phosphate aqueous phase (1:0.0125 

oil:aqueous v:v) containing 100mM Na2HPO4 in 0.0125M NaOH was added to the DOPA 

oil phase with stirring. A Calcium aqueous phase containing 500mM CaCl2 and 

trace 177LuCl3 in 0.0125M HCl was added to the other oil phase. After five minutes, the oil 

phase containing phosphate was added to the oil phase containing calcium and stirred for 40 

minutes. 100% ethanol was then added to oil (1:1 ethanol:oil v:v) and stirred for 30 minutes. 

LCP was washed three times via centrifugation at 12,600g, removing the supernatant, 

replacing the supernatant with 100% ethanol, and vortexing the solution to resuspend the 

LCP pellet. Lu, Ca, and PO4 that had not precipitated during mixing were discarded in the 

supernatant of the initial wash (~15% of input 177Lu was removed here), and minimal 177Lu 

signal was detected in the second and third supernatants. After the final wash, the precipitate 

was dissolved in chloroform and centrifuged at 10,000g for five minutes. This supernatant 

then contained the organic-soluble LCP cores, and the pellet contained any precipitate that 

was not well-coated in DOPA, and therefore not soluble in chloroform (~15% of input 177Lu 

was removed here). Purifying the LCP cores in these two ways ensured that 177Lu was only 

present inside the LCP. Outer leaflet lipids (OLLs) dissolved in chloroform were then added 

to the chloroform-soluble cores (40:40:18:2 DOPC:cholesterol:DSPE-PEG2000:DSPE-

PEG2000-AA mol:mol:mol) (0.11:1 total OLL:initial oil phase v:v; all lipids at 20mM 

concentration). In experiments using DiI-labeled LCP, DiI dissolved in chloroform was 

added to the cores with the OLLs (1:100 DiI:total OLL mol:mol). Chloroform was 

evaporated until the particles and lipids coated the vial in a lipid film. Particles were then 

rehydrated with 80°C water to the injection volume. The solution was vortexed and 

sonicated liberally, then heated at 80°C for >10 min and passively cooled. The anisamide 

ligand was used in all formulations to target the sigma receptor overexpressed in UMUC3 

and H460 cells [12, 13].

In experiments using DiI-labeled Lu-LCP, sucrose gradient ultracentrifugation (50,000g for 

4 h) was used to purify DiI-Lu-LCP from excess free DiI and DiI that had incorporated into 

excess free liposomes. Encapsulation efficiency of 177Lu into 177Lu-LCP was measured by a 

Model AA2010 “Nucleus” Gamma Scintillation Counter or a Capintec Radioisotope 

Calibrator CRC-127R and calculated as (signal from 177Lu in LCP cores)/(signal from 177Lu 

in input aqueous phase). 177Lu-LCP hydrodynamic diameter and zeta potential were 

measured after sucrose gradient ultracentrifugation using a Malvern Nano ZS dynamic light 

scattering instrument. Three different batches of LCP were measured. Particle size was 

corroborated using transmission electron microscopy (TEM).
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2.2: Loading Capacity

To simulate an increase in 177Lu loading into 177Lu-LCP, a trace amount of 177Lu was 

supplemented with additional nonradioactive 175Lu. As the Lu:Ca input ratio was increased 

from 1:10,000,000 to 1:1, no changes in any inputs were made save for the increase 

in 175Lu. 177Lu EE was measured using gamma scintillation and 177Lu-LCP morphologies/

structural makeups were measured using TEM and energy-dispersive X-ray spectroscopy 

(EDS) at the Chapel Hill Analytical and Nanofabrication Laboratory at the University of 

North Carolina at Chapel Hill. TEM images were taken using a TEM JEOL 2010F-FasTEM 

or a TEM JEOL 100CX II, and EDS measurements were taken using the TEM JEOL 100CX 

II.

2.3: Pharmacokinetics and Biodistribution

Healthy nude mice were injected with 177Lu-LCP or free 177LuCl3 of known activities. 

The 177Lu-LCP or 177LuCl3 was injected into the left tail vein and circulating 177Lu-LCP 

or 177LuCl3 was measured by removing 20–30 μl of blood from the right tail vein at several 

time points after injection. The signal was read using gamma scintillation and was used to 

calculate the total signal remaining in the blood. A Microsoft Excel Add-In called PKSolver 

[14] was used for the pharmacokinetic analysis. In a separate experiment, H460 or 

UMUC3/3T3 tumor-bearing mice were injected with a therapeutic dose of 177Lu-LCP or 

free 177LuCl3. Twenty four h after injection, the mice were sacrificed and their organs were 

dissected and read for 177Lu activity.

2.4: SPECT and Cerenkov Imaging

UMUC3/3T3 tumor-bearing nude mice were i.v. injected with 2.5 mCi of 177Lu-LCP or 

free 177LuCl3. Twenty four h later, the mice were imaged using a small animal SPECT/CT 

system (eXplore speCZT, GE Healthcare) at the Small Animal Imaging facility on the UNC 

campus. SPECT Images were taken with the energy window to be set from 188–229 keV to 

receive the main gamma photon from Lu-77 peaked at 208 keV. A mouse slit collimator was 

used to provide whole body imaging with 1.5mm transaxial and 2.5mm axial resolution, and 

a pinhole collimator was used for partial body imaging with higher resolution (1mm 

isotropic resolution). Immediately after SPECT/CT imaging, the mice were taken to an in 

vivo optical imaging system (IVIS-Kinetic, Perkin Elmer) to measure Cerenkov emissions 

generated by 177Lu.

2.5: In Vivo Tumor Inhibition

Six to eight week old nude mice were subcutaneously inoculated with 100ul PBS containing 

5×106 H460 cells or 5×106 UMUC3 cells + 2.5×106 3T3 cells in 25% matrigel (BD matrigel 

matrix high concentration) on the left flank. After 8–12 days, when tumors had reached a 

size of 100–150mm3, mice were given a single injection of PBS (Untreated mice), non-

radioactive (cold) 175Lu-LCP, free radioactive 177LuCl3, or radioactive 177Lu-LCP. Mice 

bearing UMUC3/3T3 tumors received a dose of 200 μCi/mouse and mice bearing H460 

tumors received a dose of 250 μCi/mouse. Mouse weight was measured every 2 days until 

untreated mice reached humane endpoints. Tumor volume was measured with digital 
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calipers and calculated as (L x W x D)/2. n = 5–8. Student’s t-test of the final AUC used for 

statistical analysis.

2.6 Tumor Accumulation

Nude mice bearing s.c. H460 or UMUC3/3T3 tumors were treated with one dose of 250 μCi 

or 200 μCi 177Lu-LCP, respectively, or appropriate controls. The lipid bilayer of the 177Lu-

LCP particles were labeled with the fluorescent small molecule DiI to allow LCP 

measurement in the tumor. Twenty four h after injection, mice were sacrificed and tumors 

were dissected and cut in half. One half was frozen in OCT, sectioned, and mounted for DiI 

Lu-LCP imaging, and the other half was fixed in 4% formalin, embedded in paraffin, and 

sectioned for CD-31 staining (1:100 dilution rabbit primary Ab, Abcam #ab28364; 1:100 

dilution anti-rabbit 647 fluorescent secondary Ab, Cell Signaling #4414) and DAPI 

counterstain.

2.7 Cytotoxicity Studies

One, 2, and 4 days after treatment with 200 μCi 177Lu-LCP or controls, UMUC3/3T3 tumor-

bearing nude mice were sacrificed and their tumors were dissected, fixed, and sectioned in 

paraffin. Adjacent sections were stained for p-H2AX immunofluorescence (1:100 dilution 

Rabbit monoclonal primary Ab, Cell Signaling #9718; 1:100 dilution anti-rabbit 647 

fluorescent secondary Ab, Cell Signaling #4414) and Terminal deoxynucleotidyl transferase 

dUTP nick end labeling (DeadEnd™ Fluorometric TUNEL System, Promega) with DAPI 

counterstains.

2.8 Microenvironment Studies

Nude mice were inoculated with UMUC3/3T3-GFP (fluorescent) tumors using the same cell 

numbers reported above. When tumors reached ~400 mm3, mice were treated with 200 μCi 

of fluorescently labeled DiI-177Lu-LCP or controls. After 2 days, mice were sacrificed and 

their tumors were dissected and prepared for freezing in OCT via a 2-h fixation in 4% 

formalin followed by overnight incubation in a 30% sucrose solution at 4°C. The frozen 

tumors were sectioned and imaged with DAPI counterstain to measure GFP and DiI 

distribution. DiI distribution was quantified using Matlab.

Separate nude mice were inoculated with UMUC3/3T3 (nonfluorescent) tumors. When 

tumors reached ~300 mm3, mice were treated with 200 μCi of 177Lu-LCP or controls. Four 

days after treatment, the tumors were dissected, fixed, and sectioned in paraffin. Adjacent 

sections were trichrome stained and stained for α-SMA immunofluorescence (1:100 dilution 

Rabbit monoclonal primary Ab, Abcam #ab5694; 1:100 dilution anti-rabbit 647 fluorescent 

secondary Ab, Cell Signaling #4414) with DAPI counterstain. The stained sections were 

digitally scanned using the Aperio Scanscope at the University of North Carolina-Chapel 

Hill’s Translational Pathology Lab. Quantitative analysis was performed on Imagescope and 

ImageJ software.

2.9: Toxicity Studies

Nude mice and CD-1 mice were treated with 250 μCi of 177Lu-LCP or appropriate controls 

and were sacrificed 12 days after treatment. Blood and organs were dissected. Serum levels 
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of AST, ALT, BUN, and creatinine were measured, and organs were stained with H&E to 

measure any changes in tissue morphology. Whole blood was measured for changes in white 

blood cell count (WBC), hematocrit (HCT), mean cell volume (MCV), red blood cell count 

(RBC), hemoglobin count (HGB), and platelet count (PLT).

Results

3.1: Lu-LCP Fabrication and Characterization

The LCP nanoparticle platform preferentially encapsulates 177Lu in its solid amorphous 

calcium phosphate core during fabrication (Scheme shown in Figure 1A). Just a trace 

amount of 177Lu can be efficiently encapsulated because of lutetium’s much lower solubility 

with phosphate (ksp = 2×10−25) [15] when compared to calcium’s solubility with phosphate 

(ksp = 1×10−7). The fabrication protocol for 177Lu-LCP was modified [6, 11] from previous 

publications to maximize 177Lu encapsulation efficiency (EE) at approximately 70%, with 

the majority of the loss occurring during washing and purification. Particles were measured 

via dynamic light scattering to have a diameter of 36 ± 9 nm and a polydispersity index of 

0.27 ± 0.05, with a zeta potential of −6.7 ± 3.5 mV after separating the particles from excess 

empty liposomes using sucrose gradient centrifugation (Supplemental Table S1). Particle 

size was corroborated by transmission electron microscopy (Figure 1B–C). Although 

cellular entry is not requisite for 177Lu-LCP to achieve therapeutic effect, because anisamide 

has been proven as an effective targeting ligand against the sigma receptor overexpressed in 

epithelial cancers such as UMUC3 and H460 [12, 13], and because receptor-mediated 

endocytosis draws nanoparticles inside the cell and closer to nuclear DNA, DSPE-PEG-

Anisamide was exclusively used in all Lu-LCP formulations as described in section 2.1 to 

provide the greatest statistical chance for treatment efficacy.

3.2: Loading Capacity

Preferential loading of 177Lu allows 177Lu-LCP to be fabricated with a very high 

radioisotope concentration, consequently allowing very high drug loading in a particle that is 

still overwhelmingly comprised of calcium phosphate. Figure 2 and Table 1 show that the 

drug loading window in equivalent-sized batches of LCP core spans across several orders of 

magnitude without affecting the 177Lu encapsulation efficiency and not requiring a change 

in any other input parameters. Additionally, the LCP morphology remains unchanged up to a 

Lu:Ca input ratio of 1:1000 (Figure 3A–F), above which the Lu starts becoming a structural 

component of the LCP, as measured by EDS (Figure 3G), which introduces heterogeneity to 

the formulation. As Lu:Ca is increased to 1:1, Lu forces out nearly all Ca from the LCP to 

form cores of LuPO4, but the total dose of heavy metal per particle is undesirable due to its 

inherent toxicity. These data suggest that the maximum Lu:Ca input ratio that maintains 

desirable encapsulation and morphology is 1:1000. At this input ratio, ~24 mCi of 177Lu—

enough to treat over 100 mice—can be encapsulated in a batch size of only 3.2 total mL of 

oil phase. Considering that it is not uncommon for other types of LCP formulations to be 

synthesized in batches of 120ml or more for small mouse studies, one can understand how 

Lu-LCP is able to avoid scale-up complications generally associated with nanoparticles. 

Moreover, a very small mass of total lutetium—approximately 70 pmol/mouse, or 6×10−4 

mg/kg—is used here to achieve therapeutic effect. This low total dose is important in 
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minimizing heavy metal-mediated toxicity. Combined, the high drug loading window and 

low total mass of lutetium in 177Lu-LCP minimize batch size and toxicity while 

subsequently allowing the treatment of a large number of animals per batch.

3.3: Pharmacokinetics and Biodistribution

The pharmacokinetics and biodistribution of 177Lu-LCP were determined in tumor-bearing 

nude mice. A two-compartment model [14] was used to calculate the clearance half-lives, 

which were 0.52 h for the distribution half-life, t1/2α, and 7.28 h for the elimination half-life, 

t1/2β, as shown in Figure 4A. Pharmacokinetic analysis was also performed for 

free 177LuCl3, which showed nearly 80% blood clearance in the first 30 min after injection 

(Figure S1). It can therefore be concluded that the circulating signal from mice given 177Lu-

LCP is indeed from intact particles. The biodistribution of 177Lu-LCP and free 177Lu in 

tumor-bearing mice is given in Figure 4B. 177Lu-LCP shows significant accumulation in the 

tumor, as well as accumulation in the nanoparticle clearing organs, the liver and spleen, as it 

is too large to clear renally. In contrast, free 177Lu is an ion that is plenty small to clear 

through the kidneys, but also selectively accumulates in the bones, as lanthanide elements 

are known to do [16]. Free 177Lu also shows some kidney accumulation, which may occur 

during the quick renal clearance of the element (Figure 4B).

3.4: SPECT and Cerenkov Imaging

In addition to allowing simple means of detection using gamma scintillation, 177Lu can also 

be used as a SPECT contrast agent, permitting measurement of 177Lu biodistribution and 

tumor accumulation in live mice. Figure 5A–E shows the biodistribution of 177Lu-LCP 24 h 

after injection, including the visible accumulation of 177Lu in the tumor. In contrast, 

free 177LuCl3 does not accumulate in the tumor and therefore tumor accumulation is not 

visible using SPECT/CT imaging (Figure 5F–H).

Interestingly, 177Lu also allows imaging via its β-emissions, which are the same decay 

products (electrons) that induce its therapeutic effect. As the β-particles move through the 

tissue over their average path length of ~250 μm, they induce photon emissions from the 

medium with energies in the visible spectrum. This so-called Cerenkov light was measured 

using an in vivo optical imaging system (Figure 6), also showing tumor uptake of 177Lu-

LCP and corroborating the results obtained during SPECT/CT imaging. Cerenkov imaging 

is a particularly interesting imaging modality because it offers a less expensive and more 

convenient alternative to SPECT that is not generally used in this field. Although its spatial 

resolution and depth of penetration is not as high as SPECT or PET, Cerenkov imaging uses 

less expensive hardware and requires acquisition times of only a few seconds, if the 

radioisotope and dose are adequate.

After imaging was complete, the mouse organs were dissected and their 177Lu signal was 

read using gamma scintillation. These values are shown in Supplementary Table S2.

3.5: In Vivo Tumor Growth Inhibition

To assess the effectiveness of a single treatment of 177Lu, one dose of 177Lu-LCP was 

intravenously injected into two different subcutaneous xenograft tumor models. One of the 
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models was an aggressive stroma-rich human bladder cancer model previously developed by 

our lab. This model uses both UMUC3 bladder cancer cells and NIH-3T3 fibroblasts to 

generate a tumor that has been shown to be more similar to patient bladder cancer than 

UMUC3 tumors alone [17]. As shown in Figure 7A, a single 200 μCi dose of 177Lu-LCP 

showed sustained and significant tumor growth inhibition compared to tumors treated with 

nonradioactive 175Lu-LCP and tumors receiving only free 177LuCl3. 177Lu-LCP was also 

tested on the aggressive and radio-resistant [18] H460 human non-small cell lung cancer 

model; an increased dose of 250 μCi of 177Lu-LCP provided statistically significant tumor 

growth inhibition as shown in Figure 7B. This boosted dose was still low enough to avoid 

changes in mouse body weight (Figure S2), and the accumulated dose over the course of the 

study did not significantly elevate liver/kidney toxicity markers (Table 2).

3.6: Tumor Accumulation

To compare the localization of 177Lu-LCP inside H460 and UMUC3/3T3 tumors, the 

fluorescent small molecule DiI was incorporated into the outer leaflet of the nanoparticle. 

DiI has been widely used in liposomal formulations and as a cell membrane marker, and is 

well known to faithfully remain in the hydrophobic portion of the lipid bilayer [19, 20]. 

Tumor-bearing mice were sacrificed 24h after injection with DiI-labeled 177Lu-LCP, and 

tumor sections were imaged for DiI uptake. Figure S3A shows that the bladder cancer tumor 

has more homogeneous uptake of particles when compared to the H460 lung cancer tumor. 

This could be because the bladder cancer tumors contain more CD-31-positive area than the 

H460 tumors (Figure S3B), corresponding to more vasculature. This could also explain the 

greater tumor accumulation of 177Lu-LCP in the UMUC3/3T3 tumors shown in Figure 4B. 

The UMUC3/3T3 bladder cancer tumor model was therefore chosen for more detailed 

mechanistic analysis.

3.7: Mechanisms of Tumor Growth Inhibition: Cytotoxicity Studies

While many chemotherapeutic therapies and treatments using external radiation require 

multiple doses to generate therapeutic effect, just one dose of 177Lu-LCP provides 

continuous treatment of the tumor as the 177Lu slowly decays, leading to sustained tumor 

growth inhibition for several days. We desired to investigate the mechanisms by which this 

sustained effect occurs, and hypothesized that the cytotoxic β-emissions from 177Lu would 

persistently induce double-stranded DNA breaks. To study this phenomenon, we looked 

further into the stroma-rich bladder cancer tumor model. Mice were sacrificed one, two, and 

four days after treatment with 200 μCi of 177Lu-LCP or appropriate controls. 

Immunofluorescent staining for p-H2AX, a protein that is phosphorylated in response to 

DNA double-stranded breaks [21], showed that the maximum induction of the protein 

occurred two days after treatment and remained elevated even four days after treatment 

(Figure 8A). This DNA damage led to cell death via apoptotic fragmentation of DNA, which 

was most induced four days after treatment as measured through the TUNEL assay (Figure 

8B). This suggests that the cumulative dose of radiation from 177Lu-LCP causes maximum 

DNA damage after ~48 h, and this damage translates to apoptotic cell death shortly 

thereafter. 177Lu-LCP induces significantly higher maximum H2AX phosphorylation and 

cell death than free 177Lu (p<0.05), and the difference in the pattern of cytotoxic effects 

between these two treatments may be due to a difference in pharmacokinetics/dynamics, as 
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free 177Lu quickly clears from circulation and may deposit into the tumor much earlier, 

more transiently, and with a different intratumoral distribution than 177Lu-LCP.

3.8: Mechanisms of Tumor Growth Inhibition: Microenvironment Studies

Changes in the tumor microenvironment were observed as well: Figure 9 shows that a 

diffuse and disordered fibroblast structure was present two days after treatment with 177Lu-

LCP, in contrast to the organized fibroblast structure present in untreated and control-treated 

tumors of the same size (see higher magnification images in Figure 9 D–E). These images 

clearly show that the fibroblasts in untreated tumors can organize into a defined morphology 

to form tumor nests, while those fibroblasts in tumors that have been treated with 177Lu-

LCP are dispersed and without this mature organization. Four days after treatment, the 

disorganized fibroblast structure persisted (Figure 10 A–D), along with changes in the 

collagen structure in the tumor, in which the long swaths of collagen in the untreated tumor 

had been replaced with shorter and more tortuous collagen fibers (Figure 10 E–H). It is 

known that the organized fibroblast structure and more ordered, linearized, and bundled 

collagen fibers present in the untreated tumor are associated with a more mature and 

malignant phenotype, while a disordered fibroblast structure with short, tortuous collagen 

fibers like those of the treated tumor suggest a tumor microenvironment less structurally and 

functionally capable of growth and progression [22–26].

We also desired to measure the intratumoral localization of Lu-LCP. Unlike traditional 

chemotherapeutics that must enter the target cell in order to impart their therapeutic effect, 

internal radiotherapy can damage cells at a distance several cell lengths from the source. β-

particles from 177Lu, for example, have a maximum energy of ~500 keV, allowing an 

average path length in tissue of 200–300 μm [27] and a maximum path length of ~4x that 

value [28]. 177Lu-LCP may then be able to provide therapeutic effect to cells that did not 

take up the particles, which is especially important given the intratumoral heterogeneity of 

nanoparticle delivery in general. We supposed that a majority of cells in a tumor would be 

“in range” for β-particle damage after 177Lu-LCP distribution, but desired to measure the 

intratumoral localization of 177Lu-LCP in order to calculate this important spatial 

relationship between cells and particles. The lipid membrane of the LCPs used in the 

experiment described in Figures 10 and 12 were labeled with fluorescent DiI, and excess DiI 

was purified away using sucrose gradient centrifugation in order to measure the dispersion 

of the particles throughout the tumor. Tumor sections from several areas in different tumors 

were then analyzed to quantify distances between cells and nanoparticles. Figure 11 shows 

that nearly 100% of cells in the field are within just 50 μm of the nearest Lu-LCP, well 

within the average path length of a β particle, even though the only nanoparticles considered 

are those present in that 2-D plane—Lu-LCPs residing in the z-direction would only 

increase the particles in range for a given cell. This substantiates the claim that although not 

all tumor cells have taken up particles, all are susceptible to the delivered therapeutic 

payload.

3.9: Toxicity Studies

To gauge the cumulative toxicity of 177Lu-LCP in mice, we treated healthy 

immunocompromised nude mice and healthy immunocompetent CD-1 mice with a single 
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dose of 250 μCi of 177Lu-LCP, the highest dose used in this study. Mice were sacrificed 12 

days after treatment to assess the cumulative effect of the radiation. At the conclusion of the 

12-day study, mouse organs were dissected and sectioned, serum markers for kidney and 

liver toxicity were measured (ALT, AST, BUN, and creatinine), and whole blood from the 

immunocompetent CD-1 mice was analyzed for changes in white blood cell count (WBC), 

hematocrit (HCT), mean cell volume (MCV), red blood cell count (RBC), hemoglobin count 

(HGB), and platelet count (PLT). These results were compared against appropriate controls 

and against the normal range for these values. Morphologies of kidney, liver, heart, lung, 

skin, and small intestine sections after H&E staining showed no difference from normal 

tissue in nude mice (Figure 12) or in CD-1 mice (Figure S4). Serum markers for renal and 

hepatotoxicity also remained in the normal range in both nude and CD-1 mice (Table 2A–B) 

after treatment. The data do show some well-tolerated side effects as a result of this 

treatment, including differences in spleen morphology as well as a decrease in white blood 

cell and platelet counts outside the normal range. Hematological side effects are common 

during cancer therapy and are easily handled using immune boosters, etc., which were not 

used in this study. None of these side effects translated to a decrease in mouse body weight 

(Figure S2).

Discussion

In this paper, we have described a novel method for systemic internal radiotherapy by 

extending the anticancer application of our LCP platform to include a theranostic 

nanoparticle with high specific drug loading. The preferential uptake of 177Lu into LCP 

allows a huge amount of 177Lu to be encapsulated in a very small batch of particles without 

changing the LCP’s morphology or encapsulation efficiency. The difficulty of nanoparticle 

scale-up that is pervasive throughout this field is therefore eliminated, as a therapeutic dose 

for a mouse or a human can be made on the same benchtop.

The theranostic advantage of radioisotope loading into LCP should also not be 

understated. 177Lu’s γ emissions permitted live in vivo imaging using SPECT to measure 

tumor accumulation of 177Lu-LCP, paving the way for future delivery to orthotopic tumors 

that will represent a more clinically relevant “diagnostic” procedure. The β decay 

from 177Lu also causes significant tumor inhibition via DNA double-stranded breaks while 

simultaneously inducing Cerenkov radiation for imaging. Because therapeutic β-emissions 

are also the imaging contrast agent, Cerenkov imaging is a wonderful example of a 

theranostic application. Compared to SPECT, Cerenkov imaging correctly estimated the 

general biodistribution of 177Lu-LCP at a fraction of the time and cost. This opens up 

opportunity for several applications such as dynamically looking at early stages of 

biodistribution and clearance by taking many images in quick succession. Because the high 

loading of Lu into LCP is broadly applicable to several other polycationic radiometals, such 

as the β-emitter and effective Cerenkov agent 90Y, it is worthwhile to discuss Cerenkov 

imaging as an interesting and useful theranostic application.

As a follow-up to our tumor inhibition data, we were interested in assessing any significant 

changes in the tumor microenvironment as a result of this treatment, and we evaluated these 

changes by measuring the fibroblast and collagen structure in the tumor. The changes in the 
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tumor microenvironment may be explained by looking deeper into how β-radiation causes 

the double-stranded DNA breaks that are shown to be elevated in the treated tumors. 

Generally, β-radiation is classified as having low linear energy transfer (LET); that is, the β-

particles deposit a small fraction of their energy per unit length as they travel along their 

path [28]. In most cases, the DNA damage does not occur via direct interaction between a 

DNA strand and the β-particle itself. In the case of low LET emitters like 177Lu, it is known 

that most DNA damage is caused by an increase in reactive oxygen species (ROS) generated 

as the emitted β-particles interact with and radicalize water molecules along their path. The 

induced ROS then damage DNA and cause single and double-stranded breaks in an “indirect 

radiation effect” [28].

Oxidative stress is known to cause many changes in the cellular and extracellular 

environment, especially in rapidly remodeling tissues like cancer, where actin and collagen 

are just some of the proteins susceptible to oxidative damage [29–33]. Actin is an important 

structural component of cells and is also a structural player in the adherens junctions 

between 3T3 fibroblasts [34]. The cysteine residues on actin are susceptible to oxidative 

damage, and this damage can prevent polymerization, cause depolymerization, and affect 

the organization of actin in cells, potentially restricting the organization of fibroblasts in the 

tumor. Collagen stability is also affected by oxidative damage, as scissions in the collagen 

α-bands can decrease the degradation temperature of the collagen to below body 

temperature and prevent the formation of collagen fibrils [30, 31]. These results suggest that 

cumulative ROS damage may cause the observed changes in the overall in vivo collagen and 

fibroblast structure shown in Figures 10 and 11, prohibiting the dynamic formation of 

bundled collagen and organized fibroblast structures that have been implicated in the 

formation of resistant tumor nests found in more advanced and aggressive tumors.

Tumor growth inhibition via 177Lu-LCP may then occur by taking advantage of both the 

uncontrolled growth and the excessive microenvironment remodeling observed in cancer. 

The low, continuous dose of radiation damages tumor cell DNA that can have fewer active 

repair mechanisms and divide much more rapidly than healthy cells while inhibiting the 

progression of the microenvironment toward malignancy. This allows sustained cancer 

treatment at a dose that preserves the health of the subject.

Part of the beauty of this approach to radioisotope loading is its broad application for many 

trivalent radiometals, such as other therapeutic radionuclides like 90Y or 192Ir, which are 

great candidates for future work in this subject. Combination therapy using a 

radiotherapeutic and a radiosensitizing chemotherapeutic residing in the same LCP particle 

should also be possible, given that many small molecule drugs have previously been 

encapsulated in LCP.

Future work should also investigate whether systemic administration of a radiotherapeutic 

LCP is the most effective dosing method. Macro and micro-dosimetric calculations should 

be used to determine absorbed doses in the mouse and how the distribution of nanoparticles 

necessitates different calculations than doses from an external beam. In one potential local 

delivery scenario, highly loaded 177Lu-LCP, 192Ir-LCP, or 90Y-LCP could be directly 

injected into prostate tumors to create a sort of nano-brachytherapy, in which modified 
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particles would disseminate locally and stably in the prostate but remain out of the systemic 

circulation.

Conclusions

Radionuclide loading into 177Lu-LCP can be increased by several orders of magnitude 

without affecting the 177Lu encapsulation efficiency or LCP morphology, generating a 

nanoparticle with high radioisotope concentration that overcomes scale-up barriers typical of 

nanotherapeutics and minimizes heavy metal-based toxicities. The choice of 177Lu as a 

model radionuclide has allowed in vivo anticancer therapy via DNA damage and 

microenvironment remodeling, in addition to permitting live animal SPECT/CT and 

Cerenkov imaging. As studies in LCP-mediated radionuclide therapy continue, other 

nuclides may be considered, perhaps in combination with chemotherapeutics, for several 

different therapeutic approaches.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AA Anisamide

DOPA 1,2-dioleoyl-sn-glycero-3-phosphate

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DSPE-PEG2000 N-(Carbonyl-methoxypolyethyleneglycol 2000)-1,2-distearoyl-sn-

glycero-3-phosphoethanolamine, sodium salt

EDS Energy-Dispersive X-ray Spectroscopy

EE Encapsulation Efficiency

Ksp Solubility Product Constant

LCP Lipid-Calcium-Phosphate

Lu Lutetium

SPECT Single Photon Emission Computed Tomography

TEM Transmission Electron Microscopy
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Figure 1. 
177Lu-LCP Formulation. A) Schematic depicting general formulation procedure. B) TEM 

image of final 177Lu-LCP. C) TEM image of final 177Lu-LCP with uranyl acetate negative 

stain applied. Scale bar represents 100 nm.
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Figure 2. 
177Lu-LCP encapsulation efficiencies at increasing levels of lutetium. 177Lu EE decrease 

begins around 1:100 Lu:Ca. n = 2–3.
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Figure 3. 
177Lu-LCP morphologies at different Lu:Ca inputs. A–F) TEM images of 177Lu-LCP at 

varying Lu inputs. G) Percent Lu in output 177Lu-LCP based on Lu:Ca inputs, calculated by 

energy dispersive X-ray spectroscopy (EDS). *Lu not detected; negligible small LCP 

population
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Figure 4. 
177Lu-LCP Pharmacokinetics and Biodistribution. A) The PK curve of i.v. injected 177Lu-

LCP fit to a two-compartment model; n = 5. B) Organ BD at t = 24h after i.v. injection 

of 177Lu-LCP or free 177LuCl3; n = 3–4. H460 tumor and UMUC3/3T3 (U/T) tumor were 

subcutaneously inoculated in different mice. *BD of free 177Lu was not tested in H460 

tumor-bearing mice.
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Figure 5. 
SPECT/CT images of nude mouse bearing subcutaneous UMUC3/3T3 tumor on left flank at 

24 h after injection of 177Lu-LCP (Figures 5A–E) or free 177Lu (Figures 5F–H). Mouse slit 

collimator was used for whole body imaging: A) left sagittal, B) coronal, C) midsagittal, F) 

mid-sagittal and G) coronal views. Pinhole collimator was used in D), E), and H) for higher 

resolution axial and left sagittal views. 177Lu-LCP accumulated in tumor, liver, and spleen, 

while free 177Lu accumulated in the bone and kidneys, but not in the tumor.
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Figure 6. 
Images of Cerenkov luminescence in nude mice bearing subcutaneous UMUC3/3T3 tumor 

on left flank. Luminescence image (A) and plain photograph (B) in mouse 24 h after 

injection of 2.5 mCi 177Lu-LCP. Luminescence image (C) and plain photograph (D) in 

mouse 24 h after injection of 2.5 mCi free 177LuCl3. Optical images demonstrated 177Lu-

LCP accumulation in liver, spleen, and tumor, while free 177LuCl3 mainly accumulated in 

the spine. Data was acquired by an IVIS optical system.
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Figure 7. 
In vivo tumor growth inhibition in two subcutaneous xenograft tumor models. 

Nonradioactive 175Lu was loaded into LCP NPs to act as a vehicle control. One dose per 

mouse was delivered intravenously on Day 0 (arrows). A) Human UMUC3 bladder cancer 

supplemented with murine 3T3 fibroblasts. B) Human H460 non-small cell lung cancer. 

Initial tumor sizes ~100–150 mm3; n = 5–8; †p<0.03, ‡p<5e-5, *p<0.015.
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Figure 8. 
Cytotoxicity of 177Lu-LCP in vivo: Mice were treated with 200 μCi of 177Lu-LCP or 

controls and were killed one, two, or four days after administration. Figure panel A shows p-

H2AX-positive cells (red) in UMUC3/3T3 tumor sections with or without DAPI (blue). 

Figure panel B shows TUNEL-positive cells (green) in tumor sections with and without 

DAPI (blue). Sections in Figure panel B are taken from an adjacent section to those 

displayed in Figure Panel A. Five representative fields were quantified for TUNEL or p-

H2AX-positive cells. Images appearing in Figure panels A and B represent the field with the 

third-highest quantification. Average values are shown in Figure C: highest p-H2AX 

upregulation (red) occurred two days after 177Lu-LCP treatment, while highest TUNEL 

induction (green) occurred 4 days after 177Lu-LCP treatment. *p < 0.007; **p < 0.0005 

compared to control. Scale Bar = 100 μm.
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Figure 9. 
UMUC3/3T3-GFP (green) tumor sections, with tumor nests outlined in white. Row A) 

Untreated tumors. Row B) t = 2 days after treatment with cold DiI-175Lu-LCP (red). Row C) 

t = 2 days after treatment with hot DiI-177Lu-LCP (red). Row D) High magnification images 

t = 2 days after treatment with cold DiI-175Lu-LCP (red). Row E) High magnification 

images t = 2 days after treatment with hot DiI-177Lu-LCP (red); disorganized fibroblast 

structure does not allow tumor nest formation. Each row shows representative photographs 

from each group, consisting of several tumors and tumor sections. Scale Bar = 300 μm for 

rows A–C and 50 μm for rows D–E.
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Figure 10. 
Microenvironment structure in UMUC3/3T3 tumor sections t = 4 days after treatment 

with 177Lu-LCP: A–D) Stain for fibroblast marker α-SMA (green) in UMUC3/3T3 tumor 

sections. Figures A and C show α-SMA expression in an untreated tumor and in a tumor at t 

= 4 days after treatment with 177Lu-LCP; scale bars = 200 μm. White dashed boxes are 

zoomed in in Figures B and D; scale bars = 20 μm. E–H) Trichrome stain in tumors that are 

untreated (E) or t = 4 days after treatment (F). Inserts G–H on bottom right have been 

processed to show a more isolated view of the collagen stain. Arrows show the location of 

the region in the insert. Scale bar = 50 μm.
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Figure 11. 
Quantification of DiI distribution at t = 2 days: A) UMUC3/3T3-GFP tumor given 

DiI-177Lu-LCP; scale bar = 500 μm; B) Isolated DiI signal from panel A; C) Heat map 

showing each cell’s distance from its nearest Lu-LCP, where black and blue areas show 

areas of close proximity between cells and particles; D) Quantification of relative cell 

distance from Lu-LCP; n = 1.75×106 cells in 8 sections; n = 4 sections each for 177Lu-LCP 

and 175Lu-LCP.
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Figure 12. 
Healthy nude mouse organs fixed, sectioned, and stained with hematoxylin and eosin 12 

days after treatment with 250 μCi 177Lu-LCP or controls to test cumulative toxicity. Some 

acellular regions (arrow) are visible in spleens treated with 177Lu-LCP. Scale bar = 150 μm.
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