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Abstract

The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquacul-
ture species, but it is sensitive to hypoxia. No transcriptome data related to growth and
hypoxia response are available for this species. In this study, we performed de novo tran-
scriptome sequencing for the liver and gills of the fast-growth family and slow-growth family
derived from ‘Pujiang No.1’ F10 blunt snout bream that were under hypoxic stress and nor-
moxia, respectively. The fish were divided into the following 4 groups: fast-growth family
under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family
under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million
high-quality reads were obtained from the normalized cDNA of the pooled samples, which
were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts
from the same locus (unigenes) were annotated and assigned to 104 functional groups, and
23,103 unigenes were classified into seven main categories, including 45 secondary KEGG
pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across
the genomes of five model fish species and mammals, and a substantial number (9.4%) of
potentially novel genes were identified. When 6,639 unigenes were used in the analysis of
differential expression (DE) genes, the number of putative DE genes related to growth path-
ways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively,
and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN,
SH and SN, respectively. Our results suggest that growth performance of the fast-growth
family should be due to complex mutual gene regulatory mechanisms of these putative DE
genes between growth and hypoxia.
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Introduction

The blunt snout bream (Megalobrama amblycephala), also known as the Wuchang bream, is
an herbivorous freshwater fish species with a high economic value in China. It is an endemic
species, with its natural distribution restricted to the affiliated lakes of the Yangtze River, such
as Liangzi Lake, Poyang Lake, and Yuni Lake [1-3]. The blunt snout bream is widely consumed
as a delicacy and has been recognized as one of the main aquaculture species in the freshwater
polyculture system of China since the 1960s [4]. As a consequence of selective breeding since
1984, the growth rate of ‘Pujiang No.1,” a good breed of the blunt snout bream (F6), was
increased by 29% in 1999 [5]. In 2011, the aquaculture industry of the blunt snout bream devel-
oped greatly, with a total production of 677,887 tons [6]. However, the blunt snout bream is a
hypoxia-sensitive species, and a short period (<2 h) of hypoxia (less than 0.5 mg 0, LY at
room temperature can be lethal [7]. Therefore, studying the inhibition mechanism of hypoxia
on growth may be required for the genetic breeding of this fish species in the future.

Developing genome resources facilitates both structural and functional analyses of genes
related to growth and hypoxic response in fish [8—14]. However, expressed sequence tags gen-
erated with the aim of identifying gene expression profiles related to growth and hypoxic
response are not yet available for the blunt snout bream. In the present study, we used Illumina
Hiseq ™ 2000 [15-19] sequencing to characterize the transcriptomes of eight samples, in order
to provide the most comprehensive gene sequence resources for the blunt snout bream and to
obtain differential expression (DE) genes related to growth and tolerance to hypoxia. We
believe that these resources would greatly aid breeding programs and whole-genome associa-
tion studies for the blunt snout bream.

Materials and Methods
Ethics statement

This study was approved by the institutional review board or ethics committee of Shanghai
Ocean University (Permit Number: 2013016). All experiments were carried out in strict accor-
dance with the guidelines on the care and use of animals for scientific purposes set by the Insti-
tutional Animal Care and Use Committee (IACUC) of Shanghai Ocean University, Shanghai,
China.

Experimental specimens

Blunt snout bream specimens were obtained from the Bream Genetics and Breeding Center
(BGBC) of Shanghai Ocean University, Shanghai, China. Specimens that belonged to the fast-
growth family (F) and slow-growth family (S) derived from the ‘Pujiang No.1” F10 breed were
used. In the breeding season of 2013, fertilized eggs were generated by artificial insemination,
and 300 hatched larva from F and 300 from S were divided into 2 groups, respectively and cul-
tured in four 16-m* concrete ponds under hypoxic stress (~3 mg 0,-L™") or normoxia (~7 mg
0,-L™"): fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress,
SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN.
One-tenth of the water was replaced daily. Throughout the experimental period, the fish were
fed daily (9:00 AM) to satiation by using a commercial feed. After 120 days of cultivation, the
growth rate was measured (mean body weight of FH, SH, FN, and SN groups was 15.68 g, 8.43
g,28.33 g, and 17.38 g, respectively; Table 1), and liver and gills from 3 random individuals of
each group were used as samples.
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Table 1. The detailed sample information of blunt snout bream.

Groups

Fast-growth family under
normoxia (FN)

Fast-growth family under
hypoxia (FH)

Slow-growth family under
normoxia (SN)

Slow-growth family under
hypoxia (SH)

*%p<0.01;
**¥%5<0.001.

doi:10.1371/journal.pone.0142801.t001

Hypoxia treatment

~7.0 mg/ L Oy, from larvae
to 120-day

~3.0 mg/ L O,, from larvae
to 120-day

~7.0 mg/ L Oy, from larvae
to 120-day

~3.0 mg/ L O2, from larvae
to 120-day

No. of fish survived at  Final body weight No. of fish Tissues
120-day (meants.d.)(g) sampled sampled
142 28.33+0.29 *** 3 Liver and gills
141 15.68+0.11 ** 3 Liver and gills
141 17.38+£0.32 ** 3 Liver and gills
139 8.43+0.07 3 Liver and gills

RNA isolation

The fish were euthanized with 100 mg/L of MS-222 (tricaine methanesulfonate; Sigma,

St. Louis, MO, USA) and maintained on ice before tissue collection. Liver and gills were col-
lected, immediately frozen in liquid nitrogen, and stored at -80°C until RNA extraction. Total
RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), according to the
manufacturer’s instructions. RNA quality was checked using agarose gel electrophoresis and
spectrophotometry. High-quality RNA with 28S:18S more than 1.5 and absorbance ratios
OD60/OD g9 = 1.8-2.2 and OD40/OD;3¢ > 2.0 was used for library construction and
sequencing. Total RNA from each sample was standardized to 200 ng/pL. Equal volumes of
total RNA of liver and gills from three individuals of the same group (FH, SH, FN, and SN)
were combined into one pool, resulting in a total of eight RNA pools. The pools were treated
with Turbo DNA-free (Ambion, Austin, TX, USA) and purified using the RNeasy Mini Kit
(Qiagen, Valencia, CA, USA), according the manufacturer’s instructions. RNA quality and

quantity were again determined at the end of the process.

cDNA library construction and sequencing

Library construction was performed using Illumina Hiseq™ 2000 (Illumina, San Diego, CA,
USA), according to the manufacturer’s instructions. Magnetic beads with oligo-dT were used

to combine the poly-A of the mRNA for purifying the mRNA from the total RNA. The mRNA
was then mixed with fragmentation buffer to obtain short fragments of about 155 bp. The frag-
ments were used to synthesize first-strand cDNA with random primers, and first-strand cDNA
was transformed into double-strand cDNA by using RNase H and DNA polymerase I. A
paired-end library was constructed from the cDNA synthesized using the Genomic Sample
Prep Kit (Illumina, San Diego, CA, USA). Fragments of desirable lengths (~155 bp) were puri-
fied using the QIAquick PCR Extraction Kit (Qiagen, Valencia, CA, USA), end-repaired, and
linked with sequencing adapters. AMPure XP beads (Beckman Coulter, Shanghai, China) were
used to remove unsuitable fragments, and the sequencing library was constructed using poly-
merase chain reaction (PCR). The multiplexed cDNA libraries were checked using PicoGreen
(Quantifluor™-ST fluorometerE6090, Promega, CA, USA) and fluorospectrophotometry
(Quant-iT PicoGreen dsDNA Assay Kit; Invitrogen, P7589) and quantified with Agilent 2100
(Agilent 2100 Bioanalyzer, Agilent, 2100; Agilent High Sensitivity DNA Kit, Agilent, 5067-
4626), and the synthesized eight cDNA libraries were normalized to a 10 nM. Then, the
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sequencing library was gradually diluted and quantified to 4-5 pM and sequenced using the
Mlumina HiSeq™ 2000 platform (Shanghai Personal Biotechnology, Shanghai, China).

Data filtering and de novo assembly

The clean data from all 8 transcriptomes were put together to do the assemble because this
approach tend to get unigenes more accurate and comprehensive for samples from same spe-
cies without genome-wide reference [20]. The adaptor contamination was removed, the reads
were screened from 3’ to 5’ to trim the bases with a quality score of Q < 20 by using 5-bp win-
dows, and the reads with a final length of less than 25 bp were removed. We analyzed the qual-
ity of data filtering by using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). De novo transcriptome assembly was performed using Trinity (http://trinityrnaseq.sf.
net) [20]. A K-mer library was constructed with the filtered reads, and the contigs were formed
using Inchworm. Using Chrysalis, a component was built with the contigs, and de Bruijn
graphs were generated. Then, Butterfly was used to optimize the de Bruijn graphs and create
the final transcript through paths [21]. Transcripts with no reads mapped in all eight samples
were considered as errors and removed. All the transcripts were searched against the blunt
snout bream database, and those with no hits were then searched in the NCBI non-redundant
(NR) database (http://ftp.ncbi.nlm.nih.gov/blast/db/) with the BLAST program (http://www.
ncbi.nlm.nih.gov/); the transcripts from the same locus with the maximum hits were selected
as unigenes. The software Get ORF [22] was used to predict the open reading frames of uni-
genes that could not be aligned to the databases in order to ascertain their sequence directions,
with default settings, except for the parameter “~find,” being set as 1.

Gene annotation and analysis

Blast2 GO program [23-26] was used to annotate the unigenes on the basis of GO terms
related to the blunt snout bream and NR database annotation. Conservation of gene identities
of the blunt snout bream and those of other species (zebrafish, medaka, Tetraodon, fugu, stick-
leback, human, mouse, and chicken) was analyzed using BLASTX. To annotate genes with
common denominators or functional categories, the unigenes were also aligned to the eggNOG
database (http://www.ncbi.nlm.nih.gov/COG/, http://eggnog.embl.de/version_3.0/). To sum-
marize the pathway information, the KEGG database was used to perform pathway annotation
(http://www.genome.jp/kegg/). We identified the sequences related to growth and low oxygen
resistance pathways by referring to previous studies [27-36].

Comparative expression analysis

DESeq was used to identify DE genes (http://www.huber.embl.de/users/anders/DESeq). Those
fold change <0.5 or >2 with a p-value < 0.05 were considered as significant differential expres-
sion [37-40]. Volcano Plot was used to intuitively display the comparative expressions of uni-
genes. We performed cluster analysis of gene expression patterns by using Cluster 3.0 and
TreeView (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm/ and http://
jtreeview.sourceforge.net) [41], MeV [42], and Java TreeView software packages [43]. DE
genes between the liver and gills were screened, and GO enrichment analysis was performed
using Blast2GO (http://www.blast2go.com/). The p-value indicated the degree of difference in
expression. By compared with the entire genome database of other teleost fish, we acquired GO
classification information of possible enrichment in function in the samples. The expression
levels of up- or down-regulated DE genes were annotated using KO analysis. Location of DE
genes in various pathways can be revealed using KEGG pathways (http://www.genome.jp/
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kegg/tool/map_pathway2.html). On the basis of the p-value, pathway classification enrichment
analysis of DE genes was used to highlight the differences between the genes.

Quantitative real-time PCR

Genes identified with the transcriptome sequencing analysis were validated and quantified
using quantitative real-time (QRT)-PCR. Primers (Table 2) were designed according to Illu-
mina sequencing data by using Primer Premier 5 (Premier, Canada)[40]. The stable house-
keeping gene S-actin was used as the control [44]. Total RNA was obtained from the same
samples used for Illumina sequencing. Reversed cDNA was synthesized using the PrimeScript™
RT reagent Kit with gDNA Eraser (Takara, Shanghai, China). qRT-PCR was performed using
the CFX96 Touch™ real-time PCR Detection System (BioRad, USA), according to the manufac-
turer’s instructions. The reaction was conducted using a total volume of 20 pL containing

10 pL of SYBR Green Master Mix (Takara, Shanghai, China), 1 pL of diluted cDNA mix, 0.6
mL of each primer (10 mM), and 7.8 uL of RNase-free water. The thermal profile for SYBR
Green RT-PCR was 95°C for 20 s, followed by 40 cycles of 95°C for 5 s, 58.5°C for 30 s, and
72°C for 30 s. Amplification and detection of only one PCR product were confirmed using
melting curve analysis of the amplification products at the end of each PCR. All experiments
were performed in triplicate. Expression levels of different genes were analyzed using the com-
parative CT method (2"22€T method) [45].

Results and Discussion
Sequencing and data analysis

All eight raw reads have been deposited in the NCBI SRA database (accession number,
SRP050593). RNA sequencing produced a total of 209 million 100-bp paired-end reads with
an average of 26 million reads for each of the eight samples (S1 Table). Cleaning and quality
checks for the raw data were performed and then put together to do the assemble. A total of
185 million trimmed reads were obtained with a useful data percentage of 85.67-86.51%, and
the average length of each paired read was 195 bp (S2 Table). An assembly of the reads gener-
ated 465,582 contigs with a mean size of 335 bp and N50 of 536 bp for about 40.83%, and
237,172 transcripts were produced with an average length of 1,137 bp. A total of 31,338 uni-
genes were generated, with an average length of 2,050 bp and sizes ranging from 200 bp to
28,154 bp (Table 3). About 61.3% of the contigs were distributed in the 100-199-bp region and
90.2% were <599 bp, while 56.3% of the transcripts were <599 bp and 94% of the unigenes
were 200-4,999 bp in size (S1 Fig).

Characterization of blunt snout bream unigenes by searching against public databases: E-
value distribution of the top hits in the databases showed 72% matched sequences with a strong
homology (<1.0e-50) (Fig 1a); 46% of the transcripts had a similarity higher than 80%, while
32% showed a similarity between 60% and 80% with respect to the identity distribution pattern.

Table 2. Genes and specific primers used for quantitative real-time PCR.

Gene name Primer name

B-actin B-actin-F, B-actin-R
HIF-1a HIF-1a-F, HIF-1a-R
HIF-2a HIF-20-F, HIF-20-R
VEGF-A VEGF-A-F, VEGF-A-R
EPO EPO-F, EPO-R

doi:10.1371/journal.pone.0142801.1002

Primer sequence (5’-3’)

CGTGCTGTTTTCCCTTCCATT, CAATACCGTGCTCAAAGGATACTT
ATCACCTCACCAAGACACATCACA, TCTCCACCCACACAAAACCACC
GGCTTCATTACCGTGGTTACAT, GTTCAGCTCCTTGCCTTTCTTT
CCACGGAAACTGTTACAACG, CTTATCCATTCTGCGTCCCT
AGAGGAGCAAGCTCAAGAGG, TGGCATCTATGTGGGACTGT

PLOS ONE | DOI:10.1371/journal.pone.0142801 November 10, 2015
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Table 3. Statistical summary of cDNA sequences of the blunt snout bream by the lllumina Hiseq platform.

Contigs Transcripts Unigenes

Total length (bp) 155,856,123 269,656,769 64,254,778
Sequence No. 465,582 237,172 31,338
Max Length (bp) 30,535 28,154 28,154
Average Length (bp) 335 1,137 2,050

N50 536 2,426 2,951

N50 Reads No. 51,666 32,051 6,974
GC% 40.83% 43.64% 45.65%

doi:10.1371/journal.pone.0142801.1003

Therefore, 78% of the transcripts showing an identity higher than 60% along with a high-qual-
ity e-value distribution supported the reliability of the de novo assembly (Fig 1b). To assess the
evolutionary conservation of the identified unigenes, the number of hits to the number of uni-
genes in zebrafish, medaka, Tetraodon, fugu, stickleback, humans, mice, and chickens was
compared (Table 4). A total of 22,255 (71%) putative known unigenes were found in all eight
species; 23,463 (74.9%) were found in all five fish species; 28,407 (90.6%) were found in zebra-
fish; and 29,148 (93.1%) were found in at least one of the five fish species (Fig 2), indicating a
high level of conservation of gene content among the blunt snout bream and other species,
especially teleost fish species [46].

1% 5%

mo0

H 1e-50~1e-100
1e-5~1e-50

¥ 1e-100~1e-150
¥ 1e-150~0

"100%
u40%

a6% " 80%~100%
B 40%~60%
60%~80%

28%

16%

A B

Fig 1. Landscape of unigene distribution in the blunt snout bream. (a) E-value distribution of unigenes
searched against public databases with an E-value cut-off of 1E-50. (b) Identity distribution of unigenes
searched against public databases with an E-value cut-off of 1E-50.

doi:10.1371/journal.pone.0142801.g001

Table 4. Summary of Blast X search analysis of unique sequences of blunt snout bream.

Refseg/Ensembl Blunt snout bream hits* Unique protein Percentage of total unique proteins
Zebrafish 28,407 21,107 48.91% of 43,153

Medaka 25,822 15,059 61.03% of 24,674
Tetraodon 25,145 14,693 63.56% of 23,118

Fugu 25,521 17,495 36.57% of 47,841
Stickleback 25,934 16,063 58.25% of 27,576

Human 25,228 16,702 16.79% of 99,459

Mouse 25,168 15,268 28.81% of 52,998

Chicken 24,332 11,869 72.58% of 16,354

Note:

*Number of significant (E-value <1e-10) alignments using all blunt snout bream unique sequences as queries to search the listed databases.

doi:10.1371/journal.pone.0142801.1004
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Fig 2. Genes conserved in blunt snout bream and five model fish species (zebrafish, medaka,
Tetraodon, fugu, and stickleback), humans, mice, and chickens. Unigenes of the blunt snout bream were
characterized by searching against public databases. The number of blunt snout bream homologous genes
identified in other species by using BLASTX.

doi:10.1371/journal.pone.0142801.g002

Annotation and classification

A total of 31,338 unigenes were assigned to 104 functional groups with 143,964 functional
terms (S2 Fig). For the three main categories of the GO classification scheme, assignments to
biological processes (69,454, 48%) made up the majority, followed by the cellular components
(48,039, 33%) and molecular functions (26,471, 18%). Among these GO groups, a high number
of unigenes putatively involved in molecular functions (12,289) and biological processes
(10,843) indicated that the blunt snout bream tissues used in this study underwent unique met-
abolic activities related to growth and tolerance to hypoxia, which coincided with the status of
the samples. Under the category of cellular components, the cell (10,117), intracellular compo-
nent (8,996), cellular component (8,736), organelle (6,746), and cytoplasm (5,131) were promi-
nent groups (S2 Fig).

On the basis of the literature [47], 31,338 unigenes could also be classified into 25 eggNOG
categories (Fig 3). 22.91% unigenes (7,761) were assigned to the unknown functional group,
which might indicate an unknown mechanism underlying growth and oxygen resistance in the
blunt snout bream. Signal transduction mechanisms (6,691, 19.75%) were the second largest
functional group, which indicated that the mechanisms are mostly related to environmental
information processing. The third largest functional group was general function prediction
only (3,272, 9.66%), which was consistent with the transcriptome results from other studies
[48-53]. The relative abundant groups were transcription (2,887, 8.52%), post-translational
modification, protein turnover, chaperones (2,334, 6.89%), cytoskeleton (1,410, 4.16%), intra-
cellular trafficking, secretion, and vesicular transport (1,298, 3.83%); the two groups involving
cell motility and nuclear structures comprised a total of 105 unigenes (0.31%), representing the
smallest eggNOG classifications. It is noteworthy that 0.88% unigenes (299) were classified
into the secondary metabolite biosynthesis group (Fig 3).

Functional classification of KEGG provided a valuable resource for investigating specific
processes and pathways in the liver and gills of the blunt snout bream. A total of 23,103 uni-
genes were classified into seven main categories, including 45 secondary pathways in the eight
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Fig 3. eggNOG functional categories.
doi:10.1371/journal.pone.0142801.g003

tested samples (Fig 4). Human diseases was the largest category (7,006, 30.33%), followed by
organismal systems (5,907, 25.57%), metabolism (3,372, 14.6%), environmental information
processing (2,567, 11.11%), and cellular processes (2,502, 10.82%); genetic information pro-
cessing (1,749, 7.57%) was the smallest category (Fig 4). These results indicate that active meta-
bolic and genetic processes affected by dissolved oxygen levels occur in the liver and gills of the
blunt snout bream.

Gene expression patterns and pathway classification enrichment
analysis

Gene expression patterns can provide important clues as to the roles of unknown genes in bio-
logically active processes [54]. While reads per kilobase per million mapped reads (RPKM) are
widely used to calculate the gene expression value [55], we used a more accurate DESeq
method to estimate gene expression values in order to infer differential expression signals with
good statistical power [37]. To identify DE genes among the eight samples, we compared the
samples and selected a total of 6,639 unigenes, which were at least 2-fold up- or down-regulated
with a p-value < 0.05. Then, hierarchical clusters were generated to obtain a global view of the
DE genes (Fig 5A). The genes detected in the different groups were clearly separated, and an
increase or decrease in transcript abundance in the liver was different from that in the gills
from the blunt snout bream. Liver-FH showed a closer relationship with Liver-SH, while Liver-
FN showed a closer relationship with Liver-SN; and the former two showed a greater distance
than the latter two (Fig 5A). However, Gill-SH showed a closer relationship with Gill-FN, and
they were closer to Gill-SN than to Gill-FH. These results further prove that the diversity in
hypoxia response between the fast- and slow-growth families was regulated by genes, and that
the gill samples showed a higher amount of DE genes resulting from physiological response of
hypoxia adaption. This also indicates that the gill is actually a sensitive and important organ
response to hypoxic stress.

With simultaneous display of two correlated pieces of information (fold change and p-
value), volcano plots are commonly used in the microarray analysis of mRNA expression levels
[56-59]. The abundance of blue dots shows the number of DE genes, and their locations with
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Fig 4. Classification of unigenes on the basis of KEGG categorization.

doi:10.1371/journal.pone.0142801.g004

respect to vertical lines reveal the up-regulation of DE genes in each comparative group (Fig
5B). In view of different groups, up-regulation expression accumulate to 5,608 (Gill-FH 3,826,
Liver-FH 1,782), 3,625 (Gill-SN 2,227, Liver-SN 1,398), 3,519 (Gill-SH 1,561, Liver-SH 1,958),
3,047 (Gill-FN 1,172, Liver-FN 1,875). In summary, 13,887 up-regulation DE genes were
detected, including 8,097 in gill and 5,790 in liver of four groups.

Venn diagram analysis of DE unigenes in comparative groups [>2-fold change, p < 0.05,
RPKM > 3) also yielded the same results. There were more up-regulated DE unigenes in both
F and S under conditions of hypoxia rather than normoxia (Fig 6). Additionally, the number of
up-regulated or down-regulated DE unigenes was higher in F than in S, regardless of hypoxia
or normoxia, in both the liver and gills (Fig 6). These results suggest that the pattern of
increased transcript abundance along with hypoxic stress was an important response mecha-
nism for low dissolved oxygen levels. In addition, this indicates that the fast-growth family may
have more positively regulated genes than negatively regulated ones in the hypoxia stress
response pathway.

Expression analysis of putative DE genes related to hypoxia and growth

To date, there have been few studies on the hypoxia response mechanism in the blunt snout
bream. In this study, DE gene expressions in the liver and gills of four groups were compared
pair-wise, and genes related to growth and hypoxia response were screened. Expression abun-
dance of the genes showed a significant difference. Putative DE genes related to hypoxia
response in Liver-FN (17) were expressed to a greater extent than those in Liver-SH (15),
Liver-SN (12), and Liver-FH (5), while putative DE genes in Gill-FH (52) were expressed to a
greater extent than those in Gill-SH (8), Gill-FN (16), and Gill-SN (9) (Fig 7). The total number
of DE genes related to hypoxia response pathways in the four groups was in the order of FH
(57) > FN (33) > SH (23) > SN (21). The putative DE genes related to hypoxia response can
mainly be classified as: hypoxia-inducible factor (HIF-1a, HIF-2¢,, HIF-3a) and its co-tran-
scription factors (eg. Arnt, Ncoal and Per 1), HIF-1o interactors (eg. ApexI, Eglnl, Tp53,
PHDs, pVHL, FIH,), responsive genes including angiogenesis (eg.EGRI, EDN1, EPO, Hmox]I,
PGF, VEGFa), coagulation (eg. ALDOA, SLC16A3), DNA damage signaling and repair (eg.
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Fig 5. Analysis of differentially expressed genes in the blunt snout bream. (A) Clusters of differentially
expressed genes in the liver and gills of the blunt snout bream from four groups, as shown in Table 1.
Expression changes and cluster analysis of 6,639 genes that were differentially expressed between any two
tissue samples. Each column represents a differentially expressed gene, and each row represents a sample.
Changes in expression levels are shown using color scales with saturation at >2-fold changes. Green and red
gradients indicate a decrease and increase in transcript abundance, respectively. Clustering was performed
using the Pearson distance method, and hierarchical clustering, pairwise centroid—linkage. (B) DE gene
analysis and volcano plot for 12 comparative groups. The x-axis is the value of Log2 (Fold Change), and the
y-axis is the value of-Log10 (p-value). Vertical lines are boundaries of difference threshold of 2-fold change,
and the horizontal line is p<0.05. The blue dots present differential expression genes that meet the
requirements, while the orange dots present differential expression genes that do not meet the requirements.

doi:10.1371/journal.pone.0142801.g005

ATR), metabolism (eg. ENOI, EROIL), regulation of apoptosis (eg. eNOS), regulation of cell
proliferation (eg. EGR1, IGFBP3), transcription factors (eg. FOS), transporters, channel and
receptors (SLC2A1, SLC16A3), other responsive genes (eg. MAP3K1), and pathway activity sig-
nature genes. As shown in Fig 7, the total number of DE genes related to growth pathways was
in the order of FH (159) > SH (118) > SN (92) > FN (65). The DE genes related to growth
pathways were mainly classed as: growth factors and receptors (eg. GHRH,VEGFA, VEGFRI,
VEGFR2, PDGFR, IGFIR, EFG, EFGR, TGF-f), binding protein (eg. IGFBP1, BMP), metabo-
lism enzymes (eg. Glycogen debranching enzyme, Lacate dehydrogenase, Acyl-CoA synthase,
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Fig 6. Venn diagrams showing DE genes up-regulated and down-regulated in the gills and liver. All
these differential genes were determined by pair-wise comparison (>2-fold change, p < 0.05, RPKM > 3).
Numbers appeared in horizontal, vertical and diagonal direction show up- (red numbers) or down- (green
numbers) regulated DE genes between both groups. The numbers outside and within the brackets show the
DE genes of gills (outside) and liver (within), respectively.

doi:10.1371/journal.pone.0142801.g006

Glycerol-3-phosphate dehydrogenase, malic dehydrogenase), and pathway activity signature
genes (Ras, PI3K, mTOR, PKB, PKC).

Regulatory network of hypoxia signaling pathway and growth-related
pathways

By comparing the up-regulation of DE gene expressions in the liver and gills of FH and SH
groups, we obtained 17 unigenes related to growth (eg. GHR 1/2, EGR2/3, IGF1, IGFIR, FGF,
FGFR, EGFR, FGFR4, EGF, FRS2, GADD45, HBEGF, IGFBP3, TGFB1/2/3, GFBR1/2, VEGFA/
B, VEGFC/D), matched 54 sequences, and mapped 20 KO pathways (53 Table). By comparing
the up-regulation of DE gene expressions in the liver and gills of FH and FN, we obtained 26
unigenes or enzymes related to hypoxia response (eg. HIFIA, HIF2A, EPOR, EPO, CYP7A1,
CYP27A, etc.), matched 64 sequences, and mapped 26 KO pathways (S3 Table). Our results
show that growth inhibition under hypoxic stress may be due to the expressions of these puta-
tive DE genes; thus, selective breeding under hypoxic conditions may be an effective and direct
breeding method.

The up-regulated DE genes in the fast-growth family under hypoxic stress indicated that
these genes would be involved in different physiological functions against hypoxic stimula-
tions. For instance, the hypoxia-induced factor (HIF) and its co-transcription factors are of the
master regulator in the hypoxia signaling pathway, which widely affect glucose metabolism,
cell proliferation, apoptosis, angiogenesis, hypoxic acclimatization, embryonic development,
various ischemic diseases and tumorigenesis [60-61]. Under hypoxic condition, the body

PLOS ONE | DOI:10.1371/journal.pone.0142801 November 10, 2015 11/16
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Fig 7. Expression analysis of putative DE genes related to hypoxia response and growth in different
samples. (A, B) Putative DE genes related to hypoxia response (A) and growth (B) in the liver; (C, D) Putative
DE genes related to hypoxia response (C) and growth (D) in the gills; (E, F) Total number of putative DE
genes related to hypoxia response (E) and growth (F) in both the liver and gills.

doi:10.1371/journal.pone.0142801.g007

weight of the fast-growth family at 120-day was 15.68 g, which was 1.86 times as heavy as that
(8.43 g) of the slow-growth family of blunt snout bream (Table 1). Therefore, some unique
molecular mechanisms might have been developed as adaptive strategies to cope with hypoxia
in the fast-growth family [7, 62]. Moreover, the body weight of the fast-growth group under
hypoxic treatment condition was only 55% of weight (28.33 g) cultured under normoxic condi-
tion. This implied that fast-growth group may sacrifice some growth in order to survive in a
hypoxic environment. Consistently with our previous data in blunt snout bream as well as in
grass carp, hypoxia treatment can induce significant embryonic developmental delay and
growth retardation by inhibiting related insulin growth factor (IGF) signaling pathway [29,
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Fig 8. Validation of RNA-seq data by using quantitative real-time polymerase chain reaction
(qRT-PCR). Expressions of HIF-1a, HIF-2a, VEGF-A, and EPO were detected using RNA-seq (blue column)
and gRT-PCR (red column). X-axis, group name; y-axis, fold change in gene expression.

doi:10.1371/journal.pone.0142801.g008
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36]. As these DE genes related to hypoxia and growth pathways belongs to different complex
gene network, further studies are needed to explore the mutual regulatory mechanisms
between them.

Validation of RNA-seq data by qRT-PCR

The expression profiles of genes identified using Illumina sequencing were confirmed by mea-
suring the relative mRNA levels of HIF-1a, HIF-2a, VEGF-A, and EPO related to hypoxia by
using qQRT-PCR (Fig 8). Our results indicate that the data of QRT-PCR were consistent with
and validated those of RNA-seq.

Conclusions

We performed de novo transcriptome sequencing of the liver and gill tissues from the fast- and
slow-growth families of the blunt snout bream under hypoxic stress and normoxia. We
obtained 31,338 unigenes and 6,639 DE genes (>2-fold change, p < 0.05, RPKM > 3). Expres-
sion of the DE genes was compared pair-wise, and number of genes related to the hypoxia
response pathways in the four groups was found to be in the order of FH (57) > FN (33) > SH
(23) > SN (21), while the number of genes related to growth pathways was in the order of FH
(159) > SH (118) > SN (92) > FN(65). Moreover, qRT-PCR data for four DE genes (HIF-Ic,
HIF-2a, VEGF-A, and EPO) were consistent with and validated the RNA-seq data. Growth per-
formance of the fast-growth family under hypoxic stress may be due to the expression levels of
these differential genes. Therefore, some unique molecular mechanisms might have been devel-
oped as adaptive strategies to cope with hypoxia in the fast-growth family. Our study will not
only lay a foundation for further studies on growth regulation under hypoxic conditions but
also facilitate selective breeding for this important aquaculture species.
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