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The past 20 years have witnessed unprecedented progress in brain–
computer interfaces (BCIs). However, low communication rates re-
main key obstacles to BCI-based communication in humans. This
study presents an electroencephalogram-based BCI speller that can
achieve information transfer rates (ITRs) up to 5.32 bits per second,
the highest ITRs reported in BCI spellers using either noninvasive or
invasive methods. Based on extremely high consistency of frequency
and phase observed between visual flickering signals and the elicited
single-trial steady-state visual evoked potentials, this study devel-
oped a synchronous modulation and demodulation paradigm to
implement the speller. Specifically, this study proposed a new joint
frequency-phase modulation method to tag 40 characters with 0.5-
s-long flickering signals and developed a user-specific target identi-
fication algorithm using individual calibration data. The speller
achieved high ITRs in online spelling tasks. This study demonstrates
that BCIs can provide a truly naturalistic high-speed communication
channel using noninvasively recorded brain activities.

brain–computer interface | electroencephalogram | steady-state visual
evoked potentials | joint frequency-phase modulation

Brain–computer interfaces (BCIs), which can provide a new
communication channel to humans, have received increasing

attention in recent years (1, 2). Among various applications, BCI
spellers (3–9) are especially valuable because they can help pa-
tients with severe motor disabilities (e.g., amyotrophic lateral
sclerosis, stroke, and spinal cord injury) communicate with other
people. Currently, electroencephalogram (EEG) is the most
popular method of implementing BCI spellers due to its non-
invasiveness, simple operation, and relatively low cost. However,
low signal-to-noise ratio (SNR) of the scalp-recorded EEG sig-
nals and lack of computationally efficient solutions in EEG
modeling limit the information transfer rates (ITRs) of EEG-
based BCI spellers to ∼1.0 bits per second (bps) (1, 4). For ex-
ample, the well-known P300 speller proposed by Farwell and
Donchin (5) can spell up to five letters per minute (∼0.5 bps).
Until recently few studies using visual evoked potentials (VEPs)
demonstrated higher ITRs of 1.7–2.4 bps (6, 7). In contrast, the
invasive BCI spellers in humans and monkeys show higher per-
formance. For example, the P300 speller with electrocorticogram
recordings obtained a peak ITR of 1.9 bps in a human subject
(8). A recent monkey study on keyboard neural prosthesis using
multineuron recordings reported an ITR up to 3.5 bps (9). Al-
though communication speed of the EEG-based spellers has
been significantly improved in the past decade (4), it still remains
a key obstacle to real-life applications in humans.
Recently, the BCI speller using steady-state VEPs (SSVEPs)

has attracted increasing attention due to its high communication
rate and little user training (4, 10, 11). An SSVEP speller typi-
cally uses SSVEPs to detect the user’s gaze direction to a target
character (10). Although the SSVEP speller has achieved rela-
tively high ITRs (e.g., 1.7 bps in ref. 6), the ultimate performance
limit still remains unknown. In principle, the theoretical per-
formance limit of the SSVEP speller highly depends on temporal
coding precision in the visual pathway, which can be reflected by

visual latency in SSVEPs [i.e., apparent latency (12)]. Previous
studies show that grand-average SSVEPs can accurately encode
the frequency and phase of the stimulation signals, showing a
constant latency across different stimulation frequencies (12).
However, visual latencies in single-trial SSVEPs, especially when
the stimulation duration is short (e.g., 0.5 s), are generally dif-
ficult to quantify due to the interference from spontaneous EEG
activities. Here we hypothesize that the visual latency of single-
trial SSVEPs, which represent activities of neuronal populations
over the stimulation time, can be very stable across trials. If this
is true, frequency and phase of the stimulation signals can be
precisely encoded in single-trial SSVEPs. Much better perfor-
mance can be expected in the SSVEP speller using a synchro-
nous modulation and demodulation paradigm, which has been
widely used in telecommunications (13).
The goal of this study is to implement a high-speed BCI speller

using SSVEPs. Based on the assumption of a stable visual latency
in single-trial SSVEPs, this study proposed a new joint frequency-
phase modulation (JFPM) method to enhance the discriminability
between SSVEPs with a very narrow frequency range, the most
challenging conditions in frequency coding (10). To address the
difficulty in parameter selection due to nonlinearity [i.e., SSVEP
harmonics (14)], a data-driven grid-search method was developed
to optimize stimulation duration and phase interval in the JFPM
method. Considering individual difference of visual latency in target
identification, this study adopted an improved user-specific decod-
ing algorithm that incorporated individual SSVEP calibration data
in feature extraction. In addition, a filter bank analysis method was
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developed to extract additional features from the harmonic SSVEP
components. Together, these methods resulted in a high-speed BCI
speller (up to 60 characters per minute) in multiple online spelling
tasks. The methodological framework of the proposed high-speed
BCI technology will potentially lead to a truly practical and natu-
ralistic high-speed communication channel for patients with motor
disabilities and healthy people.

Results
Spelling with an SSVEP-Based BCI. The closed-loop BCI speller
consists of three major components: a 5 × 8 stimulation matrix
resembling an alphanumerical keyboard, an EEG recording device,
and a real-time program for target identification and feedback
presentation (Fig. 1A). The system determines the user-attended
target by analyzing the elicited SSVEPs, which encode the fre-
quency and phase information of the target stimulus. The 40
characters in the stimulation matrix are tagged with different
flickering frequencies and phases (Fig. 1B), which are determined
by the joint JFPM method (discussed in detail below). Fig. 1C
shows the procedures of spelling two example characters, “H” and

“I,” consecutively with the system. For each target, the 0.5-s
SSVEP epoch time-locked to the stimulus (with a visual latency τ)
is extracted for target identification with the SSVEP template-
based decoding algorithm (see details in Materials and Methods).
With this configuration, the BCI speller has a spelling rate of 60
characters per minute, which corresponds to an ITR up to 5.32 bps.

Stimulation Signal and Elicited SSVEPs. In this study, the 40 stim-
ulation signals are generated by a sampled sinusoidal stimulation
method based on the monitor’s refresh rate (6). Fig. 2 A and B
show waveforms of the first 1-s stimulation signals and averaged
SSVEPs (the fundamental component) at three selected fre-
quencies (12.2, 12.4, and 12.6 Hz) from an example subject. In
time domain, the real stimulation signals and SSVEPs are both
precisely synchronized to the theoretical stimulation signals. Fig. 2 C
and D illustrate the complex spectra of the stimulation signals and
elicited SSVEPs. As shown in Fig. 2C, the angle of the stimulation
signal in the complex spectra was exactly the same as the initial phase
of each sinusoidal stimulation signal (12.2 Hz: 0.5π, 12.4 Hz: π, and
12.6 Hz: 1.5π). The estimated phase of SSVEPs was highly consistent

Fig. 1. Closed-loop system design of the SSVEP-based BCI speller. (A) System diagram of the BCI speller, which consists of four main procedures: visual stimulation, EEG
recording, real-time data processing, and feedback presentation. The 5 × 8 stimulationmatrix includes the 26 letters of the English alphabet, 10 numbers, and 4 symbols
(i.e., space, comma, period, and backspace). Real-time data analysis recognizes the attended target character through preprocessing, feature extraction, and classifi-
cation. The image of the stimulation matrix was only for illustration. Parameters of the stimulation matrix can be found in Materials and Methods. (B) Frequency and
phase values used for encoding each character in the stimulation matrix. These values are determined by the joint frequency-phase modulation method (Eq. 4). The
frequencies range from 8.0 to 15.8 Hz with an interval of 0.2 Hz. The phase interval between two neighboring frequencies is 0.35π. (C) Examples of spelling characters
“H” (15.0 Hz, 0.25π) and “I” (8.2 Hz, 0.35π) with the BCI speller. An intertrial interval of 0.5 s is used for directing gaze to a target before the stimulation matrix
starts to flash for 0.5 s. The 0.5-s-long EEG epoch with a delay of τ (∼140 ms) to the stimulation is extracted for target identification. The target character can
be determined by the decoding algorithm based on the correlations between the single-trial SSVEP and individual SSVEP templates (details are given in
Materials and Methods).
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with the phase of the stimulation signal (12.2 Hz: 0.53π, 12.4 Hz:
1.00π, and 12.6 Hz: 1.45π; Fig. 2D). These results proved the ro-
bustness of the sampled sinusoidal stimulation method in generating
stimulation signals for both frequency and phase modulation of
SSVEPs. Furthermore, the SSVEPs show nearly constant latencies
across different frequencies, which is consistent with a previous study
(15). The detection of SSVEPs can therefore be implemented using
a synchronous demodulation method.

Fundamental and Harmonic Components of SSVEPs. SSVEPs can be
characterized by sinusoidal-like waveforms at the stimulation
frequency and its harmonic frequencies (12). The advantage of
combining harmonic components in frequency detection has
been demonstrated in previous BCI studies (10, 16). However, a
detailed analysis on the SNR of SSVEP harmonics is still missing
in BCI studies. As shown in Fig. 3A, for an example subject, the
fundamental component showed the highest amplitude in the
mean amplitude spectrum of SSVEPs at 13.8 Hz. The amplitude
of SSVEP components showed a sharp decrease as the response
frequency increased (fundamental: 3.63 μV, second harmonic:
0.94 μV, third harmonic: 0.57 μV, fourth harmonic: 0.34 μV, fifth
harmonic: 0.18 μV, and sixth harmonic: 0.09 μV). Because the
amplitude of background EEG activities also decreased as the
frequency increased, the harmonics showed a much slower decline of
SNRs, compared with the amplitude. As shown in Fig. 3C, the SNRs
of SSVEP components decreased slowly and steadily as the response
frequency increased (fundamental: 22.11 dB, second harmonic:
18.70 dB, third harmonic: 18.89 dB, fourth harmonic: 16.37 dB, fifth
harmonic: 14.74 dB, and sixth harmonic: 11.48 dB). Fig. 3 B and D
show the amplitude and SNR images for all stimulation frequencies
(8–15.8 Hz) as functions of stimulation frequency and response
frequency. For all of the 40 stimulation frequencies, the fundamental
and harmonic frequencies of SSVEPs are exactly the same as those
of the stimulation signals. The SSVEP harmonics at frequencies up
to 90 Hz are clearly visible in the SNR image. This study thus
adopted a filter bank analysis method (17) to extract frequency and
phase information from both the fundamental and harmonic SSVEP
components (details are given in Materials and Methods).

JFPM. To realize a large number of targets, the frequency coding
method in SSVEP-based BCIs typically encodes multiple targets
with equally spaced frequencies (18):

xnðtÞ= sin 2 π½ f0 + ðn− 1ÞΔf �t n= 1, . . . ,N, [1]

where f0 is the lowest frequency, Δf is the frequency interval, n is
the index of the target, and N is the total number of targets.
According to communication technology, to facilitate the detection
of frequency-coded targets, a data length of 1=Δf is required so
that all stimulation signals are orthogonal to each other (13).
Therefore, to implement a frequency-coded system with a large
number of targets, the orthogonality generally requires a long data
length. For example, the 40-target speller developed in the study

Fig. 2. Examples of stimulation signals and elicited SSVEPs at 12.2, 12.4, and
12.6 Hz. (A) Temporal waveforms of stimulation signals (solid lines) using the
sampled sinusoidal stimulation method (6) based on the monitor’s refresh
rate (60 Hz). The dynamic range of the stimulation signal is from 0 to 1,
where 0 represents dark and 1 represents the highest luminance. The initial
phases of the three frequencies are 0.5π, π, and 1.5π, respectively. The dashed
lines indicate the theoretical sinusoidal stimulation signals. (B) Temporal
waveforms of average SSVEPs (solid lines) at electrode O1 from one sample
subject after applying a time delay of 128 ms to the theoretical stimulation
signals (dashed lines). The maximal amplitude of the stimulation signals was
set to 3 μV for illustration. A band-pass filter of [11.5 Hz 13.5 Hz] was applied
to only retain the fundamental frequency component of the SSVEP signals.
The stimulation duration was 5 s in the offline experiment (Materials and
Methods). Only the first second of the stimulation signals and SSVEPs is shown
in A and B. (C) Complex spectral values for real stimulation signals at the three
stimulation frequencies. (D) Complex spectral values for averaged SSVEPs. In
each subfigure in C and D, horizontal and vertical axes (dotted lines) indicate
the real and imaginary parts of the complex spectral data at each specified
frequency (12.2, 12.4, and 12.6 Hz, respectively). Dashed circles indicate spec-
tral values with the maximal amplitude at the specified frequency. The whole
5-s segment was used for calculating the complex spectrum.

Fig. 3. Amplitude spectra and SNRs of fundamental and harmonic SSVEP components. Averaged amplitude spectrum of SSVEPs at (A) 13.8 Hz and (B) all stimulation
frequencies (8–15.8 Hz) for an example subject (S12). For each stimulation frequency, six trials were first averaged for improving the SNR of SSVEPs. The amplitude
spectrumwas calculated by fast Fourier transform. The amplitude of spectrumwas themean of all nine channels. Averaged SNR (in decibels) of SSVEPs at (C) 13.8 Hz and
(D) all stimulation frequencies (8–15.8 Hz). SNR was defined as the ratio of SSVEP amplitude to the mean value of the 10 neighboring frequencies (i.e., five frequencies
on each side). SNR was calculated using the mean amplitude spectrum from A and B. The circles in A and C indicate the fundamental and harmonic frequencies of 13.8
Hz (i.e., 13.8, 27.6, 41.4, 55.2, 69, and 82.8 Hz). In B and D, amplitude spectra and SNRs were depicted as functions of stimulation frequency and response frequency. The
frequency interval in the images was 0.2 Hz. The sudden drop at 50 Hz was caused by the notch filter used for removing power line noise in data recording.
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requires a data length of 5 s (Δf = 0.2 Hz) to meet the orthogonality
condition. However, toward a high ITR, a high-speed BCI speller
can only use a short data length (e.g., 0.5 s) for each target. In this
case, the interference from the spontaneous background EEG ac-
tivities makes it very difficult to recognize SSVEPs with the existing
frequency-detection methods (10).
In Eq. 1, the phase information is ignored in target coding, and

therefore does not provide useful information for frequency
detection. This study proposed to incorporate phase coding into
frequency coding to realize a JFPM paradigm. Specifically, equally
spaced phases are introduced to enhance the differentiation be-
tween frequency-coded targets:

xnðtÞ= sinf2π½f0 + ðn− 1ÞΔf �t+ ½0=0 + ðn− 1ÞΔ0=Þ�g  n= 1, . . . ,N,
[2]

where 0=0 is the initial phase of the target at f0 and Δ0= is the phase
interval between two adjacent frequencies. For a data length less
than 1=Δf , an optimal phase interval Δ0= can maximize the dif-
ferentiation between SSVEP waveforms at the adjacent frequen-
cies and thereby facilitate target identification. In practice, this

study aimed to minimize the correlation coefficient between
SSVEPs at the adjacent frequencies (i.e., toward a negative cor-
relation value of −1).
Fig. 4A illustrates temporal waveforms of the theoretical 1-s

stimulation signals at 12.2, 12.4, and 12.6 Hz using four different
phase interval values (0, 0.5π, π, and 1.5π). Fig. 4B shows cor-
relation coefficients of the stimulation signals between 12.4 Hz
and all 40 stimulation frequencies. The four phase interval values
result in very different correlation patterns across all stimulation
frequencies. The correlation coefficients between 12.4 Hz and its
nearest neighbors (12.2 and 12.6 Hz) differ largely with different
phase interval values (0: 0.75 and 0.75, 0.5π: −0.55 and −0.54, π:
−0.75 and −0.75, and 1.5π: 0.55 and 0.54). These results suggest
that the discriminability of SSVEPs can be significantly improved
by introducing an appropriate phase interval value (e.g., 0.5π or π)
into the stimulation signals. The phase interval of 0.5π also
resulted in negative correlation values at the second-nearest
neighboring frequencies (12.0 Hz: −0.22 and 12.8 Hz: −0.22). In
contrast, positive correlations are obtained at the second-nearest
neighboring frequencies (12.0 Hz: 0.22 and 12.8 Hz: 0.22) when
the phase interval value is π. In practice, the optimal phase interval

Fig. 4. JFPM. (A) Temporal waveforms of 1-s sinusoidal stimulation signals at 12.2, 12.4, and 12.6 Hz corresponding to four different phase interval values (0, 0.5π,
π, and 1.5π). (B) Correlation coefficients between the 12.4-Hz stimulation signal and the stimulation signals at all stimulation frequencies (8–15.8 Hz with
an interval of 0.2 Hz, marked by circles). The dotted lines indicate the stimulation frequency at 12.4 Hz. (C ) Mean correlation coefficient between the
resulting 1-s-long SSVEPs at 12.4 Hz and SSVEP template signals at all stimulation frequencies across trials and subjects. Correlation coefficient was
calculated with the projection of nine-channel SSVEPs using CCA-based spatial filtering. The error bars indicate SDs across subjects. (D) Correlation coefficients
between the stimulation signal at 12.4 Hz and the frequencies from 12 to 12.8 Hz (i.e., 12.4 Hz and four neighboring frequencies). Phase interval values range from
0 to 2π. The markers indicate the phase interval values at 0, 0.5π, π, and 1.5π. Note that the two curves corresponding to the same frequency distance to 12.4 Hz on
both sides (12.2 and 12.6 Hz, 12 and 12.8 Hz) coincide with each other. (E) Correlation coefficients between single-trial SSVEPs at 12.4 Hz and SSVEP template signals
from 12 to 12.8 Hz for one sample subject with four phase interval values (0, 0.5π, π, and 1.5π). The dataset included six trials. The SSVEP template signals were
calculated using a leave-one-out method. The method to generate the data epochs with different phase interval values can be found in Materials and Methods.
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value can be determined through maximizing the BCI perfor-
mance in an offline analysis (the grid-search method, discussed
below). Fig. 4C shows the mean correlation values between 1-s
single-trial SSVEPs at 12.4 Hz and SSVEP template signals (i.e.,
the average of multiple SSVEP trials from a training set; details
are given in Materials and Methods) at all stimulation frequencies
across subjects. The correlation coefficient was calculated with the
projection of nine-channel SSVEPs using canonical correlation
analysis (CCA) (details are given in Materials and Methods). The
patterns of correlation values using SSVEP template signals are
highly consistent with those of the stimulation signals (Fig. 4B).
For example, when using a phase interval value of π, a maximum
correlation value was obtained at the target frequency (12.4 Hz:
0.70). Negative and positive correlation values were obtained at
the first- and second-nearest neighbors, respectively (12.2 Hz:
−0.48, 12.6 Hz: −0.50, 12.0 Hz: 0.21, and 12.8 Hz: 0.21). This
finding applies to single-trial SSVEPs for each individual. The
correlation values of single-trial SSVEPs from one sample subject
(Fig. 4E) are highly consistent with the theoretical patterns cal-
culated from the stimulation signals (Fig. 4D).

Optimization of Phase Interval and Stimulation Duration. The opti-
mization of parameters in the JFPM method should consider the
joint contribution from the fundamental and harmonic SSVEP
components. However, the nonlinear modulations of SSVEP
amplitudes and SNRs pose challenges in finding the theoretically
optimal parameters based on the stimulation signals. To address
this problem, this study developed a practical grid-search ap-
proach to determine phase interval and stimulation duration for
optimizing BCI performance. The same target identification
method used in the online system (details are given in Materials
and Methods) was used to estimate the BCI performance (i.e.,
accuracy and ITR). To simulate SSVEP data corresponding to
different stimulation parameters (i.e., phase interval value and
data length), data epochs were extracted from the 5-s offline data
epochs by adding different time shifts determined by frequency
and phase (details are given in Materials and Methods).
Fig. 5A shows the classification accuracy corresponding to dif-

ferent phase intervals and stimulation durations. The correspond-
ing ITRs are shown in Fig. 5B. The maximal ITR (4.32 bps) was

reached by a stimulation duration of 0.5 s and a phase interval of
0.35π. For a given data length of 0.5 s, the accuracy and ITR were
highly related to the phase interval values (subplots along the left
side in Fig. 5 A and B). For example, the phase interval of 0.35π
significantly improved the classification accuracy compared with
the phase interval of 0 (88.92% vs. 71.04%, paired t test: P < 10−5).
For a given phase interval value of 0.35π, the accuracy increased
when stimulation duration (i.e., data length) increased. The ITR
increased to a peak value at 0.5 s and then decreased. These results
suggest that a 0.5-s stimulation duration and a 0.35π phase interval
value in the JFPM method can lead to high ITRs in a high-speed
BCI speller. These parameters were therefore adopted in the
online BCI speller.

Online Spelling Performance. This study tested the BCI speller using
two online spelling tasks (i.e., cued-spelling and free-spelling tasks;
details are given in Materials and Methods). Table 1 lists the ac-
curacy and ITR for all subjects in the cued-spelling tasks where the
system spelled at a speed of 1 s per character. The average ac-
curacy in the testing session was 91.04 ± 6.73%, resulting in an
ITR of 4.45 ± 0.58 bps across all subjects. Across individuals, the
minimal and maximal ITR was 3.33 bps (S4) and 5.25 bps (S11)
respectively. Paired t tests indicated that there was no signifi-
cant difference in accuracy and ITR between the training stage
and the testing stage (accuracy: 89.76% vs. 91.04%, P = 0.27;
ITR: 4.35 bps vs. 4.45 bps, P = 0.31). The online accuracy and ITR
were slightly higher than those obtained in the offline experiments
(accuracy: 88.92%, ITR: 4.32 bps; Fig. 5). The increase of BCI
performance in the online experiment could be explained in
part by the increase of the number of training trials (12 trials vs.
5 trials).
Table 2 illustrates the results of the free-spelling tasks. After

some practice sessions (∼1 h) for familiarizing with the speller
layout, all subjects successfully completed the free-spelling tasks.
Eleven subjects completed the tasks without errors. One subject
(S8) made seven errors and cleared the errors using “backspace.”
For subjects S2 and S4, the stimulation duration was increased to
1 s to improve the accuracy. For three subjects (S5, S8, and S10),
a 1-s gaze-shifting time was used due to the difficulty in fast gaze
switching reported by these subjects. The mean spelling rate was

Fig. 5. Grid parameter search for optimizing phase interval and stimulation duration. (A) Group-averaged classification accuracy (percent) and (B) ITR (bps) as
functions of stimulation duration and phase interval. The classification results were obtained from the offline simulation (six blocks, leave-one-out analysis) with
the decoding algorithm used in the online system. The stimulation durations range from 0.05 to 1 s with a step of 0.05 s. The phase interval values range from 0 to
1.95π with a step of 0.05π. The contours in A indicate accuracies from 10 to 90%with a step of 10%. The contours in B indicate ITRs from 0.5 to 4.0 bps with a step
of 0.5 bps. The green circle indicates the location with a maximal ITR (ITR: 4.32 bps; accuracy: 88.92%; stimulation duration: 0.5 s; phase interval: 0.35π). Accuracy
and ITR corresponding to the 0.5 s stimulation duration and the 0.35π phase interval (indicated by the arrows) were plotted separately in A and B.
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50.83 ± 11.64 characters per minute (cpm), leading to an ITR of
4.50 ± 1.03 bps (range: 2.66–5.32 bps) across all subjects. There was
no significant difference of ITRs between the cued-spelling and
free-spelling tasks (4.45 bps vs. 4.50 bps, paired t test: P = 0.81).

Discussion
The low communication speed remains the key obstacle of
practical applications of BCI spellers. The present BCI speller
achieved a high spelling speed of 60 cpm in the cued-spelling task
and ∼50 cpm in the free-spelling task. To our knowledge, the
resultant ITRs (cued spelling: 4.45 bps; free spelling: 4.50 bps)
represent the highest ITR reported in BCI spellers (4). For a
direct performance comparison, this study summarizes the ITRs
of online BCI spellers during the past decade (Fig. 6). It is clearly
shown that the study of BCI spellers has become more popular in
recent years and there is a clear trend in increase of ITRs. The
mean ITR of all systems is 0.94 bps. Specifically, the mean ITR
for code-modulated VEP (cVEP)-, SSVEP-, and P300-based systems
is 1.91, 1.44, and 0.29 bps, respectively. Note that the ITR of the
present system shows a multifold increase compared with the pre-
vious SSVEP-based systems (4.45 bps vs. 1.06 bps). The large per-
formance improvement can be attributed to the present stimula-

tion presentation, target coding, and target identification meth-
ods in the synchronous modulation and demodulation paradigm.
Theoretically, the performance of classifying SSVEPs using

frequency-phase coding depends on the precision of the visual
latency in single trials. This study hypothesizes that the visual
latency of single-trial SSVEPs is very stable across trials. How-
ever, the visual latency for single-trial SSVEPs with such a
short duration (i.e., 0.5 s) is difficult to measure due to the
interference from spontaneous EEG activities. To solve this
problem, this study developed a classification-based approach to
estimate the variance of visual latency in single-trials SSVEPs
by measuring the classification performance (details are given
in Materials and Methods). The classification results between
SSVEPs (0.5-s data epochs from the online cued-spelling tasks)
and their time-lagged signals suggest that the mean SD of the
visual latency is 1.7 ms across all subjects (Fig. S1B). The value
for each individual is within 1–2 ms (Fig. S1C). By further con-
sidering an estimated timing error (with an SD of ∼0.6 ms) in
data recording (i.e., synchronization between stimulation and
EEG using event triggers) and the fact that the classification
performance is generally lower than the theoretical maximum,
the real SD of the visual latency in single-trial SSVEPs could be even
smaller. These results suggest that the visual latency in SSVEPs is
very stable across trials during fast BCI operations. Therefore, for
the same stimulus, the elicited SSVEP component in multiple trials
can be considered to exhibit the same frequency and phase.
The present study further suggests a general framework for the

design and implementation of an SSVEP-based BCI. A system-
atic framework for the design of SSVEP-based BCIs is still
missing due to the lack of a computationally efficient model of
single-trial SSVEPs. As shown in Fig. 7, the present study proposed
a framework with three main procedures: benchmark dataset re-
cording, offline system design, and online system implementation.
The offline and online demonstrations in the present study showed
comparable BCI performance (offline: 4.32 bps; online: 4.45 bps),
suggesting a simple and efficient way to design an SSVEP-based
BCI with a benchmark dataset. By adopting the approach in
extracting SSVEP epochs from an offline dataset (Materials and
Methods), various parameters in target coding (e.g., frequency,
phase, and stimulation duration) can be simulated without the re-
quirement of new data recording. The stable visual latency in single-
trial SSVEPs (described above) makes it possible to translate
advanced multiple access methods from the telecommunication
technologies (13) to the SSVEP-based BCI. More importantly,
under this framework, the coding and decoding methods can be
jointly tested so that the decoding methods can be further optimized

Table 1. Classification accuracy and ITR in the cued-spelling
tasks

Subject

Accuracy, % ITR, bps

Training Testing Training Testing

S1 97.71 98.00 5.04 5.07
S2 92.71 87.00 4.56 4.08
S3 97.50 95.50 5.02 4.82
S4 77.08 77.00 3.33 3.33
S5 89.58 89.50 4.29 4.28
S6 86.88 95.00 4.06 4.77
S7 88.33 91.50 4.19 4.45
S8 86.04 87.50 4.00 4.12
S9 99.38 98.50 5.23 5.13
S10 83.33 90.00 3.79 4.32
S11 99.58 99.50 5.26 5.25
S12 78.96 83.50 3.47 3.80
Mean ± SD 89.76 ± 7.77 91.04 ± 6.73 4.35 ± 0.67 4.45 ± 0.58

Each trial lasted 1 s including 0.5 s for stimulation and 0.5 s for gaze
shifting. The training and testing data consisted of 12 blocks and 5 blocks
(40 trials each), respectively. Results of the training data were estimated
using a leave-one-out paradigm.

Table 2. Results of the free-spelling tasks

Subject Trial length, s Total no. of trials (correct/incorrect trials) Spelling rate, cpm ITR, bps

S1 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S2 1.5 (1.0 + 0.5) 42 (42/0) 40 3.55
S3 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S4 1.5 (1.0 + 0.5) 42 (42/0) 40 3.55
S5 1.5 (0.5 + 1.0) 42 (42/0) 40 3.55
S6 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S7 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S8 1.5 (0.5 + 1.0) 56 (49/7) 30 2.66
S9 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S10 1.5 (0.5 + 1.0) 42 (42/0) 40 3.55
S11 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
S12 1.0 (0.5 + 0.5) 42 (42/0) 60 5.32
Mean ± SD — — 50.83 ± 11.64 4.50 ± 1.03

The subjects were asked to input “HIGH SPEED BCI” three times without visual cues (42 characters in total).
“Backspace” was used to remove an incorrect input (subject S8). For trial length, the two values in brackets corre-
spond to stimulation duration and gaze shifting time respectively, which could vary between subjects (i.e., 0.5 or 1 s).
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for different coding methods. The customized stimulation and tar-
get identification methods derived from offline system design can be
easily transferred to operate the online BCI system for practical
applications. By simplifying the system design using offline simula-
tions, this framework can significantly facilitate the design of a new
SSVEP-based BCI.
The present study shows a high-speed BCI speller that can

spell at a speed up to 60 cpm. Note that many of the subjects in
this study were experienced in using the SSVEP-based BCI
speller and familiar with the layout of the targets. The spelling
speed of 1 character per second seems close to the speed limit of
human gaze control. The 0.5-s intertrial interval includes the
visual latency (∼140 ms), online computation time (∼80 ms), and
the time required for gaze switching. However, the stimulation
duration can be further reduced if the classification performance
can be improved. There are several directions to improve the
classification performance. First, the optimization of stimulation
duration (Fig. 5) can be performed separately for each individ-
ual. For example, the highest simulated ITR for single subjects
reached 6.51 bps with a 0.3-s stimulation duration (subject S10,
phase interval: 0.7π). Second, increasing the number of subbands
(e.g., five subbands) in the filter bank analysis can improve the
classification accuracy. Third, the robustness of the SSVEP tem-
plates can be improved by increasing the number of trials in the
training data (19). Fourth, the variation of visual latency in single-
trial SSVEPs could be reduced (e.g., by reducing the timing error
in synchronization). Finally, there is still room for improving the
coding and decoding approaches. The proposed JFPM method,
which uses fixed frequency and phase intervals, proves to be a
simple and efficient way to combine frequency and phase modu-
lation in target coding. However, the combination strategy might
be further improved (e.g., using unfixed frequency and phase in-
tervals). By addressing these problems, the spelling rate of the
present BCI speller could be as fast as 0.8 s per character (e.g.,
stimulation duration: 0.3 s and gaze shifting time: 0.5 s), which
corresponds to a theoretical ITR up to 6.65 bps.
In two recent studies, we demonstrated the prototype systems

of SSVEP-based BCI spellers with ITRs around 2.5 bps (17, 19).
In ref. 17, a filter bank CCA algorithm was developed to imple-
ment a BCI speller based on the frequency coding method. In ref.
19, an offline BCI speller was proposed using a mixed frequency

and phase coding method. Compared with these studies, the pre-
sent study achieved significant improvements in several aspects.
First, the present study implemented a fully closed-loop online
system and achieved much higher ITRs (4.45 bps vs. 2.52 bps in ref.
17 and 2.76 bps in ref. 19) with cued-spelling and free-spelling
tasks. Note that the data length for each trial in the present study
was largely reduced (0.5 s vs. 1.25 s in ref. 17 and 1 s in ref. 19),
whereas the classification accuracy was comparable (91.04% vs.
91.95% in ref. 17 and 91.35% in ref. 19). The new JFPM method
incorporated phase coding into frequency coding, leading to sig-
nificantly enhanced discriminability between very close frequencies.
The efficiency of phase coding was further optimized by a grid-
search approach. In addition, the calibration data-based target
identification method was significantly improved by integrating
filter bank analysis and a new feature of similarity between spatial
filters (Fig. S2). Second, as described above, the present study
proposed a new system framework based on a joint optimization
of coding and decoding methods. This system framework can
significantly facilitate the design and implementation of SSVEP-
based BCIs. Third, the present study further demonstrated that
the visual latency of SSVEPs is stable across trials, providing the
neurophysiological basis for introducing the synchronous modu-
lation and demodulation technique from telecommunications to
BCIs. Together, these important improvements resulted in the
present high-speed BCI speller with record-breaking ITR.
The spelling tasks in this study required fast switching between

different visual targets (i.e., 1 s per character), which might lead
to a high workload in system use. In addition, the training pro-
cedure in the online experiments might also increase the work-
load. The leave-one-out classification of the six offline blocks
(Fig. S3A) and 17 online blocks (Fig. S3B) indicated that the BCI
performance was stable across blocks. There was no clear drop of
classification performance over time. These results suggest that
the workload in the present system is within an acceptable range.
This study demonstrated the visual latency is stable across 17
blocks in the online experiments (Fig. S1C). However, the sta-
bility of visual latency in long-time system use still remains un-
known. Therefore, the feasibility of the high-speed speller in
routine use requires further investigation. To reduce mental
workload, the spelling rate can be adjusted by increasing the
stimulation duration and the gaze switching time. In addition,
more comfortable stimulation parameters [e.g., high-frequency
stimulation above 40 Hz (20)] can be used to reduce visual fatigue.

Fig. 7. A general framework for designing an SSVEP-based BCI. The design
of a new SSVEP BCI can be simplified by three procedures: (i) data collection
for a benchmark dataset with a group of subjects, (ii) offline simulation, and
(iii) online implementation. In this framework, offline simulation plays an im-
portant role in facilitating system design. Both coding and decoding methods
can be jointly evaluated by the offline analysis with the benchmark dataset. The
customized stimulation and target identification methods derived from offline
system design can then be transferred to implement an SSVEP-based BCI system
comprising visual stimulator, brain pathway, and BCI controller.

Fig. 6. Information transfer rates of current BCI spellers. The data points in-
dicate BCI studies characterized by “online” and “speller” from Thomson Reuters
Web of Science and the present study. To emphasize practicality, the studies
without online spelling tasks were not included. The line shows a linear fit for all
data points, indicating a significant increase of ITR during the past decade (P <
0.01, r = 0.53). ”mVEP” indicates motion VEP and ”hybrid” indicates systems
using multiple EEG signals (e.g., SSVEP and P300).
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Furthermore, the calibration time for collecting training data can be
reduced by adopting session-to-session transfer methods (21).
The present high-speed BCI speller requires gaze control.

Conventional eye-tracking approaches have been widely used to
implement visual spellers (22). The reported typing speed of eye-
tracking-based spellers has typically been from 5 to 10 words per
minute. The BCI speller developed in this study achieved a
spelling rate up to 60 cpm (i.e., ∼12 words per minute). This
study therefore demonstrates that the communication speed of
BCI could be comparable to that of eye-tracking systems, pro-
viding an alternative way for gaze tracking. In addition, the BCI
technology can be less restricted by user environment (e.g.,
viewing distance and viewing angle). However, user comfort-
ableness of the SSVEP-based BCIs requires further improve-
ment toward practical applications. Owing to loss of gaze
control, totally locked-in patients cannot use the present speller.
For those patients, visual spellers need to be implemented with
gaze-independent BCIs, which can be operated by covert atten-
tion (23). For SSVEP, a gaze-independent BCI speller can be
realized based on spatial attention (24) and feature attention (25).
The coding and decoding approaches and the system design
framework developed by the present study can still benefit the
design and implementation of an independent SSVEP-based BCI.
For example, the joint frequency and phase modulation method
and the template-based target identification method have poten-
tial to improve the speed and accuracy of attention detection.

Materials and Methods
Participants. Eighteen healthy subjects (10 females, aged 22–29 years, meanage
25 years) with normal or corrected-to-normal vision participated in the ex-
periment. This study designed an offline experiment and an online experiment
using the SSVEP-based BCI speller. Two groups of 12 subjects participated in
the two experiments respectively. Among all subjects, six participated in both
experiments on two different days. Thirteen subjects had experience using the
SSVEP-based BCI speller in previous studies. Five subjects in the online experi-
ments (S3, S5, S6, S7, and S9) were naïve to the BCI speller. Each participant was
asked to read and sign an informed consent form approved by the Research
Ethics Committee of Tsinghua University before the experiment.

Visual Stimulus Presentation. This study used the sampled sinusoidal stimu-
lation method (6) to present visual flickers coded by the proposed JFPM
method on a liquid-crystal display monitor. In general, the stimulus sequence
sðf , 0=, iÞ corresponding to frequency f and phase Ø can be generated by
modulating the luminance of the screen using the following equation:

sðf , 0=,   iÞ= 1
2
f1+ sin½2πfði=RefreshRateÞ+ 0=�g, [3]

where sinðÞ generates a sine wave and i indicates the frame index in the
stimulus sequence. The dynamic range of the stimulation signal is from 0 to
1, where 0 represents dark and 1 represents the highest luminance. Theo-
retically, the stimulation signal at any frequency (up to half of the refresh
rate) and phase can be realized using this method.

BCI Speller. This study designed a 40-target BCI speller using the proposed
JFPM approach. As shown in Fig. 1A, the user interface is a 5 × 8 stimulation
matrix containing 40 characters (26 English alphabet letters, 10 digits, and 4
other symbols). Specifically, 40 targets are tagged with linearly increasing
frequencies and phases, of which the increments are both proportional to
target index. The frequency and phase values for each target in the matrix
can be obtained by

f
�
kx ,ky

�
= f0 +Δf ×

��
ky − 1

�
× 5+ ðkx − 1Þ�

0=
�
kx ,ky

�
= 0=0 +Δ0=×

��
ky − 1

�
×5+ ðkx − 1Þ�, [4]

where kx and ky indicate the row (1–5) and column (1–8) index, respectively.
In this study, f0 and Δf was 8 Hz and 0.2 Hz respectively. For the offline ex-
periment, 0=0 and Δ0= were 0 and 0.5π, respectively. For the online experiment,
ΔØwas set to 0.35π toward high ITRs (Fig. 5B). Fig. 1B illustrates the frequency
and phase values used for each character in the online experiment.

EEG Data Recording. EEG data were acquired using a Synamps2 system
(Neuroscan, Inc.) at a sampling rate of 1,000 Hz. Nine electrodes over parietal
and occipital areas (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, andO2)were used to
record SSVEPs. The reference electrode was placed at the vertex. Electrode
impedances were kept below 10 kΩ. Event triggers generated by the stimulus
program were sent from the parallel port of the computer to the EEG am-
plifier and recorded on an event channel synchronized to the EEG data. In
the online experiment, EEG data and trigger signals were recorded and
analyzed by the online data analysis program in real time. The online data
analysis program was developed under MATLAB (MathWorks, Inc.).

The stimulation matrix was presented on a 23.6-inch liquid-crystal display
screen with a resolution of 1,920 × 1,080 pixels and a refresh rate of 60 Hz.
Each stimulus was rendered within a 140- × 140-pixel square. The character
was presented within a 32- × 32-pixel square at the center of the stimulus.
The vertical and horizontal distances between two neighboring stimuli were
50 pixels. The stimulus program was developed under MATLAB using the
Psychophysics Toolbox Version 3 (26). During the experiment, subjects were
seated in a comfortable chair in a dimly lit soundproof room at a viewing
distance of ∼70 cm from the monitor.

Offline BCI Experiment. The offline experiment consisted of six blocks. Each
block contained 40 trials corresponding to all 40 characters indicated in a
random order. Each trial lasted 6 s. Each trial started with a visual cue (a red
square) indicating a target stimulus. The cue appeared for 0.5 s on the screen.
Subjects were asked to shift their gaze to the target as soon as possible within
the cue duration. Following the cue offset, all stimuli started to flicker on the
screen concurrently and lasted 5 s. After stimulus offset, the screen was blank
for 0.5 s before the next trial began. To facilitate visual fixation, a red triangle
appeared below the flickering target during the stimulation period. In each
block, subjects were asked to avoid eye blinks during the stimulation period.
To avoid visual fatigue, there was a rest for several minutes between two
consecutive blocks.

Online BCI Experiment. In the online experiment, each trial only lasted 1 s
including 0.5 s for visual stimulation and 0.5 s for gaze shifting. The online
experiment was divided into a training stage and a testing stage. The training
stage consisted of 12 blocks, each including 40 trials. The training blocks were
used to derive SSVEP templates and spatial filters for each individual (details
of the target identification method are given below). The testing stage in-
cluded a cued-spelling and a free-spelling task. The cued-spelling task in-
cluded five blocks (40 trials each). The cue for the next target appeared right
after the stimulus offset. Visual and auditory feedbacks were provided to the
subjects in real time. A short beep was sounded after a target was correctly
identified by the online data analysis program. At the same time, the target
character was typed in the text input field on the top of the screen. The free-
spelling task required subjects to input a 14-character sequence (“HIGH
SPEED BCI”) without visual cues. The task was repeated three times for each
subject. The auditory feedback in the cued-spelling task was replaced by a
visual feedback (a red square at the location of the identified target). There
was a 1-min break between two consecutive blocks.

Data Preprocessing. In offline and online experiments, data epochs com-
prising nine-channel SSVEPs were extracted according to event triggers
generated by the stimulus program. Considering a latency delay in the visual
system (27), the data epochs for offline and online experiments were
extracted in [0.14 s 5.14 s] and [0.14 s 0.64 s], respectively (time 0 indicated
stimulus onset). In this study, the 140-ms delay was selected toward the
highest classification accuracy across all subjects. All epochs were first down-
sampled to 250 Hz and then band-pass-filtered from 7 Hz to 70 Hz with an
infinite impulse response (IIR) filter. Zero-phase forward and reverse filtering
was implemented using the filtfilt() function in MATLAB.

CCA-Based Target Identification. CCA has been widely used to detect the
frequency of SSVEPs (28). CCA is a statistical way to measure the underlying
correlation between two multidimensional variables. Considering two multi-
dimensional variable X, Y and their linear combinations x =XTWX and
y =YTWY , CCA finds the weight vectors, WX and WY, which maximize the
correlation between x and y by solving the following problem:

max
WX ,  WY

ρðx, yÞ= E
�
WT

XXY
TWY

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
WT

XXX
TWX

�
E
�
WT

YYY
TWY

�q . [5]

The maximum of ρ with respect to WX and WY is the maximum canonical
correlation. In frequency detection of SSVEPs, X indicates multichannel SSVEPs
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and Y refers to reference signals. To detect the frequency of SSVEPs in an
unsupervised way, sinusoidal signals are used as the reference signals Y f (28):

Y f =

2
66664

sinð2π ftÞ
cosð2π ftÞ

..

.

sinð2πNh ftÞ
cosð2πNh ftÞ

3
77775 , [6]

where f is the stimulation frequency and Nh is the number of harmonics. To
recognize the frequency of SSVEPs, CCA calculates the canonical correlation
between multichannel SSVEPs and the reference signals corresponding to
each stimulation frequency. The frequency of the reference signals with the
maximal correlation is considered as the frequency of SSVEPs.

CCA with Individual Calibration Data. Recently, individual calibration data
have been incorporated into target identification approaches to improve the
performance of SSVEP-based BCIs (29–32). By incorporating individual dif-
ference of SSVEPs in target identification, these methods all achieved signifi-
cantly improved classification performance. This study adopted an improved
SSVEP template-based method to incorporate individual SSVEP calibration
data in target identification (19). Fig. S2B shows the flowchart of the method.
In addition to the standard CCA method, this method combined correlation
analysis between single-trial SSVEPs and SSVEP template signals in feature
extraction. Furthermore, this study proposed a new type of feature that
measured the similarity between CCA-based spatial filters derived from
training and testing data. For the kth target, the training SSVEP template
signals X̂k can be obtained by averaging multiple SSVEP trials in a training set.
Correlation coefficients between projections of test set X and training SSVEP
template signals X̂k using CCA-based spatial filters can be used as features.
Specifically, the following three weight vectors were used as spatial filters to
enhance the SNR of SSVEPs: (i) WX ðXX̂kÞ between test set X and training
SSVEP template signals X̂k, (ii), WX ðXY fk Þ between test set X and sine-cosine
reference signals Y fk , and (iii) WX ðX̂kY fk Þ between training SSVEP template
signals X̂k and sine-cosine reference signals Y fk . The similarity between
WX ðXX̂kÞ and WX̂k

ðXX̂kÞ was indirectly measured by calculating the correla-
tion coefficient between the projections of SSVEP templates (X̂

T
k Þ using the

two spatial filters. For the kth template signal, a correlation vector rk was
defined as follows (Fig. S2B):

rk =

2
66664

rkð1Þ
rkð2Þ
rkð3Þ
rkð4Þ
rkð5Þ

3
77775=

2
6666666664
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, [7]

where ρða,bÞ indicated the correlation coefficient between a and b. In the
standard CCA method, the number of harmonics was set to five to include the
fundamental and harmonic components of SSVEPs. The five correlation values
described in Eq. 7 were combined as the feature for target identification:

ρk =
X5
i=1

signðrkðiÞÞ · ðrkðiÞÞ2, [8]

where signðÞ was used to remain discriminative information from negative
correlation coefficients between test set X and training SSVEP template
signals X̂k. The training SSVEP template signal that maximized the weighted
correlation value was selected as the SSVEP template signal corresponding
to the target.

Filter Bank Analysis. The goal of filter bank analysis (33) is to decompose
SSVEPs into subband components so that independent information em-
bedded in the harmonic components can be extracted more efficiently for
enhancing the detection of SSVEPs. Fig. S2A shows the flowchart of the
proposed method. The filter bank method consists of three major pro-
cedures (17): (i) subband decomposition, (ii) feature extraction for each
subband signal, and (iii) target identification. First, a filter bank analysis
performed subband decompositions with multiple filters that have different
pass bands. The frequency range within [7 Hz 70 Hz] was selected for the
filter bank. This study designed subbands covering multiple harmonic fre-
quency bands with the same high cutoff frequency at the upper-bound fre-
quency of SSVEP components (i.e., the nth subband started from the
frequency at n× 8 Hz and ended at 70 Hz). The band-pass filters for extracting

subband components (XðnÞ,   n= 1,2, . . . ,N) from original EEG signals X were
zero-phase Chebyshev Type I IIR filters. The filtering was implemented using
the filtfilt() function in MATLAB. After the filter bank analysis, the feature
extraction method (Eqs. 7 and 8) was applied to each of the subband com-
ponents separately. A weighted sum of squares of the correlation values
corresponding to all subband components (i.e., ρð1Þk , . . . , ρðNÞk ) was calculated as
the feature for target identification:

~ρk =
XN
n=1

wðnÞ ·
�
ρðnÞk

�2
, [9]

where n was the index of the subband. According to the finding that the
SNR of SSVEP harmonics decreases as the response frequency increases (Fig.
3C), the weights for the subband components were defined as follows:

wðnÞ=n−a +b,n∈ ½1 N�, [10]

where a and b were constants that maximized the classification perfor-
mance. In practice, a and b can be determined with a grid-search method
using an offline analysis. In this study, the value of a and b was set to 1 and
0 respectively. Finally, ~ρk corresponding to all stimulation frequencies (i.e.,
~ρ1, . . . , ~ρ40) was used for determining the frequency of SSVEPs. The frequency
of the reference signals with the maximal ~ρk was considered as the fre-
quency of SSVEPs. The offline analysis indicated that a larger number of
subbands resulted in higher performance. However, to satisfy the requirement
of real-time processing, only two subbands ( [8 Hz 70 Hz] and [16 Hz 70 Hz])
were used in this study.

Simulation of Stimulation Duration and Phase Interval Value. To optimize BCI
performance for the speller, different phase intervals and stimulation du-
rations were used to extract data epochs from the 5-s offline data epochs by
adding different time shifts determined by frequency and phase. For each
stimulation frequency, the 5-s data epochs were first shifted circularly to the
left with a time shift to generate SSVEPs with a zero initial phase:

Xðfk , 0,nÞ=X
	
fk ,∅k ,n+

ð2π −∅kÞ× fs
2π × fk



, [11]

where nwas the index of data sample and fs was the sampling rate. The time
shifts were obtained based on the stimulation frequency and the initial
phase value described in Eq. 4. The zero-phase epochs were further shifted
circularly with a time shift to generate simulated SSVEPs corresponding to
different phase interval values:

X̂ðfk ,∅ k ,nÞ=X
	
fk , 0,n+

∅ k × fs
2π × fk



, [12]

where∅ k was obtained by applying different phase interval (Δ∅) values in Eq. 4.

Performance Evaluation. Classification accuracy and ITR were calculated for
the offline and online experiments separately. Themethod for calculating ITR
(in bits per second) was as follows (1):

ITR=
	
log2M+ Plog2P + ð1− PÞlog2

�
1− P
M− 1

�


T , [13]

where M is the number of classes (i.e., 40 in this study), P is the accuracy of
target identification, and T (seconds per selection) is the average time for a
selection. For the offline experiments, this study used a leave-one-out cross-
validation to estimate simulated online BCI performance. Individual training
SSVEP template signals were obtained from the training data in cross-vali-
dation. To estimate the optimal BCI performance in the offline experiment,
this study calculated accuracy and ITR with different stimulation duration
and phase intervals (Fig. 5). For the online experiment, classification accuracy
and ITR were calculated based on the results obtained from the online data-
analysis program in the testing stage. For the estimation of ITR in offline and
online experiments, the gaze-shifting time was included in the calculation.

Estimation of the SD of Visual Latency in Single-Trial SSVEPs. The variation of
visual latency in single-trial SSVEPs can be measured by phase difference
between different trials. However, the SSVEPs in single trials are typically
interfered by strong spontaneous EEG activities, making it difficult to
measure the phase of SSVEPs directly. This study developed a classification-
based approach to estimate the variation of the visual latency in single-trial
SSVEPs. The basic idea is to estimate the distribution of visual latencies by
quantifying the classification accuracy between SSVEPs and their time-lagged
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signals. Suppose the visual latency follows a normal distribution, binary clas-
sification accuracy between data samples from the distribution and its time-
lagged distributions can reflect the stand deviation of the distribution (Fig.
S1A). The classification accuracy increases when the time lag increases,
resulting in a smaller overlap area between the two distributions. Therefore,
given an accuracy curve with respect to different time lags, the SD of visual
latencies can be estimated. In practice, the accuracy curve can be calculated by
classifying single-trial SSVEPs and their time-lagged signals. This study used the
0.5-s epochs from the cued-spelling tasks (17 blocks in total) and their time-
lagged epochs as the two classes for estimating the classification accuracy (Fig.
S1 B and C). The time lags ranged from 0 to 10 ms. To fully extract the in-
formation of SSVEPs from single trials, the classification approach was the

same as the target identification method used in the BCI speller. Note that the
theoretical classification accuracy should be higher than the estimations due to
the interference from EEG background activities. Therefore, the real SD of
visual latencies in single-trial SSVEPs should be smaller than the estimations.
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