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The protein-coding exome of a patient with a monogenic disease
contains about 20,000 variants, only one or two of which are disease
causing. We found that 58% of rare variants in the protein-coding
exome of the general population are located in only 2% of the genes.
Prompted by this observation, we aimed to develop a gene-level ap-
proach for predicting whether a given human protein-coding gene is
likely to harbor disease-causing mutations. To this end, we derived the
gene damage index (GDI): a genome-wide, gene-level metric of the
mutational damage that has accumulated in the general population.
We found that the GDI was correlated with selective evolutionary
pressure, protein complexity, coding sequence length, and the number
of paralogs. We compared GDI with the leading gene-level ap-
proaches, genic intolerance, and de novo excess, and demonstrated
that GDI performed best for the detection of false positives (i.e., re-
moving exome variants in genes irrelevant to disease), whereas genic
intolerance and de novo excess performed better for the detection of
true positives (i.e., assessing de novo mutations in genes likely to be
disease causing). The GDI server, data, and software are freely avail-
able to noncommercial users from lab.rockefeller.edu/casanova/GDI.

mutational damage | gene-level | gene prioritization | variant
prioritization | next generation sequencing

Germ-line mutations can contribute to the long-term adap-
tation of humans, but at the expense of causing a large

number of genetic diseases (1). The advent of next-generation
sequencing (NGS)-based approaches, including whole-exome se-
quencing (WES), whole-genome sequencing (WGS), and RNA-
Seq, has facilitated the large-scale detection of gene variants at
both the individual and population levels (2–6). In patients suf-
fering from a monogenic disease, at most two variants are disease
causing [true positives (TP)], and the other 20,000 or so protein-
coding exome variants are false positives (FP; type I error). Sev-
eral variant-level metrics predicting the biochemical impact of
DNA mutations (7–9) can be used to prioritize candidate variants
for a phenotype of interest (10, 11). Gene-level metrics aim to
prioritize the genes themselves, providing information that can be
used for the further prioritization of variants. There are currently
fewer gene-level than variant-level computational methods. They
provide complementary information, as it is best to predict the
impact of a variant by also taking into account population genetics
data for its locus. Current gene-level methods include genic in-
tolerance, as measured by the residual variation intolerance score
(RVIS) (12) and de novo excess (DNE) (13). These metrics are
particularly useful for determining whether a given gene (and, by
inference, its variants) is a plausible candidate for involvement in a

particular genetic disease (i.e., for the selection of a short list of
candidate genes and variants, which include the TPs). However,
owing to the large number and diversity of variants, the selection
of a single candidate gene from the NGS data for a given patient
with a specific disease remains challenging.
We reasoned that genes frequently mutated in healthy pop-

ulations would be unlikely to cause inherited and rare diseases,
but would probably make a disproportionate contribution to the
variant calls observed in any given patient. Conversely, mutations
in genes that are never or only rarely mutated under normal
circumstances are more likely to be disease-causing. Leading
gene-level strategies are based on selective pressure (12) and de
novo mutation rate estimates (13). These methods are tailored to
detect genes likely to harbor TPs. However, these methods do
not directly calculate quantitatively the mutational load for hu-
man genes in the general (i.e., “healthy”) population or the
frequencies of mutant alleles. These methods may, therefore, not
be optimal for filtering out highly mutated genes, which are likely
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to harbor many FPs. Moreover, there has been no formal com-
parison of the power of these gene-level methods and their
combinations for maximizing the discovery of FPs and TPs by
NGS. We therefore aimed to generate a robust metric of the
cumulative mutational damage to each human protein-coding
gene, to make it easier to distinguish the FP variants harbored by
highly damaged genes (e.g., under relaxed constraint or positive
selection) from potential candidate genes and variants, including
the TPs. By damaged genes, we refer to genes displaying many
nonsynonymous mutations, which are not necessarily damaging
biochemically or evolutionarily. We developed the gene damage
index (GDI), which defines, in silico, the mutational damage
accumulated by each protein-coding human gene in the general
population, and reflecting the combined influences of drifts and
selections. We then tested this approach with the WES data for
84 patients in our in-house database, each of these patients
having a known primary immunodeficiency (PID). Finally, we
used receiver operating characteristic (ROC) curves for formal
comparisons of performance between GDI and the existing
gene-level RVIS and DNE approaches, and to assess the power
of the gene-level methods for detecting enrichment in de novo
mutations in cases versus controls. We also tested whether these
methods could act in synergy to filter out FPs and select TPs.

Results
Genes Found to Be Highly Mutated in Patients with Monogenic
Diseases. We hypothesized that the genes most frequently mu-
tated in the general population would also probably be the genes
most frequently mutated in patients with monogenic diseases. They
would therefore be unlikely to cause disease, despite contributing a
large proportion of the variants harbored by patients. As highly
mutated genes form a large proportion of the total number of
variants present in patients, they would also be expected to account
for a large proportion of the FP variants in patients. We therefore
set out to identify a set of highly mutated FP genes from the WES
data derived from 84 patients with monogenic PIDs for whom the
true disease-causing mutation had already been experimentally
validated and reported (1). We used standard variant filtering
methods for rare diseases, retaining only those with a minor allele
frequency (MAF) <0.01 in the 1,000 Genomes Project, together
with missense, nonsense, and frameshift variants (including start-
loss and stop-loss), and in-frame indels and splice variants for which
sequencing quality was high (see Materials and Methods for further
details) (4, 14). We then determined the frequency of the remaining
44,668 variants among the 11,190 genes harboring them. By an
analysis of outliers based on modified Z-score, we identified 496
genes carrying significantly larger numbers of variants than expected
(≥10 per gene). Despite accounting for only 2.42% of all human
protein-coding genes, these 496 genes harbored 58.32% of all of the
rare variants found in patients. An approach that efficiently filters
out highly damaged human genes should therefore efficiently
eliminate a large proportion of the FP variants in patients. We
would expect to obtain similar results with patients suffering from
more common monogenic disorders, because the number of dis-
ease-causing mutations would remain negligible with respect to the
total number of variants in these patients. Fig. S1 shows the pa-
tients’ WES genes scaled by the number of variants they harbor.

The Human GDI. Following up on this observation, we defined the
GDI as the cumulative mutational damage to a given human gene
in the general population (the 1,000 Genomes Project). We chose
to use the combined annotation dependent depletion (CADD)
score as the variant-level damage prediction metric (9), because (i)
it has been shown to be the best method for distinguishing between
deleterious and benign variants and (ii) unlike methods such as
PolyPhen-2 and SIFT, which predict only missense variants (7, 8), it
can be used to assess the impact of most types of variant (9). We
showed an inverse relationship between MAF and the CADD
damage prediction value: rare variants tended to have higher
CADD scores than common variants from the 1,000 Genomes
Project (Fig. S2A). We then compared the performance of four

heuristic gene-level GDI models, with the purpose of maximizing
the differentiation of FPs from TPs (see the section on ROC curves
and the Materials and Methods for further details and equations):
(i) “raw” GDI, calculated for each human gene by first multiplying
each variant’s CADD score by the corresponding variant’s number
of alleles in the 1,000 Genomes Project (a total of 610,160 missense/
nonsense/frameshift/in-frame indels/splice variants, with a MAF <
0.5, from a total of 20,243,313 alleles), then summing up all (CADD
× allele count) products for one gene; (ii) the “CADD-normalized”
gene-level model of accumulated mutational damage, calculated as in
i, with each CADD score divided by the expected (median) CADD
score of a variant with a similar allele frequency (Fig. S2A); (iii) the
observed/expected GDI-normalized GDI model, in which the ob-
served GDI was calculated as in i and then divided by the expected
raw GDI, calculated as in i and using the expected CADD as in ii;
and (iv) the “gene size-normalized”GDI model, calculated as in ref.
1 and divided by the length of the coding sequence (CDS) of the
canonical transcript of the gene. We found that the GDI models
that performed best under a general, autosomal dominant (AD), or
autosomal recessive (AR) mode of inheritance were i and ii, with
model ii outperforming i in all cases, as shown by calculations of the
area under the curve (AUC; Fig. S2 B–D). We therefore used
model ii, representing accumulated mutational damage normalized
by dividing by the expected CADD score for this study. The GDI
scores and their Phred-scaled GDI scores for 19,558 human
protein genes are summarized in Dataset S1, Tab S1.

Definition of the Most and Least Damaged Human Genes. We hy-
pothesized that mutations in the genes most damaged in healthy in-
dividuals are unlikely to be responsible for monogenic diseases,
whereas mutations in the least damaged genes are more likely to be
associated with the most severe monogenic disorders (or, alterna-
tively, would be embryo-lethal). We therefore characterized the
functional attributes of the human genes with the highest and lowest
GDI values. By calculating the outliers from the gene damage data
for all 19,558 protein-coding human genes, we defined the 751 human
genes with the highest GDI values, on the basis of modified Z-score
outliers for GDI. The 977 genes with the lowest GDI values were
defined as those not displaying any nonsynonymous variation in
healthy individuals from the 1,000 Genomes Project (although some
will probably have nonsynonymous variants in larger databases such
as ExAC (exac.broadinstitute.org), or when different annotation
software was used. Owing to the gamma distribution of the data, there
are no trivial statistical outliers at the lower end of the range (Fig. S3).

Characterization of the Most and Least Damaged Genes. We found
that biological proximity, as predicted by the human gene con-
nectome, was greater among high-GDI genes and among low-GDI
genes than for randomly selected human genes (P < 1.0 × 10−5 for
both sets) (15–17). This biological proximity suggests that high-
GDI genes are functionally related to each other, as are low-GDI
genes. We further performed biological ontology and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway functional
enrichment analyses for the human genes with the highest and
lowest GDI values (18–20). We found that the list of genes with the
highest GDI values was strongly enriched in sensory perception
genes (P = 1.00 × 10−23), including, in particular, the genes of the
olfactory receptor superfamily (∼400 protein-coding genes), which
has been shown to be under positive selection constraints in the
human lineage (21, 22). The list of genes with the lowest GDI
values was enriched in ribosome, chemokine signaling, proteasome,
and spliceosome genes, all of which are highly conserved in species
lineages predating the emergence of vertebrates (23–26) (Dataset S1,
Tab S2 and Figs. S4 and S5). The GDI can therefore be considered
to be a surrogate indicator of the relative biological indispensability
(low GDI) or redundancy (high GDI) of a given human gene.

Correlation of GDI with Selective Pressure and Number of Paralogs.
We found that genes with a low GDI tended to be under puri-
fying selection stronger than the median selective pressure acting
on human genes, as ascertained by the estimated McDonald–
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Kreitman neutrality index (NI; P = 1.79 × 10−36), whereas genes
with a high GDI tended to be under less purifying selective
pressure than the median human gene (P = 3.14 × 10−74). These
results are plausible, because CADD score (used here as the
basic metric for GDI calculation) is strongly dependent on
evolutionary conservation (9). We also demonstrated a strong
association between gene damage and the number of paralogs
(27, 28): genes with high GDI had significantly larger numbers of
paralogs than human genes generally (P = 3.96 × 10−11), whereas
genes with low GDI had significantly smaller numbers of paral-
ogs than human genes generally (P = 2.98 × 10−21) (21, 29).
These results lend support to Ohno’s neo/pseudofunctionaliza-
tion hypothesis, according to which, following a gene duplication
event, one copy is freed from evolutionary constraints and can
therefore evolve a new function (or alternatively become a
pseudogene) through the accumulation of mutations (30–32).

Correlation of GDI with Protein Complexity and Coding Sequence
Length. We then investigated the possible association between the
complexity of protein amino acid composition D and GDI. Low D
values are associated with proteins with an amino acid composition
similar to that of the average human protein, whereas high D values
suggest a biased amino acid composition in the protein concerned,
generally a disordered low-complexity protein. We found that genes
with a low GDI had a significantly higher than normal D (i.e., low
complexity, biased amino acid composition with respect to the me-
dian composition of human proteins; P = 2.80 × 10−54), whereas
genes with a high GDI had low D values (i.e., a relatively unbiased
amino acid composition; P = 0.04). These results are consistent with
previous studies reporting a correlation between positive selection
and protein disorder/complexity bias (33, 34). As expected, we found
that genes with a low GDI had significantly shorter CDS than the
median value for all genes (P = 4.19 × 10−152), whereas genes with a
high GDI had significantly longer CDS (P = 5.25 × 10−35).
Overall, these correlations reveal the existence of significant
associations between GDI and various molecular properties of
human genes and proteins.

Genes Carrying FP Variants Have Higher Than Normal GDI. We next
assessed whether the GDI was an appropriate tool for filtering
out genes with abundant FP variants. We first compared the
GDI values of known Mendelian disease-causing genes (TP)
defined by OMIM (35), for which the mode of inheritance was
unambiguous, with those of genes harboring FP variants from
the WES for the 84 PID patients described above. We performed
three types of comparison with account for the different modes
of inheritance and the corresponding candidate variants in pa-
tients: (i) all 1,217 Mendelian disease-causing genes vs. the genes
harboring all 44,668 FP variants in patients; (ii) 375 AD Men-
delian disease-causing genes vs. genes harboring 42,863 hetero-
zygous FP variants in patients; and (iii) 585 AR Mendelian
disease-causing genes vs. genes harboring 1,805 homozygous FP
variants in the patients. We used one gene instance for each gene
containing one or more variants in a patient (for example, a gene
harboring 27 variants in 25 patients under a specific model had
25 instances of its GDI value in the specific analysis). We did not
perform comparisons with X-linked genes, due to overall poor
coverage in the WES data for the patients. We found that, in
each of the three comparisons, the GDI values for genes with
FP variants were significantly higher than those for the corre-
sponding TP OMIM genes, both when comparing TPs with all
FPs (Fig. 1; P < 1.0 × 10−200, P = 2.08 × 10−101, and P = 4.68 ×
10−197 for tests i, ii, and iii, respectively) and then comparing TPs
with FPs for the 58.32% of rare FP variants harbored by the
2.42% most mutated genes (Fig. S6; P < 1.0 × 10−200, P = 7.44 ×
10−92, and P = 3.75 × 10−155 for the above tests i, ii, and iii,
respectively). We did not exclude OMIM genes that were not
validated as disease causing in the specific patients from the FP
sets in any of the tests. We performed bootstrap simulations for
comparisons of TPs and FPs (Fig. 2 and Fig. S7), with random
sampling from the TP set to assess its validity as a predictor. We

confirmed that the GDI of genes containing FPs in the patients
was much higher than the GDI of disease-causing genes, for both
highly mutated genes and for all genes. These results suggested
that the GDI might be useful for filtering out a large proportion
of the variants in genes that are unlikely to be disease causing.

Performance Assessment by ROC Curve Analysis. We assessed the
performance of GDI for differentiating between disease-causing
genes (TP, see above) and non–disease-causing genes (FPs, genes
harboring variants detected in the patients but not responsible for
disease; see above), by formally comparing the GDI with the raw
scores obtained by two state-of-the-art gene-level approaches:
genic intolerance (RVIS) (12) and DNE (13). Briefly, the RVIS
approach ranks human genes in terms of the strength and consis-
tency of the purifying selection acting against functional variation
of the gene, whereas DNE estimates the rate of de novo mutation
on a per-gene basis, globally and per gene set. With the aim of
maximizing performance, we also tested the four possible combi-
nations, GDI+RVIS, GDI+DNE, GDI+RVIS+DNE, and RVIS+
DNE (see Materials and Methods for details regarding the in-
tegration of the methods into single scores). Using ROC curves, we
demonstrated that GDI had the best performance of the three
standalone methods under a general model and under models of
AD or AR inheritance, for comparisons both of TPs with FPs for
the 58.32% FP variants present in the 2.42% most mutated genes,
and of TPs with all FPs (sensitivity and specificity, respectively;
Fig. 3 and Fig. S8; see Dataset S1, Tab S3 for all AUC values).
GDI+RVIS had the best performance of the four combinations of
methods for all modes of inheritance. Of the six conditions tested,
GDI+RVIS also outperformed GDI as a standalone method for
the set of AR variants in frequently mutated genes. This analysis
suggested that GDI and RVIS captured different sets of comple-
mentary information from the population genetics data.

Performance Assessment by Hot Zone Analyses. We then tested the
performance of GDI and the combinations presented above to es-
timate enrichment in de novo mutations hypothesized as damaging

Fig. 1. GDI scores of disease-causing genes and of all of the patients’ genes
with variants. (Left) Violin plots of GDI values for true Mendelian disease-
causing genes (all, AR, and AD). (Right) Violin plots of the corresponding GDI
values (all, homozygous, and heterozygous) for the observed WES variant
data from patients: missense/nonsense/frameshift/in-frame indels/splice
variants in the genes with a MAF < 0.01 and a high sequencing quality, in 84
PID patients with known disease-causing mutations, after removal of the
disease-causing mutation, for all of the patients’ genes.
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in cases vs. controls by the hot zone approach (12, 36, 37). A com-
bination of fixed gene-level and variant-level cutoffs was used to
estimate a variant as a candidate to be damaging (see Materials and
Methods for further details). In this test, RVIS and DNE out-
performed GDI as standalone methods (all combined with a similar
PolyPhen-2 cutoff, P = 2.28 × 10−07, P = 5.41 × 10−10, and P = 5.48 ×
10−05, respectively). Interestingly, the highest overall performance
(P = 2.75 × 10−10) was achieved with the combination of GDI+
RVIS+DNE (Dataset S1, Tab S4). This analysis further suggests
that the three methods capture different sets of complementary
information from the available population genetic data. Altogether,
these results suggest that, among the standalone methods, GDI is
preferable for WES FP detection and filtration, whereas RVIS and
DNE are better for TP detection of enrichment in de novo muta-
tions. Moreover, combinations of these methods can optimize
performance for TP (and potentially FP) detection.

Use of the GDI for Filtering Out False-Positive Variants in PID NGS Data.
We then assessed the utility of the GDI for filtering out FP variants

in theWES data for patients in a specific disease group. We used the
PID disease group described above as a case study (38–40). We first
estimated the GDI cutoff above which a gene is unlikely to be dis-
ease causing (PID causing in this case). For this purpose, we first
summarized all currently known 229 PID genes (39, 40) and esti-
mated their GDI scores (Dataset S1, Tab S5). We then adopted the
standard assumption of experimental biologists that the maximum
tolerable false-negative (FN) rate is 5% (i.e., 5% probability that the
true disease-causing gene would be filtered out if the specific cutoff
were applied). We therefore estimated the 95% CI for the GDI
scores of AD and AR PID genes. The upper limit of this confidence
interval was defined as the GDI cutoff above which a gene was
considered to be a FP (i.e., having a GDI too high for it to be PID
causing), with an estimated FN rate that should be <5%. We were
able to filter out 60.62% of heterozygous variants under a model of
AD inheritance (i.e., using the cutoff based on all AD PID genes),
and 53.30% of homozygous variants under an AR model of in-
heritance (i.e., using the cutoff based on all AR PID genes) in the

Fig. 2. Bootstrapping of GDI values: Mendelian genes vs. variants from patients. Bootstrapping simulation plots of the Mendelian disease-causing genes,
together with the observed GDI values for WES rare variant data (MAF < 0.01) from patients, demonstrating a difference in the densities of the observed and
expected sets. (A) All Mendelian disease-causing genes and all of the patients’ variants. (B) Autosomal recessive disease-causing genes and homozygous
variants from patients. (C) Autosomal dominant disease-causing genes and heterozygous variants from the patients.

Fig. 3. Comparing GDI with state-of-the-art gene-level methods: Mendelian genes vs. rare variants in patients. ROC curve comparisons between GDI and two
state-of-the-art gene-level methods (genic intolerance and de novo excess) and combinations of these methods. (A) All Mendelian disease-causing genes and
all patients’ variants. (B) Autosomal recessive disease-causing genes and homozygous variants from patients. (C) Autosomal dominant disease-causing genes
and heterozygous variants from patients.
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469 most highly mutated genes in patients. The GDI was therefore
highly effective for detecting FP variants of highly mutated genes.

GDI Cutoffs for All, Mendelian, PID, and Cancer Disease-Causing Genes.
Following the same principle as above, we then proposed GDI cut-
offs and estimated FP prediction rates for various diseases (Dataset
S1, Tab S6), including a general hypothetical cutoff generated from
all 3,490 Human GeneMutation Database (HGMD) (41) genes with
strong experimental evidence for disease causality, 1,207 Mendelian
disease-causing genes fromOMIM (all, 375 distinctively AD, and 585
distinctively AR) (35), 229 PID genes (all, 42 distinctively AD, and
168 distinctively AR) (39), and 498 cancer genes (involving both
germ-line and somatic mutations) extracted from the COSMIC
project (all, 120 distinctively recessive, and 360 distinctively domi-
nant) (42). For each human gene, we determined, under the FN
<5% model, a low/medium/high damage prediction for the all/
Mendelian/PID/cancer disease groups and the different modes of
inheritance (Dataset S1, Tab S1). Finally, we suggest that the variant-
and gene-level approaches could be used in synergy to create a
phenotypic impact gradient (Fig. 4, also demonstrated in Fig. S9 for
PID TP/FP differentiation with the hot zone approach using both
CADD and GDI) (12), in which benign variants of highly damaged
genes have the lowest predicted impact, and putatively damaging
variants of genes with low levels of damage are predicted to have the
highest impact.

Discussion
We describe here a genome-wide, population-based metric for mu-
tational damage in all known human protein-coding genes (Dataset
S1, Tab S1). We identified and characterized the most and least
damaged human genes and calculated an associated GDI with var-
ious molecular genetic properties (Dataset S1, Tab S7). We dem-
onstrated that genes highly damaged in the general population are
unlikely to cause monogenic disorders. We suggest that the GDI is
currently the best performing method (at least as a standalone
method) for detecting FPs in patients’NGS data, whereas RVIS and
DNE are better at detecting TPs. The combination of these meth-
ods, particularly for the selection of de novo mutations (TPs), ap-
pears to be synergistic. The three methods thus appear to capture
different and complementary sets of population genetic information.
We calculated the power of the GDI for identifying the abundant FP
alleles unlikely to be responsible for PIDs in the WES data of pa-
tients. We propose GDI cutoff values for different disease groups
under a general model or models of AD or AR inheritance. See lab.
rockefeller.edu/casanova/GDI for programs and an easy-to-use web

server providing GDI and selective pressure predictions for sets
of genes.
One advantage of GDI in particular, and of gene-level metrics

in general, over the more commonly used variant-level metrics is
that GDI information is available for all human genes. By contrast,
damage predictions are not always available for variant-level met-
rics, even with the CADD score, particularly for large insertions/
deletions and copy number variation. Furthermore, although var-
iant-level methods are probably best used for predicting a high
impact of disruptive mutations, GDI is better suited to the pre-
diction of low impact for variants in highly mutated genes. The two
approaches are complementary. Another important and often
neglected issue in the selection of an in silico approach is the FN
rate. This rate should be considered carefully, and we suggest that
5% is a plausible FN rate for determining the cutoffs of GDI (and
other metrics). However, the GDI cutoff could be tailored by the
use of different FN rates (such as 1% or 10%), according to the
nature of the study. Further studies of mutational damage to hu-
man genes should include population-specific analyses, as the GDI
probably varies with ethnic background and the demographic his-
tory of the population (43). It will also be interesting to extend the
GDI to the different isoforms of protein-coding genes (44–46) and
noncoding RNAs (47) and to take regulatory variants into account
(48). Finally, a consideration of copy number variation would also
refine the calculation of the GDI (49). The rigorous study of mu-
tational damage across human genes, at the genome-wide and
population levels, together with other genome-wide approaches
(11, 15, 50, 51), should facilitate studies of human genetics, par-
ticularly for monogenic disorders.

Materials and Methods
A detailed description of the methods applied can be found in SI Materials and
Methods. Briefly, we first annotated all alleles with a global MAF <0.5 in the 1,000
Genomes Project (52, 53). We then attributed a predicted damage impact score, C,
to each variant with CADD (9). We extracted WES data for 84 patients suffering
from PIDs from our in-house database and analyzed in a bioinformatics pipeline
described in our previous WES studies (54). For each human gene, we calculated
GDI with four different models, and each was Phred homogenized.We compared
the performance of GDI with that of state-of-the-art gene-level methods (in-
cluding all possible combinations between the methods) for detecting FP variants
in patients’WES data with ROC curves and AUCs, using TP sets of known disease-
causing genes from OMIM and corresponding FP sets of rare variants from the
WES data for 84 PID patients as above (55, 56). We then estimated the power of
the above methods (as standalone methods and in combination) to detect TPs in
patients (36), identifying a hot zone for each patient and control set separately for
each method and combination. We estimated the selective pressure acting on

Fig. 4. Phenotypic impact predicted by a combination of
variant-level and gene-level approaches. The hypothesis of
combined variant- and gene-level metrics: a benign vari-
ant (variant-level) of a highly damaged gene (gene-level)
would be expected to have the lowest phenotypic impact,
whereas a damaging variant of a gene displaying low levels
of damage would be expected to have the greatest phe-
notypic impact.
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each human gene by the neutrality index (NI) (57–59) at the population level
(1,000 Genomes Project). We identified the outliers of the GDI metric (following a
gamma distribution) with a modified Z-score (60). We determined the statistical
significance of various correlations between GDI and other gene properties and of
GDI signature differences between FPs and TPs by Mood’s median test. We used
the sets of all known Mendelian PID genes (for which information about AD and
AR inheritance was available) to estimate gene-level GDI upper cutoff values,
whereas we used HGMD (41) to extract all known human disease-causing genes.
We determined the GDI cutoff as the upper limit of the 95% CI for the known
disease-causing genes of the disease group (61). We also performed boot-
strapping simulations (1,000 iterations each) by Gaussian kernel density random
sampling (61, 62). We calculated proteins complexity by first extracting the amino
acid sequences corresponding to the proteins (27, 28) and then estimating the
relative amino acid composition complexity using Clark’s distance (63, 64).
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