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Detecting meaningful structure in neural activity and connectiv-
ity data is challenging in the presence of hidden nonlinearities,
where traditional eigenvalue-based methods may be misleading.
We introduce a novel approach to matrix analysis, called clique
topology, that extracts features of the data invariant under non-
linear monotone transformations. These features can be used to
detect both random and geometric structure, and depend only on
the relative ordering of matrix entries. We then analyzed the ac-
tivity of pyramidal neurons in rat hippocampus, recorded while
the animal was exploring a 2D environment, and confirmed that
our method is able to detect geometric organization using only the
intrinsic pattern of neural correlations. Remarkably, we found sim-
ilar results during nonspatial behaviors such as wheel running and
rapid eye movement (REM) sleep. This suggests that the geometric
structure of correlations is shaped by the underlying hippocam-
pal circuits and is not merely a consequence of position coding.
We propose that clique topology is a powerful new tool for ma-
trix analysis in biological settings, where the relationship of ob-
served quantities to more meaningful variables is often nonlinear
and unknown.

structure of neural correlation | neural coding | Betti curves |
clique topology | topological data analysis

Neural activity and connectivity data are often presented in the
form of a matrix whose entries, Cij, indicate the strength of

correlation or connectivity between pairs of neurons, cell types, or
imaging voxels. Detecting structure in such a matrix is a critical
step toward understanding the organization and function of the
underlying neural circuits. In this work, we focus on neural activity,
whose structure may reflect the coding properties of neurons,
rather than their physical locations within the brain. For ex-
ample, place cells in rodent hippocampus act as position sen-
sors, exhibiting a high firing rate when the animal’s position lies
inside the neuron’s “place field,” its preferred region of the
spatial environment (1). Without knowledge of the coding prop-
erties, however, it is unclear whether such a geometric organi-
zation could be detected purely from the pattern of neural
correlations. Alternatively, a correlation or connectivity matrix
could be truly unstructured, such as the connectivity pattern ob-
served in the fly olfactory system (2), indicating random network
organization.
Can we distinguish these possibilities, using only the intrinsic

features of the matrix Cij? The most common approach is to use
standard tools from matrix analysis that rely on quantities, such
as eigenvalues, that are invariant under linear change of basis.
This strategy is natural in physics, where meaningful quantities
should be preserved by linear coordinate transformations. In
contrast, measurements in biological settings are often obtained
as nonlinear transformations of the underlying “real” variables,
whereas the choice of basis is meaningful and fixed. For example,
basis elements might represent particular neurons or genes, and
measurements (matrix elements) could consist of pairwise cor-
relations in neural activity, or the coexpression of pairs of genes.
Instead of change of basis, the relevant structure in these data

should be invariant under matrix transformations of the following
form:

Cij = f
�
Aij

�
, [1]

where f is a nonlinear monotonic function (Fig. 1A). In the case of
hippocampal place cells, f captures the manner in which pairwise
correlations Cij decrease with distance between place field centers
(3). In less studied contexts, the represented stimuli—and the
function f—may be completely unknown.
Unfortunately, eigenvalues are not invariant under transforma-

tions of the form (Eq. 1) (Fig. 1B and SI Appendix, Fig. S1).
Although large random matrices have a reliable eigenvalue spec-
trum [e.g., Wigner’s semicircle law (4)], it is possible that a random
matrix with independent and identically distributed (i.i.d.) entries
could be mistaken as structured, purely as an artifact of a monotonic
nonlinearity (Fig. 1B).* The results of eigenvalue-based analyses can
thus be difficult to interpret, and potentially misleading.
Here, we introduce a new tool to reliably detect signatures of

structure and randomness that are invariant under nonlinear
monotone transformations of the form (Eq. 1). Using pairwise
correlations of hippocampal place cells recorded during both spa-
tial and nonspatial behaviors, we demonstrate that our method is
capable of detecting geometric structure from neural activity
alone. To our knowledge, this is the first example of a method
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that detects geometric organization intrinsically from neural activity,
without appealing to external stimuli or receptive fields.

Results
The only feature of a matrix that is preserved under the transfor-
mations (Eq. 1), for monotonically increasing f, is the relative or-
dering of its entries, as Cij <Ckℓ whenever Aij <Akℓ (SI Appendix,
Supplementary Text). We refer to this combinatorial information as
the “order complex,” ordðCÞ. It is convenient to represent the
order complex as a nested sequence of graphs, where each sub-
sequent graph includes an additional edge ðijÞ corresponding to the
next-largest matrix entry Cij (Fig. 1C). Any quantity computed from
the order complex is automatically invariant under the transfor-
mations (Eq. 1), because ordðAÞ= ordðCÞ. We found that the ar-
rangement of “cliques” (all-to-all connected subgraphs) in the
order complex of a matrix can be used in lieu of eigenvalues to
detect random or geometric structure.
“Clique topology” provides a systematic measure of how cliques

fit together and overlap across the entire order complex. The to-
pological structure of cliques in a graph can be quantified by first
“filling in” all cliques, and then counting noncontractible cycles, i.e.,
arrangements of cliques which bound “holes.”Minimal examples of
1-, 2-, and 3-cycles are shown in Fig. 1C (Inset). A 1-cycle bounds a
2D area, a 2-cycle bounds a 3D volume, and a 3-cycle bounds a 4D
region (SI Appendix, Supplementary Text). As the edge density ρ
increases, new cycles are created, modified, and eventually
destroyed (Fig. 1D). One can track these changes by computing a
set of Betti numbers (6, 7), βm, which count the independent m-
cycles in each graph after all cliques have been filled in. The Betti
numbers across all graphs in an order complex yield “Betti curves,”
βmðρÞ (Materials and Methods and SI Appendix, Supplementary Text).

Detection of Random Organization. Although the details of indi-
vidual graphs in the order complex may be sensitive to noise in the
matrix entries, we found that clique topology provides robust sig-
natures that can be used to distinguish structure from randomness.
In the case of a random symmetric matrix with i.i.d. entries, the
corresponding order complex is a sequence of Erd}os–Rényi ran-
dom graphs. We found that the Betti curves βmðρÞ are remarkably

reliable for such matrices (Fig. 1E), and display a characteristic
unimodal shape with peak values that increase with m (m � N).
This reliability has been theoretically predicted (8, 9) and makes it
possible to robustly distinguish random from nonrandom structure
in the presence of a monotone nonlinearity (Eq. 1). Unsurprisingly,
correlation matrices obtained from finite samples of N indepen-
dent random variables display the same characteristic Betti curves
as random symmetric N ×N matrices (SI Appendix, Fig. S2). Note
that computing low-dimensional ðm≤ 3Þ Betti curves for matrices
of size N∼100 is numerically tractable due to recent advances in
computational topology (7, 10, 11).

Detection of Geometric Organization. If a correlation or connectivity
matrix is not random, what kind of structure can one detect?
Uncovering “geometric” structure is especially important in neu-
roscience, because it indicates that neurons encode geometrically
organized stimuli. For example, orientation-tuned neurons (12)
and hippocampal place cells (1) have correlations that decrease
with distance between represented angles or locations in the en-
vironment, respectively. This is easy to see by correlating neural
responses directly to the relevant stimuli. However, it is unclear
whether it is even possible to detect such an organization from
pairwise correlations among neurons alone—without a priori
knowledge of the represented stimulus space. A further difficulty
is to detect geometric organization that is invariant under non-
linear monotone transformations of the matrix entries.
To our surprise, we found that the ordering of matrix entries

encodes geometric features, such as dimension (Fig. 2A). For
larger matrices, the precise dimension may be difficult to discern
in the presence of noise. Nevertheless, the organization of cliques
in the order complex carries signatures of an underlying Euclidean
geometry, irrespective of dimension. For example, the triangle
inequality, kx− zk≤ kx− yk+ ky− zk, implies that if two edges of
a triangle are present in the order complex at some edge density
ρ, there is a higher probability of the third edge also being pre-
sent. Intuitively, this means that cliques in the order complex will
be more prominent for geometric compared with random ma-
trices, and cycles will be comparatively short-lived, as cliques
cause holes to be more readily filled in (13).

A

B

C D

E

Fig. 1. Order-based analysis of symmetric matrices. (A) A symmetric matrix A is related to another matrix C via a nonlinear monotonically increasing function
fðxÞ, applied entrywise. (B, Left) Distribution of eigenvalues for a random symmetric N×N matrix A, whose entries were drawn independently from the
normal distribution with zero mean and variance 1=

ffiffiffiffi
N

p
(N= 500). (Right) Distribution of eigenvalues for the transformed matrix with entries Cij = fðAijÞ, for

fðxÞ= 1− e−30x. Red curves show Wigner’s semicircle distribution with matching mean and variance. (C, Top) The order complex of A is represented as a
sequence of binary adjacency matrices, indexed by the density ρ of nonzero entries. (Bottom) Graphs corresponding to the adjacency matrices. Minimal
examples of a 1-cycle (yellow square), a 2-cycle (red octahedron), and a 3-cycle (blue orthoplex) appear at ρ= 0.1, 0.25, and 0.45, respectively. (D) At edge
density ρ0, there are no cycles. Cliques of size 3 and 4 are depicted with light and dark gray shading. As the edge density increases, a new 1-cycle (yellow) is
created, persists, and is eventually destroyed at densities ρ1, ρ2, and ρ3, respectively. (E) For a distribution of 1,000 random N ×N symmetric matrices (N= 88),
average Betti curves β1ðρÞ, β2ðρÞ, and β3ðρÞ are shown (yellow, red, and blue dashed curves), together with 95% confidence intervals (shaded areas).
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To see whether clique topology can provide reliable signatures
of geometric organization, we computed Betti curves for distri-
butions of geometric matrices (N = 88), generated from random
points uniformly sampled from unit cubes of dimensions
d= 5,10,16,24, and 88, and having entries that decrease with
distance (Materials and Methods). We then computed average
Betti curves β1ðρÞ, β2ðρÞ, and β3ðρÞ for each d, and found that
they are stratified by dimension but retain characteristic fea-
tures that are independent of dimension. In particular, the peak
values of geometric Betti curves are considerably smaller than
those of random symmetric matrices with matching parameters
(p< 0.001), and decrease with increasing m (Fig. 2B). This pattern
remains over the full range of tested dimensions (Fig. 2B, Inset).
We conclude that Betti curves can, in principle, be used to
distinguish geometric from random structure.

Signatures of Intrinsic Geometric Structure in Neural Activity. Can
clique topology be used to detect geometric organization from
pairwise correlations in noisy neural data? To answer this question,
we examined correlations of hippocampal place cells in rodents
during spatial navigation in a 2D open field environment. In this
context, geometric structure is expected due to the existence of spa-
tially localized receptive fields [place fields (1)] but has not previously
been detected intrinsically using only the pattern of correlations.
We computed correlations from spike trains of simultaneously

recorded neurons in area CA1 of dorsal hippocampus (Materials and
Methods). Each pairwise correlation, Cij, was obtained from the
mean of a cross-correlogram on a timescale of τmax = 1 s (SI Appendix,
Supplementary Methods, and Fig. S3). The resulting matrix was then
analyzed using clique topology (Fig. 3A). As expected, the Betti
curves from place cell data were in close agreement to those of
geometric matrices (Fig. 3B, Top), up to a small rightward shift that is
likely due to noise (SI Appendix, Fig. S4A).
Although we found that qualitative geometric structure is robustly

detectable, the precise dimension is sensitive to noise and currently
difficult to estimate, even for low dimensions. For example, a geo-
metric matrix in dimension d= 2 exhibits higher-dimensional nonzero
Betti curves if a fraction of the neurons have nongeometric correla-
tions with the rest (SI Appendix, Fig. S4B). A post hoc analysis of the
recorded place cells showed that 5–10% exhibited nonconvex place
fields; this alone could account for the higher dimensions we ob-
served. On the other hand, Betti curves of d= 2 geometric matrices
with up to 10% of the neurons having random correlations still lie in
the d≤N geometric regime (SI Appendix, Fig. S4B).
We next compared the data Betti curves to shuffled controls,

obtained by randomly permuting the matrix entries (SI Appendix,
Fig. S5 A and B). Shuffling completely destroys any structure in the
order complex, yielding distributions of Betti curves identical to
those of random matrices (Fig. 1E). We found that the Betti curves
from place cell data were an order of magnitude smaller than the
mean Betti curves of the shuffled matrices, and well outside the 95%
confidence intervals (Fig. 3B, Bottom). To quantify the significance
of nonrandom structure, we used integrated Betti values as follows:

βm =
Z1

0

βmðρÞdρ,

and verified that they were significantly smaller than those obtained
from 1,000 trials of the shuffled controls (P < 0.001), but well
within the confidence intervals for geometric controls (Fig. 3C).
To test whether the observed geometric organization was con-

sistent across animals and recording sessions, we repeated these
analyses for eight additional datasets from three different animals
during spatial navigation (SI Appendix, Fig. S6). All but one of the
nine datasets were consistent with the corresponding geometric
controls, suggesting that geometric structure of correlations is a
robust phenomenon during spatial navigation. We also repeated the
analyses for different choices of the correlation timescale, τmax,
ranging from 10 ms to 2 s, and observed similar results (Fig. 3D). As
a further test of geometric organization, we computed the distri-
bution of “persistence lifetimes” from the order complex of the
open field correlation matrix (SI Appendix, Supplementary Text).
The lifetime measures how long a hole persists as it evolves from
one graph to the next in the order complex (Fig. 1D). Again, the
data exhibited topological signatures that were far from random,
but consistent with geometric organization (SI Appendix, Fig. S7).
To ensure that the observed correlation structure could not be

explained by the differences in interactions of individual neurons
with the “mean field” activity of the network, we performed an
additional random control that preserves row and column
sums of pairwise correlation matrices. Specifically, we computed
Betti curves for matrices drawn from a weighted maximum entropy
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Fig. 2. Geometric structure is encoded in the ordering of matrix entries.
(A) Three 5×5 symmetric matrices with distinct order complexes; the 10
off-diagonal matrix values in each are ordered from 0 to 9. An ordering
of matrix values can be obtained from an arrangement of points, pi , in
d-dimensional Euclidean space if Aij <Akℓ whenever kpi −pjk< kpk −pℓk. (Left)
A matrix ordering that arises from points on a line. (Middle) An ordering
that arises from points in the plane, but cannot be obtained from points on
a line. (Right) An ordering that cannot arise from distances between
points in one or two dimensions. (B) Betti curves for distributions of
geometric matrices (N= 88) in dimensions d = 5, 10, 16, 24, and 88. Mean
Betti curves β1ðρÞ, β2ðρÞ, and β3ðρÞ are shown (yellow, red, and blue curves),
with darker (and higher) curves corresponding to larger d. Dots indicate
peak values of d =N curves. (Inset) Peak values of Betti curves for N= 88
geometric matrices as a function of dimension. Beyond d =N, peak values
increase very slowly and remain small compared with random/shuffled
matrices with matching N (dashed lines). The last point on each curve
corresponds to d = 100,000.
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(WME) distribution, subject to the constraint that expected row
sums match the original pairwise correlation matrix (SI Appendix,
Fig. S5 C and D). The Betti curves and persistence lifetimes of the
WME controls were similar to those of random symmetric matrices
(SI Appendix, Fig. S8), showing that the nonrandom structure in the
data does not arise from the fact that some neurons have higher
levels of correlation with the population as a whole.

Scrambled Place Fields Yield Nongeometric Correlations. Are the
spatial coding properties of place cells sufficient to account for
the observed geometric organization of correlations during spa-
tial navigation? Or, alternatively, does this structure reflect finer
features of the correlations, beyond what is expected from place
fields alone? To address this question, we computed place fields
FiðxÞ for each place cell from the same data used in Fig. 3A,
together with the animal’s 2D spatial trajectory xðtÞ (SI Appendix,
Supplementary Methods). We then generated synthetic spike
trains for each neuron as inhomogeneous Poisson processes, with
rate functions riðtÞ given by the simple place field model as follows:

riðtÞ=FiðxðtÞÞ, [2]

where xðtÞ is the animal’s actual trajectory (Fig. 3E). By design,
the synthetic spike trains preserved the influence of place fields, but
discarded all other features of the data, including precise spike
timing and any nonspatial correlates. Perhaps unsurprisingly, Betti

curves derived from the place field model reproduced all of the
signatures of geometric organization (Fig. 3E and SI Appendix,
Fig. S9 B and C), indicating that place fields alone could account
for the results observed in the open field data.
We next asked whether the geometry of place fields was neces-

sary, or whether the Betti curves during spatial navigation could be
attributed to an even more basic feature of the data, which is that
each neuron is driven by the same global signal, xðtÞ, filtered by a
cell-specific function FiðxÞ. To answer this question, we scrambled
each place field by permuting the values of FiðxÞ inside “pixels” of
a 100× 100 grid, creating nongeometric receptive fields ~FiðxÞ (SI
Appendix, Fig. S9D; a 10× 10 scrambling is shown in Fig. 3F for
clarity). We then generated spike trains from the actual trajectory, as
in Eq. 2, but using the scrambled place fields ~FiðxÞ. For this model,
we found that the second and third Betti curves were far outside of
the geometric regime, whereas the first Betti curve β1ðρÞ was insuf-
ficient to rule out geometric organization (Fig. 3F and SI Appendix,
Fig. S9 E–H). We obtained similar results after scrambling on a
10× 10 grid (SI Appendix, Fig. S10). We conclude that the geo-
metric signatures observed during spatial navigation reflect the
geometry of place fields and are not simply a consequence of
neurons being driven by the same global signal, xðtÞ. Neverthe-
less, each of the Betti curves for the scrambled place field model
was also significantly smaller than those of random controls (Fig.
3F; P < 0.001), suggesting that neurons controlled by a global
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Fig. 3. Geometric structure of correlations for neurons with spatial receptive fields. (A) Betti curves of the pairwise correlation matrix for the activity of N= 88
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signal via nongeometric receptive fields do exhibit nonrandom
structure in their pairwise correlations.

Evidence of Geometric Organization During Nonspatial Behaviors.
The above results suggest that geometric structure in place cell
correlations is a consequence of position coding and is not nec-
essarily expected during nonspatial behaviors. To see whether this
is true, we repeated our analyses on neural activity recorded
during two nonspatial conditions: wheel running and rapid eye
movement (REM) sleep. Surprisingly, we found that the Betti
curves were again highly nonrandom (SI Appendix, Fig. S11), and
consistent with geometric organization across all five wheel run-
ning recordings and three out of four sleep recordings (Fig. 4).
These findings suggest that geometric organization on a timescale
of τmax ∼ 1 s is a property of the underlying hippocampal network,
and not merely a byproduct of spatially structured inputs. At much
finer timescales, however, geometric features appear to deteriorate
in both REM sleep and wheel-running conditions (SI Appendix,
Fig. S12), in contrast to the open-field data (SI Appendix, Fig. S13).

Discussion
We have developed a novel tool for detecting structural features of
symmetric matrices that are invariant under the transformations
most commonly observed in neural systems. We have shown that
this method can reliably detect both geometric and random struc-
ture in the presence of an unknown nonlinearity. Our approach
exploits the little-known fact that the ordering of matrix entries,
irrespective of their actual values, carries significant information
about the underlying matrix organization. Unlike eigenvalues,
which can be badly distorted by monotone nonlinearities, the
information encoded in the order complex is invariant.
Applying techniques from computational topology, relevant

features can be extracted from the order complex that enable ro-
bust detection of geometric (or random) structure. In contrast to
previous instances of topological data analysis (14–20), our method
relies on the statistical properties of cycles, as captured by Betti
curves and persistence lifetime distributions, and is used as a ge-
neric tool for matrix analysis, rather than the analysis of point cloud
data. Although the precise dimension associated to geometric data
is currently difficult to estimate, this situation should improve once
we gain a better understanding of how Betti curves and persistent
cycles are distorted by different types of noise.
In this work, we have emphasized two extremes: geometric vs.

random. In many cases, however, correlations may be structured in
a nonrandom, but also nongeometric, manner. One example of this

is the scrambled place field model. Here, the existence of a global
signal controlling the firing of all neurons introduced nonrandom
relationships among the entries of the pairwise correlation matrix,
and the Betti curves were able to distinguish this case from both the
geometric and random controls. It is likely that many kinds of
structure leave their fingerprints on the ordering of matrix ele-
ments and can thus in principle be detected with our methods.
In summary, we found that geometric organization of hippo-

campal place cell activity—a prerequisite for the existence of
spatial receptive fields—can be detected from pairwise correla-
tions alone, without any a priori knowledge about the nature of
receptive fields. Using simulated data from a model, we confirmed
that such geometric structure would be observed as a result of
realistic place fields, but would not arise from nongeometric
(“scrambled”) place fields. Perhaps surprisingly, we also found
geometric organization in correlations during wheel running and
REM sleep. We suggest that clique topology is a powerful new
tool for matrix analysis, and one that is especially useful in bio-
logical settings, to detect relevant structure in the presence of
unknown nonlinearities.

Materials and Methods
Experimental Data. All procedures were approved by the Janelia Research
Campus Institutional Animal Care andUse Committee. Spike trains of neurons in
area CA1 of rodent hippocampus were recorded during three behavioral con-
ditions: (i) spatial navigation in a familiar, 2D, 1.5 m × 1.5-m square box envi-
ronment; (ii) wheel running in the context of a delayed alternation task, as
described in refs. 21 and 22; and (iii) REM sleep. Experimental procedures have
been previously described in refs. 21 and 23. SI Appendix, Supplementary
Methods, contains further details related to the data, the computation of
pairwise correlations, and the place field (PF) and scrambled PF models.

Clique Topology. We performed topological data analysis on pairwise correla-
tion matrices (SI Appendix, Supplementary Methods) as well as random and
geometric “control”matrices (below). Here, we describe the general procedure;
for more detailed explanations, see SI Appendix, Supplementary Text.

Random and Geometric Matrices. For each symmetric matrix C we considered
three types of controls: shuffled (or “random”) control matrices, WME control
matrices, and geometric matrices. “Shuffled matrices”were created by randomly

permuting the
�N
2

�
off-diagonal elements of C. Because only the ordering of

matrix elements is considered in the subsequent topological analyses, this is
equivalent to considering random symmetric matrices with i.i.d. entries, whose
corresponding order complex is a sequence of nested Erd}os–Rényi random
graphs. “WME matrices” were obtained by sampling the maximum entropy
distribution on weighted graphs with constrained mean degree sequence in-
duced by C. This distribution was previously described in ref. 24 (SI Appendix,
Fig. S5).

“Geometric matrices” were obtained by sampling a set of N i.i.d. points
uniformly distributed in the d-dimensional unit cube ½0,1�d ⊂Rd , for d ≤N.
The matrix entries were then given by Cij =−kpi −pjk, where the minus sign
ensures that they monotonically decrease with distance, as expected for
geometrically organized correlations.

Order Complex. For any N×N symmetric matrix A with distinct entries, the
order complex ordðAÞ is a sequence of graphs:

G0 ⊂G1 ⊂ · · · ⊂G�
N
2

�,

where G0 is the graph having N vertices and no edges, G1 has a single edge
ðijÞ corresponding to the highest off-diagonal matrix value Aij, and each
subsequent graph has an additional edge for the next-highest off-diagonal
matrix entry. The graphs fGkg can also be indexed by the edge density,

ρ= k=
�N
2

�
∈ ½0,1�, where k is the number of edges in the graph Gk.

Betti Curves.A clique in a graph is an all-to-all connected set of vertices. For each
graph G in the order complex ordðAÞ, we compute simplicial homology groups
HmðXðGÞ,Z2Þ form= 1,2, and 3, where XðGÞ is the clique complex of G. We call
this the clique topology of G, to distinguish it from the usual graph topology.
The dimensions of the homology groups HmðXðGÞ,Z2Þ, yield the Betti

A B

Fig. 4. Geometric organization in hippocampus during nonspatial behaviors.
(A) Integrated Betti values β1, β2, and β3 (bold yellow, red, and blue lines) for
five recordings from two animals, during wheel running. N indicates the
number of neurons in each recording. Box plots indicate the distributions of
Betti values for 100 geometric controls with matching N and dimension d =N.
Shaded regions indicate confidence intervals for the full geometric regime,
with d ≤N. (B) Integrated Betti values for four recordings from two animals,
during REM sleep. One Betti value was significantly nongeometric (*P < 0.05).
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numbers βm. Indexing the graphs by edge density ρ, we organize the
Betti numbers across all graphs in the order complex into Betti curves
β1ðρÞ, β2ðρÞ, and β3ðρÞ.† The Betti curves provide a summary of the topo-
logical features of the matrix A.

Computations. All software for computing clique topology is freely available in
our Matlab package CliqueTop (26). To compute Betti curves for a matrix A, we
begin by finding all maximal cliques of up to five vertices (those are needed to
compute β3) for each graph Gρ, with ρ≤ 0.6. The resulting lists are then input
into Perseus, a computational topology software package implemented by
Vidit Nanda (27); this software builds on work by Mischaikow and Nanda (28)
using discrete Morse theory to reduce the sizes of simplicial complexes before
performing persistent homology computations.

Integrated Betti Values. To facilitate the comparison of Betti curves to control
matrices, we integrate the Betti curves with respect to graph density:
βm =

R 1
0 βmðρÞ  dρ. The values β1, β2, and β3 were computed for each dataset.

For distributions of shuffled and geometric control Betti curves, the resulting
integrated Betti values are summarized in box-and-whisker plots. We used
standard box plots in Matlab, with bottom, middle, and top horizontal lines
on the boxes denoting first quartile (Q1, 25th percentile), median (50th per-
centile), and third quartile (Q3, 75th percentile) boundaries in the distributions
of integrated Betti values; whereas the bottom and top whiskers denote
Q1 −1.5ðQ3 −Q1Þ and Q3 +1.5ðQ3 −Q1Þ, respectively.

Significance Threshold. Our threshold for rejecting the geometric hypothesis for
a given integrated Betti value was obtained from the box-and-whisker plot for a
distribution of 100 geometric matrices with matching N and dimension d =N.
Specifically, we used the top whisker value,Q3 + 1.5ðQ3 −Q1Þ, as the significance
threshold. The bottom whisker was not used, as Betti values lower than this are
consistent with geometric matrices with smaller dimension d. In a normal dis-
tribution, 99.3% of the data lie within the whiskers, so that less than 0.4% of
data points lie above the top whisker. Our integrated Betti values βm for
geometric controls, however, are not normally distributed. In the case of β1 and
β2, the top whisker corresponds, on average, to the 98th percentile of the dis-
tribution. In the case of β3, the top whisker is just under the 97th percentile
value. A data point above the top whisker is thus inconsistent with geometric
controls with P < 0.05. For comparisons against shuffled/random control
distributions, we computed the P value directly from the distribution, as in
these cases we built the distributions from 1,000 trials, rather than just 100.
Note that clique topology computations are much faster for matrices with
random structure than for geometric matrices, because of differences in the
statistics of the cliques.
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