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Changes in spring and autumn phenology of temperate plants in
recent decades have become iconic bio-indicators of rapid climate
change. These changes have substantial ecological and economic
impacts. However, autumn phenology remains surprisingly little
studied. Although the effects of unfavorable environmental
conditions (e.g., frost, heat, wetness, and drought) on autumn
phenology have been observed for over 60 y, how these factors
interact to influence autumn phenological events remain poorly
understood. Using remotely sensed phenology data from 2001 to
2012, this study identified and quantified significant effects of a
suite of environmental factors on the timing of fall dormancy of
deciduous forest communities in New England, United States.
Cold, frost, and wet conditions, and high heat-stress tended to
induce earlier dormancy of deciduous forests, whereas moderate
heat- and drought-stress delayed dormancy. Deciduous forests in
two eco-regions showed contrasting, nonlinear responses to variation
in these explanatory factors. Based on future climate projection over
two periods (2041–2050 and 2090–2099), later dormancy dates were
predicted in northern areas. However, in coastal areas earlier dormancy
dates were predicted. Our models suggest that besides warming in
climate change, changes in frost and moisture conditions as well as
extreme weather events (e.g., drought- and heat-stress, and flooding),
should also be considered in future predictions of autumn phenology
in temperate deciduous forests. This study improves our understanding
of how multiple environmental variables interact to affect autumn
phenology in temperate deciduous forest ecosystems, and points the
way to building more mechanistic and predictive models.
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Plant phenological shifts in recent decades are iconic bio-indica-
tors of climate change (1–4). These phenological changes in turn

have cascading ecological effects on species demography, biotic in-
teractions, and ecosystem functions (5–8). Whereas mechanisms of
spring phenology (i.e., bud burst, leafing out, and flowering) are well
studied (9–13), fall phenology (i.e., leaf senescence and dormancy,
indicated by visual signals from leaf coloration and leaf drop) re-
mains little studied (14–16). Changes in timing of autumn phenology
play a significant role in growing season length prediction, C and N
cycling, and biotic interactions (8, 17–19). Furthermore, delayed leaf
coloration and more muted autumn foliage in response to climate
change will likely significantly affect the multibillion dollar fall foliage
ecotourism industry (20–22). Although delayed leaf coloration and
leaf drop in deciduous forests have been observed across the
northern hemisphere in recent decades (14, 23, 24), the full range of
environmental triggers and how they influence fall phenological
changes now or in the future remain poorly understood.
Autumn phenology of deciduous woody plant species in temperate

regions is the timing of the developmental stages of leaf senescence
and dormancy. Plant physiologists demark leaf senescence beginning
with onset of leaf coloration, and dormancy with leaf drop and the
development of dormant apical meristems (25, 26). As detected by
remotely sensed satellite images, autumn phenology dates describe
the timing of loss of leaf greenness. Leaf senescence dates correspond

to when greenness starts to decrease (i.e., onset of leaf coloration)
and dormancy dates occur when greenness reaches a minimum value
(brown leaves with leaf drop) (27) (SI Appendix, Figs. S1 and S2).
Currently, most studies consider short day length and low tempera-
ture as the primary or only external triggers of autumn phenology (28,
29). However, over the past 60 y (25, 30, 31), researchers studying the
physiology of leaf senescence and dormancy have enumerated a
range of other environmental conditions that may influence autumn
phenology, including frost, moisture conditions, and extreme weather
events (e.g., drought- and heat-stress, and flooding). Although the
effects of a subset of these factors on plant leaf coloration and leaf
drop were reported by a handful of physiological experiments (32,
33), few studies have quantified the response of fall phenology to a
full suite of potential explanatory factors. Ongoing climate changes
are likely to introduce higher frequency and intensity of climatic stress
factors (34), so it is important to include these in developing more
predictive, mechanistic models of fall phenology.
To study landscape-scale forest phenology, we used satellite

remotely sensed autumn dormancy dates of deciduous forests in
New England, United States, from the Moderate Resolution Im-
aging Spectroradiometer (MODIS) data product (27) (SI Appendix,
Fig. S1). Greenness of forest canopy reaches the minimum values at
the dormancy date (27), a proxy for plant fall dormancy (SI Ap-
pendix, Figs. S1 and S2). We examined dormancy dates of de-
ciduous forest communities in two eco-regions (NH, Northeastern
Highlands; NCZ, Northeastern Coastal Zone) from 2001 to 2012
(Figs. 1 and 2). Multiple environmental factors affecting fall forest
dormancy were identified representing spatially and temporally
varying chill and frost-stress, heat-stress, drought-stress, precipitation,

Significance

Autumnal phenological shifts (leaf senescence and dormancy) be-
cause of climate change bring substantial impacts on community
and ecosystem processes (e.g. altered C and N cycling and phe-
nological mismatches) and the fall foliage ecotourism industry.
However, the understanding of the environmental control of au-
tumn phenology has changed little over the past 60 y. We found
that cold, frost, wet, and high heat-stress lead to earlier dormancy
dates across temperate deciduous forest communities, whereas
moderate heat- and drought-stress delayed dormancy. Divergent
future responses of fall dormancy timing were predicted: later for
northern regions and earlier for southern areas. Our findings im-
prove understanding of autumn phenology mechanisms and
suggests complex interactions among environmental conditions
affecting autumn phenology now and in the future.
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and flooding events (Table 1), as well as latitude (a proxy for pho-
toperiod) and elevation. We built models independently using eight
different statistical regression methods [including multiple linear re-
gression, penalized regression methods, Bayesian model averaging
(BMA) (35), and Bayesian spike and slab regression (36)] to select
significant environmental drivers of dormancy dates of deciduous
forest communities, and to assess spatiotemporal responses of dor-
mancy dates to those drivers. By model selection criteria and root
mean square error (RMSE), the best models were selected to predict
future dormancy dates of deciduous forest communities in two 10-y
periods (2040–2050 and 2090–2099) with two greenhouse gas con-
centration scenarios [representative concentration pathway (RCP)
4.5 and RCP 8.5] under future climate change projections (37).

Results
Statistical regressions between fall dormancy dates and the suite
of predictor variables showed that a number of environmental/
weather conditions significantly affect dormancy dates. The different
variable selection methods converged on very similar, best-fit
models with only slightly different values for predictor coefficients
(SI Appendix, Tables S1 and S2). The posterior median model (38)
from the BMA procedure was selected as the best model explaining
deciduous forest dormancy dates in the NH eco-region, and the
multiple linear regression model as the best model in the NCZ eco-
region. Predictors included in the two best models (Table 2) show
that dormancy dates of deciduous forests in New England were
significantly affected by latitude (a proxy for photoperiod), elevation,
plus temperature conditions [cold degree days (CCD), frosts, and
heat-stress], and precipitation [rain days (RD), drought-stress, and
extreme flooding events] summarized from daily data over the course
of the growing season. Deciduous forests at higher latitude and el-
evation showed earlier fall dormancy dates. Generally, cold, wet, or
extremely hot conditions tended to induce earlier dormancy, whereas
moderately hot and dry conditions delayed fall dormancy. Quadratic
terms in the models indicated significant nonlinear relationships
between dormancy dates and frost, drought, and rainfall conditions.
Coefficients in the best models indicate sensitivities of fall

dormancy dates to changes of environmental conditions. Dormancy
dates for the deciduous forest communities in the two eco-regions

showed different sensitivities to environmental variation (Table 2).
We found that deciduous forests in the NH were more sensitive to
changes of latitude (i.e., photoperiod), drought, and summer rain-
fall than the NCZ forests, whereas deciduous forests in the NCZ
were more sensitive to change of elevation, chill-stress, autumn
rainfall, and heavy rain events (Table 2 and SI Appendix, Fig. S3).
The interaction between summer rain and heat in two models
suggested that to some extent summer rain reduced the effect of
heat-stress on forest dormancy dates, especially for NCZ forests.
The variables that were unique to each of the two models

indicate that dormancy dates for deciduous forests in two eco-
regions had different responses to frost, seasonal drought-stress,
and seasonal rainfall conditions (Table 2). Dormancy dates of
NH deciduous forests were influenced by frost in both spring
(earlier) and autumn (nonlinear), whereas dormancy dates
in the NCZ were affected significantly only by autumn frost (ear-
lier). Moreover, the response of dormancy dates in NCZ forests
to frost was also related to elevation; the significant interac-
tion between frost days (FD) and elevation in the model indicated
that the sensitivity of deciduous forests at higher elevation to FD
was smaller than the forests at lower elevation. In terms of drought
effects, dormancy dates in NCZ forests were affected by spring,
summer, and autumn drought-stress (respectively earlier, later, and
later dormancy dates), but dormancy dates in the NH were more
sensitive to summer and autumn drought (later dormancy dates and
nonlinear effects). Although droughts in autumn lead to later dor-
mancy dates in the two eco-regions, the quadratic term (growing
season drought, GDR) GDR(Sep.1–Nov.15)

2 indicates a delaying
effect on dormancy dates in NH forests, but that as drought
continues to increase, dormancy comes earlier.
Precipitation affected fall dormancy dates of deciduous forests in

the NH across the growing season from spring to autumn. For
NCZ forests, dormancy dates were affected by rainfall in summer
(earlier) and autumn (later and with a nonlinear response). More
summer rainfall lead to later dormancy dates in the NH but earlier
dormancy dates in the NCZ; but the quadratic effect of summer
rainfall [RD(Jul.1–Aug.31)

2] in the NH indicates that initially as
rainfall increases, fall dormancy is later but as the rainfall further
increases, dormancy progressively comes earlier. More autumn
rainfall lead to earlier dormancy dates in the NH but later dor-
mancy dates in the NCZ, but given the quadratic coefficient as-
sociated with autumn rainfall in the NCZ [RD(Sep.1–Nov.15)

2],
initially as rainfall increases, dormancy is later, and as this con-
tinues to increase, dormancy comes earlier. Because there are
more heavy rainfall days in autumn in the NCZ, dormancy is
earlier, but with a significant positive quadratic term (heavy rainy
days, ECA) [ECA(Sep.1–Nov.15)

2] there is nonlinearity to this trend.
Predicted fall dormancy dates in the two eco-regions showed

different responses to projected future climate change. Although
later dormancy dates were predicted in the NH, earlier dormancy
dates were predicted for the NCZ (Fig. 3). Dormancy dates in the
NH were predicted to be 0.5 ± 3 d (RCP 4.5) and 1.1 ± 3 d (RCP
8.5) later on average (±SD) for 2041–2050 compared with recent
dates (2001–2010). In contrast, dormancy dates for NCZ forests
were predicted to be 2.6 ± 3 d (RCP 4.5) and 1.3 ± 3 d (RCP 8.5)
earlier on average across the region compared with current
(2001–2010) conditions (first to third rows in Fig. 3). For the two
scenarios in 2090–2099, dormancy dates in the NH were pro-
jected to be further delayed: 1.4 ± 3 d (RCP 4.5) and 3.8 ± 3 d
(RCP 8.5). However, dormancy dates in the NCZ in 2090–2099
were 1.0 ± 3 d earlier (RCP 4.5) and were strongly advanced
(12.2 ± 5 d earlier) under the RCP 8.5 scenario (fourth and fifth
rows in Fig. 3). Across the landscape, dormancy dates of deciduous
forest in northern region occurred earlier than in southern region
over 2001–2012. Similar spatial variation of dormancy dates was
predicted under the RCP 4.5 scenario for the two 10-y periods and
under the RCP 8.5 scenario for the 2041–2050 period (Fig. 4A).
However, the spatial pattern in the late century RCP 8.5 scenario
is projected to be quite different (Fig. 4A, fifth column): the latest
dormancy dates are projected for midlatitude forests and earlier
dormancy is projected for southern latitudes, mirroring northern

Fig. 1. Study area (dashed rectangular box) in New England, United States, cov-
ering the Connecticut River Valley from 41.3 to 45°N, 71.8 to 72.6°W, and parts of
the states of Connecticut (CT), Rhode Island (RI), Massachusetts (MA), New Hamp-
shire (NH), and Vermont (VT). Study area covers two eco-regions, NH and NCZ.
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latitudes. Note that for the NCZ, dormancy dates are projected to
be as much as 20+ days earlier than at present, whereas for the NH
eco-region dormancy dates are projected to be as much as 10+ days
later (Fig. 4B).

Discussion
Autumn phenology determining timing of the end of the growing
season (i.e., dormancy), reflects plant strategic responses to all
environmental stressors during the entire growing season in
maximizing survival (39). Leaf senescence and dormancy result
from the integration of developmental and environmental signals
(40). Developmental signals including hormones and molecular
regulations of growth cessation, bud set, and leaf senescence
leading to dormancy have been identified in studies (30, 40, 41).
However, the controlling environmental factors and how they
interact to affect timing of these events is still unclear. We found
that timing of fall dormancy of deciduous forest communities was
affected not only by temperature, but also by a number of other
environmental conditions over the growing season, including frost
events, heat-stress, rainfall patterns, and drought-stress. Moreover,
our models suggest nonlinear responses of dormancy to these
factors, implying a complex environmental regulation of plant
growth and development. Our findings support the results from
previous studies: regression models with monthly precipitation had
smaller RMSE than CDD-photoperiod models for autumn phe-
nology of selected tree species (28), and summer severe drought
followed by rains in autumn caused delayed leaf senescence of
selected deciduous tree species in Europe in 2013 (42).
At least two possible interpretations relating plant phenolog-

ical responses in the autumn to environmental stresses may be
relevant in interpreting our results. One is viewed as the tradi-
tional explanation for autumnal dormancy in plants, that ar-
resting growth and entering dormancy early avoids unfavorable,
or damaging growing season conditions and facilitates the di-
version of more resources for use in subsequent years, thus
maximizing longer-term fitness (25, 30, 43). This finding explains
negative correlations between dormancy dates and autumnal
CDD, frost, and high heat-stress days (Table 2). An alternative
possibility is that some environmental stressors may actually
delay leaf senescence; a very limited number of studies that have
examined the effects of a range of environmental stressors on fall
phenology support this interpretation. We found that moderate
summer heat-stress, summer and fall drought-stress, and summer
heavy rain events, all lead to later autumn dormancy, counter to
the traditional expectations. Studies on economically important
plants (e.g., apples, soybeans, birch) have shown that under
moderate heat- or water-stress in summer and fall, associated
changes occur in gene-regulated levels of plant hormones and
stress-shock proteins (44–46). The regulatory and physiological
changes not only induce greater drought tolerance in plant leaves
(47), but also prevent drought-induced cell death in leaves (that
would otherwise lead to leaf senescence), and alter photosynthate
source-sink relationships among plant organs (roots, stems, and
leaves). The net result is delayed autumn senescence and dormancy.
This finding suggests a long-term advantage in resource storage and

reallocation for plant growth in the spring. However, this phe-
nomenon has been little studied (45). Few studies have mentioned
either the effects of heat- and drought-stress on fall phenology (45,
48) or the potential role of the underlying molecular and physio-
logical mechanisms (44, 46). We have an ongoing project of ground-
based phenological observations (SI Appendix, Fig. S2A) suggesting
delayed effects from autumn drought on leaf coloration and leaf drop
based on preliminary results. Clearly there is much to be done to fully
elucidate the role that environmental factors, other than simply cold
and frost, have on determining autumnal phenological events, as well
as their underlying gene-regulatory and physiological bases.
We found higher sensitivities to CDD and heat stress for the

southern region (NCZ) than the northern region (NH) of the
study area. These results are similar to previous studies (23, 24)
reporting higher phenological sensitivities of deciduous trees to
temperature change at lower latitudes. However, we also found
the sensitivity of fall dormancy dates to drought was higher in
northern areas than in southern areas. These differences are
likely a result of differences in forest tree species compositions in
two eco-regions. Maples and birches dominate (45% biomass on
average) the north (NH), whereas oaks dominate (35% biomass
on average) the south (NCZ) (SI Appendix, Table S3). With higher
drought tolerance, oaks may show lower sensitivity to drought
stress than maples or birches (49, 50).
The studies that typically only considered projected warming

effects (28, 29) all showed a consistent, progressive delay in the
onset of fall leaf senescence and dormancy under projected climate
change, but our study projected a slightly later dormancy in northern
areas and earlier dormancy in coastal areas, especially under the
RCP 8.5 scenario. Comparing climatic variables between the current
and future periods, we found that lower values for CDD, fewer
frosts, and more moderate heat-stress days in summer, were the
main drivers for delaying dormancy dates in two eco-regions (SI

Table 2. Coefficients of variables in the best models of two eco-
regions (mean value and SD)

Variables
Northeastern
Highlands

Northeastern
Coastal Zone

Latitude −4.255 (0.097) −3.955 (0.151)
Elevation −0.007 (0.0004) −0.017 (0.001)
CDD20(Aug.1–Nov.15) −0.022 (0.001) −0.029 (0.001)
FD(Sep.1–Nov.15) — −0.269 (0.018)
FD(Sep.1–Nov.15)

2 0.004 (0.0003) —

FD(Apr.1-–un.30) −0.059 (0.009) —

HD32(Jul.1–Aug.31) 1.111 (0.076) 1.611 (0.033)
HD35(Jul.1–Aug.31) −0.821 (0.161) −1.706 (0.051)
GDR(May.1–Jun.30) — −0.079 (0.012)
GDR(Jul.1–Aug.31) 0.088 (0.022) 0.050 (0.013)
GDR(Sep.1–Nov.15) 0.755 (0.028) 0.111 (0.009)
GDR(Sep.1–Nov.15)

2 −0.029 (0.002) —

RD(May.1–Jun.30) −0.192 (0.012) —

RD(Jul.1–Aug.31) 0.578 (0.068) −0.099 (0.012)
RD(Jul.1–Aug.31)

2 −0.012 (0.002) —

RD(Sep.1–Nov.15) −0.067 (0.012) 0.743 (0.085)
RD(Sep.1–Nov.15)

2
— −0.019 (0.002)

ECA(May.1–Jun.30) −0.206 (0.025) −0.243 (0.022)
ECA(Jul.1–Aug.31) 0.124 (0.022) 0.372 (0.023)
ECA(Sep.1–Nov.15) 0.286 (0.021) −0.795 (0.064)
ECA(Sep.1–Nov.15)

2
— 0.083 (0.006)

FD(Sep.1–Nov.15) × Elevation — 0.002 (0.0008)
HD32(Jul.1–Aug.31) × RD(Jul.1–Aug.31) −0.058 (0.006) −0.093 (0.002)

All coefficients are significantly different from zero. Tb of CDD is 20 °C, and
HD has two thresholds, 32 °C and 35 °C. The time period calculated for the
variables are shown in subscript in brackets for different seasons (spring: May–
June; summer: July–August; fall: September1–November 15). Positive coeffi-
cients promote later fall dormancy; negative coefficients promote earlier fall
dormancy. Dash indicates variables not included in the best models.

Table 1. Candidates of explanatory variables for dormancy
dates

Name Description

Cold degree day (CDD)
P

(Tb − Ti)
Hot days (HD) No. of days with Tmax ≥ 32 or 35 °C
Frost days (FD) No. of days with Tmin ≤ 0 °C
Growing season drought

(GDR)
No. of events when ≥ 7 consecutive days

without precipitation
Rainy days (RD) No. of days with precipitation ≥ 2 mm
Heavy rainy days (ECA) No. of days with precipitation ≥ 20 mm

Tb: base temperature; Ti: daily mean temperature; Tmax: daily maximum
temperature; Tmin: daily minimum temperature.
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Appendix, Figs. S4 and S5). However, there are also antagonistic
factors operating at the same time that lead to earlier fall dormancy:
that is, in the future higher heat-stress, slightly less drought, and
significant interaction effects between moderate heat-stress and
summer rainfall. The heat-stress effects were stronger than the lower
chill effects in NCZ eco-region, leading to earlier dormancy dates (SI
Appendix, Fig. S5). Although warmer autumn may extend forest
growing season, earlier leaf dormancy can be forced under higher
heat-stress during the summer from climate change. This finding
suggests that multiple impacts from projected climate with more
identified stresses, in addition to warming, will in concert affect
autumn phenology of deciduous forest trees in the future. Recent
studies pointing out the positive correlation between spring and fall
phenology (51, 52), further support our finding that autumn phe-
nology responds to weather spanning the full growing season.

Moreover, these responses will be spatially and temporally complex:
different phenological responses will likely occur in different regions,
given the spatial variation in climate variables across the landscape.
From the variable selection methods, the very slight difference

in predictor coefficients, model selection criteria, and RMSE (SI
Appendix, Tables S1 and S2) suggested that multicollinearity
does not significantly affect model fitting or predictions. RMSE
in model validation (2011–2012) suggested predictive uncer-
tainties were about 14.2 (NH) and 6.7 (NCZ) days (SI Appendix,
Tables S1 and S2), which include data uncertainty in the MODIS
and climate data because of data quality and model uncer-
tainties; this is within the limits of the temporal resolution of
MODIS phenology data summarized at 8-d intervals.
We encourage further investigations on physiological responses

of autumn phenology to multiple environmental stresses, including
interactions among stresses and nonlinear effects, and collecting
long-term datasets across more species, communities, and ecosys-
tems, including field observations and physiological experiments, to
better inform future predictions and narrow model uncertainties.
Species-specific phenological responses also need to be integrated
into forest community phenology models in the future to better
predict individual species- and community- or landscape-level re-
sponses (53). Indeed the bimodality in dormancy responses for the
NH (Fig. 3) may reflect this issue.

Materials and Methods
Study Area. A rectangular area (72.6°W to 71.8°W, 41.3°N to 45°N) was selected
in New England, United States as the study area (Fig. 1). This area covers two
ecological regions: the Northeastern Highlands (NH) and Northeastern Coastal
Zone (NCZ) (archive.epa.gov/wed/ecoregions/web/html/na_eco.html). These two
eco-regions are geographically and ecologically different representing a large
variation of landscape, species composition, and environmental conditions in
deciduous forest communities in New England (SI Appendix, Fig. S6). The NH is a
mountainous area with elevations up to 1,000 m higher than the NCZ, which
comprises coastal plains with hills rising to about 400 m, and overall the NH has a
cooler and wetter climate than the NCZ. For forest tree species composition,
deciduous forests in the NH are dominated by maples and birches, whereas the
NCZ deciduous forest is dominated by oaks (SI Appendix, Table S3).

Data and Processing. The MODIS Land Cover Dynamics (MCD12Q2) product (the
NASA Land Processes Distributed Active Archive Center, US Geological Survey/
Earth ResourcesObservation and Science Center) provides estimates of the timing
of vegetation phenology at regional to global scale based on the remotely sensed
vegetation index summarized at 8-d temporal resolution. The MODIS data
product derives four phenological transition dates (green-up, maturity, senes-
cence, and dormancy) from 2001 to 2012 with a spatial resolution of 500 m (28) (SI
Appendix, Fig. S1). This study focuses on dormancy dates in fall. By using 30-m
resolution land cover data from National Oceanic and Atmospheric Association’s
Coastal Services Center C-CAP 2001 dataset (coast.noaa.gov/dataregistry/search/
collection/info/ccapregional), we extracted MODIS pixels corresponding to de-
ciduous forest in the study area. The percentage of deciduous forest cover in each
MODIS grid cell was calculated by combining land cover and phenology data.
MODIS pixels with at least 75% deciduous forests were retained for analysis. We

Fig. 3. Histogram of 10-y averaged dormancy dates in three 10-y periods (current:
2001–2010, and projected future: 2041–2050, 2090–2099) with two climate change
projection scenarios (RCP 4.5 and RCP 8.5) across the two eco-regions (NCZ andNH).
Dashed lines and numbers indicate mean values of predicted dormancy dates.

Fig. 2. Dormancy dates (day of year) for deciduous
forests across study area from 2001 to 2012. Small
values (blue pixels) indicate early dormancy dates
and large values (orange pixels) indicate late dormancy
dates. Black lines are state boundaries (Connecticut at
the bottom, Massachusetts next, then Vermont upper
left, and New Hampshire upper right). White areas
indicate nondeciduous forest area; see also study area
shown in Fig. 1.
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removed outliers from the analyses that showed dormancy occurring before
Julian day 244 (September 1 or August 31) or after Julian day 360 (December 26
or 25). These outliers are less than 1% of the MODIS phenology data in the de-
ciduous forest region, and are likely because of subpixel patches of agricultural
fields being plowed, forest patches being defoliated or harvested, or the occur-
rence of grassy areas that remain green well into the winter. The final phenology
data set included about 9,500 grid cells for each year for two eco-regions. Digital
elevation data (srtm.csi.cgiar.org/) with a spatial resolution of 90 m were aggre-
gated to generate elevation data for the 500-m MODIS grid cells.

We used gridded daily weather data from 2001 to 2012 obtained from PRISM
climate group to develop the explanatory weather variables. The data included
daily mean, maximum, and minimum temperature and daily precipitation with a
spatial resolution of 4 km (54), which can be used to summarize a broad range of
different weather indices (55). Statistically downscaled climate projection data for
one global climate model (GCM, GFDL-ESM2G) with two future scenarios (RCP 4.5
and RCP 8.5) were obtained from Multivariate Adaptive Constructed Analogs
group for model predictions (37). We used daily maximum and minimum tem-
perature and daily precipitation over two 10-y periods (2041–2050 and 2090–
2099) with a spatial resolution of 4 km, which is comparable to the PRISM data.

To find the relationships between environmental factors and dormancy of
deciduous forests, we first built a list of weather variables of potential environ-
mental conditions thatmay affect fall phenology including cold, frost, heat, rainfall,
drought, and flood events (Table 1 and SI Appendix, Fig. S6). Accumulating CDDs
(28, 56) and decreasing day length that occur in fall have long been considered as
the primary triggers of leaf senescence and dormancy. Because day length does
not have year-to-year variation, we did not investigate the effect of day length
effect; rather this effect is taken into account in the latitudinal variation (57). The
other variables in Table 1 represent environmental/weather stressors potentially
affecting tree performance (55, 58, 59). Plant responses to stresses may differ
depending on when stresses occur in different seasons, and the specific species
involved (56, 60–62). The physiological requirements of trees may also differ in
different phenophases (62, 63). We calculated three sets of weather variables,
growing season drought, rainy days, and heavy rainy days, for three periods (May
1 to June 30, July 1 to August 31, and September 1 to November 15). For CDD, we
examined the effects of three different base temperatures (10°, 15°, and 20 °C)
and starting dates (July 1, August 1, and September 1) to determine which period
of CDD with what base temperature may best explain dormancy timing variation
across the deciduous forest landscape. The end date of CDD was set as November
15, the 90th percentile of dormancy dates in the whole study region. We also used
different threshold temperatures (32° and 35 °C) for hot days and we found hot
days only occurred in July and August in the study area. There was no frost be-
tween June 30 and September 1 in study area, so we only calculated FD for two
periods (April 1 to May 31 and September 1 to November 15), representing spring
and fall growing season frosts.

Statistical Modeling. Datasets from two eco-regions were analyzed separately
because dormancy dates in two eco-regions fall in two different normal

distributions. Data from 2001 to 2010 were used as model training data, and
data from 2011 to 2012 were used in model validation. From initial exploratory
data analyses, we selected one CDD variable with the highest correlation
coefficient with dormancy dates plus other variables with a limited number
of quadratic and interaction terms between predictors for each eco-region in
subsequent analyses. Large number of explanatory variables from a large-scale
dataset with multicollinearity among variables (e.g., correlations between
temperature and latitude, latitude, and elevation) make variable selection and
interpretation quite challenging (64). Thus, in addition to multiple linear re-
gression, we used several complementary statistical methods to select important
predictors explaining variation in dormancy dates. Variable selection methods
include penalized regression methods, BMA (35), and Bayesian spike and slab
regression (36). The penalized regression methods used were: ridge regression
(65), Bayesian Least Absolute Shrinkage and Selection Operator (Bayesian LASSO)
(66), the Elastic Net (67), and Pairwise Absolute Clustering and Sparsity method
(PACS) (68). Penalized regression methods apply penalties to estimate coefficients
with shrinkage effects of driving coefficients to be zero, which can simultaneously
select important variables and estimate coefficients in themodel. PACS and Elastic
Net can especially select groups of correlated variables to deal with multi-
collinearity (67, 68). BMAprovides a coherentmechanism to take account ofmodel
uncertainty by determining the coefficient of each variable using the weighted
average of the parameter’s posterior estimate in each model on the entire model
space (35). To choose a model for future prediction, the model consisting of those
variables that have overall posterior inclusion probability equal to or greater than
0.5 was considered as the optimal predictive model (38); this is termed the “pos-
terior median model” and is easily found in BMA procedures. Bayesian spike and
slab regression used a mixture of “slab distribution” (e.g., normal distribution) and
“spike distribution” (e.g., a probability mass at zero) as a prior distribution to
segregate the variable coefficients to be exactly zero in the induced posterior (36).
Data were analyzed using software R (69) (see SI Appendix for R codes).

The Akaike Information Criterion (AIC) (70), Bayesian Information Criterion
(BIC) (71), and RMSE were used for model selection. Models from all eight
methods were used to predict dormancy dates for 2011–2012 as model valida-
tion. AIC, BIC, and RMSE were calculated for model estimation (2001–2010) and
validation (2011–2012) (SI Appendix, Tables S1 and S2). Best models were se-
lected by smallest AIC, BIC, and RMSE indicating best model fitting and pre-
diction. Based on future climate projection data, dormancy dates of deciduous
forests in two eco-regions were predicted by the best models for two 10-y pe-
riods, 2041–2050 and 2090–2099, with two scenarios (RCP 4.5 and RCP 8.5). We
calculated 10-y average dormancy dates of period, 2001–2010, as a base line, and
then compared these to 10-y averaged dormancy dates in future periods.
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