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Abstract

Osteonecrosis of the femoral head is a serious orthopedic problem. Moderate loads with knee 

loading promote bone formation, but its effects on osteonecrosis have not been investigated. Using 

a rat model, we examined a hypothesis that knee loading enhances vessel remodeling and bone 

healing through the modulation of the fate of bone marrow-derived cells. In this study, 

osteonecrosis was induced by transecting the ligamentum teres followed by a tight ligature around 

the femoral neck. For knee loading, 5 N loads were laterally applied to the knee at 15 Hz for 5 

min/day for 5 weeks. Changes in bone mineral density (BMD) and bone mineral content (BMC) 

of the femur were measured by pDEXA, and ink infusion was performed to evaluate vessel 

remodeling. Femoral heads were harvested for histomorphometry, and bone marrow-derived cells 

were isolated to examine osteoclast development and osteoblast differentiation. The results 

showed that osteonecrosis significant induced bone loss, and knee loading stimulated both vessel 

remodeling and bone healing. The osteonecrosis group exhibited the lowest trabecular BV/TV (p 

< 0.001) in the femoral head, and lowest femoral BMD and BMC (both p < 0.01). However, knee 

loading increased trabecular BV/TV (p < 0.05) as well as BMD and BMC (both p < 0.05). 

Osteonecrosis decreased the vessel volume, vessel number and VEGF expression (all p < 0.01), 

and knee loading increased them (all p < 0.01). Osteonecrosis activated osteoclast development, 

and knee loading reduced its formation, migration, adhesion and the level of “pit” formation (all p 

< 0.001). Furthermore, knee loading significantly increased osteoblast differentiation and CFU-F 

(both p < 0.001). A significant positive correlation was observed between vessel remodeling and 

bone healing (both p < 0.01). These results indicate that knee loading could be effective in repair 

osteonecrosis of the femoral head in a rat model. This effect might be attributed to promoting 

vessel remodeling, suppressing osteoclast development, and increasing osteoblast and fibroblast 
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differentiation. In summary, the current study suggests that knee loading might potentially be 

employed as a non-invasive therapy for osteonecrosis of the femoral head.
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Introduction

Osteonecrosis of the femoral head (ONFH) is a disease in which bone death occurs as a 

result of impairment of blood supply to the femoral head [1, 2]. There are several etiologic 

risk factors such as trauma [3, 4], excessive corticosteroid use [5–7], excessive alcohol 

intake [8], Legg-Calve-Perthes disease [9, 10], etc. Debilitated blood supply to the femoral 

head commonly leads to necrosis and collapse of the femoral head [11]. In spite of various 

research efforts and trials, ONFH is still one of the most serious orthopedic problems. More 

than 500,000 hip replacements were performed for ONFH patients annually in the United 

States, and 10% of them required surgical debridement of dead bone [12]. Many therapies 

have been applied to animal models and patients to prevent the progress of ONFH. Non-

surgical therapies include anti-osteoporosis medicine, anticoagulants, decreasing weight 

bearing, lipid-lowering medicine, electromagnetic stimulation, shockwave therapy and 

hyperbaric oxygen therapy, while surgical therapies consist of autologous bone marrow stem 

cell transplantation, core decompression and total hip replacement [13, 14]. Most of these 

therapies, however, have limits and side-effects. It is thus important and urgent to develop 

safe and effective treatment for ONFH.

Joint loading is one form of non-invasive physical treatment. Joint loading have been 

applied to synovial joints such as the elbow, knee and ankle [15]. In our previous studies, 

joint loading were applied 3 to 5 min per day for 2 to 3 weeks. Our bone histomorphometric 

studies demonstrated that knee loading stimulates bone formation [16]. We have also 

demonstrated that knee loading can accelerate the healing of surgical wounds in the femoral 

neck and tibia [15, 17].

The mechanism of knee loading is considered to change intramedullary pressure of femoral 

and tibial bone cavities. The load-driven pressure may generate fluid flow in a lacuna 

canalicular network in bone cortex. The pressure also activates bone metabolism-related 

genes in femur and tibia [18, 19]. In our previous works, knee loading stimulated bone 

formation by conducting bone histomorphometry using the cross-sections at 25% (distal 

femur), 50% (midshaft), and 75% (proximal femur) of the length of the femur from the 

loading site. Knee loading also induced bone formation and enhanced bone healing in the 

femoral neck [20]. In this study, we addressed a question whether knee loading improves 

experimentally induced ONFH by modulating both vessel remodeling and bone remodeling. 

Our hypothesis was that knee loading would enhance vessel remodeling and bone healing 

through the modulation of the fate of bone marrow-derived cells.

To test the hypothesis, a rat model of ONFH was induced by transecting the ligamentum 

teres followed by a tight ligature around the femoral neck. The knee joint received loading 
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for 5 wks. We evaluated the effects of knee loading focusing on BMD and BMC using 

pDEXA. Ink infusion and histology assay were performed to evaluate vessel remodeling and 

bone healing. We also evaluated the effects of knee loading on the functions of osteoblast 

and osteoclast of bone marrow-derived cells.

Materials and Methods

Animals and materials preparation

Male Sprague-Dawley rats (~12 weeks of age, Animal Center of Academy of Military 

Medical Sciences, China) were used. The rats were housed on a 12:12 h light-dark cycle 

under pathogen-free conditions and were feed with food and water ad libitum. All 

experiments were carried out according to the National Institutes of Health Guide for Care 

and Use of Laboratory Animals and were approved by the Ethics Committee of Tianjin 

Medical University. Murine receptor activator of nuclear factor kappa-B ligand (RANKL) 

and murine macrophage-colony stimulating factor (M-CSF) were purchased from 

PeproTech (Rocky Hills, NC, USA). VEGF polyclonal antibody was purchased from 

Proteintech (Chicago, IL, USA). Immunohistochemical staining kit and 3, 3′-

diaminobenzidine (DAB) substrate kit were purchased from ZSGB-BIO (Beijing, China). 

Dulbecco’s Modi ed Eagle’s Medium (DMEM), Minimum Essential Medium Alpha (MEM-

α), fetal bovine serum, penicillin, streptomycin and trypsin were purchased from Invitrogen 

(Carlsbad, CA, USA). Other chemicals were purchased from Sigma (St. Louis, MO, USA).

Experimental design

Eighteen rats were randomly divided into 3 groups: sham operated control group (Sham), 

osteonecrosis group (ON), and knee loading treated osteonecrosis group (ON+Loading) (n = 

6). Ischemic osteonecrosis of the bilateral femoral heads were induced using the previously 

described method with minor modifications [3].

Surgical procedure to induce osteonecrosis

The rat was placed in an anesthetic induction chamber to cause sedation and then mask-

anesthetized using 2% isoflurane (IsoFlo, Abbott Laboratories, North Chicago, IL, USA) at 

a flow rate of 1.0 to 1.5 L/min. A longitudinal incision was made on the skin over the large 

trochanter. The gluteus maximus muscle and the gluteus medius muscle were separated from 

the bone. The joint capsule of hip was transected and the femoral head was dislocated (Fig. 

1A). Osteonecrosis of the femoral head was induced by transecting the ligamentum teres and 

tightly placing a ligature (#3-0 Vicryl, Ethicon) around the femoral neck (Fig. 1B). The 

femoral head was relocated, and gluteal muscles and skin were sutured with #3-0 and #4-0 

stitches, respectively. Osteonecrosis was induced on both left and right side. For sham 

operation, a joint capsule was not transected and a femoral neck received no ligation. In 

order to alleviate the pain associated with surgery, analgesia was conducted. The rat was 

given a dose of buprinorphine hydrochloride (0.05 mg/kg) at rate of 0.2 ml subcutaneously 

before incision. 1% pramoxine hydrochloride ointment was applied on the incision sites 

after surgery. Buprinorphine hydrochloride (0.05 mg/kg) was also administered per 8 hr for 

the first three postoperative days, and applied until a week if necessary. In addition, 
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antibiotic prophylaxis (enrofloxacin, 5 mg/kg) was administered per day for the first three 

postoperative days.

Knee loading

The joint loading equipment in the form of knee, ankle, and elbow loading is a recently 

devised treatment modality (Fig. 1 C) [21]. In this current study, knee loading was achieved 

through dynamic loads applied to the left and right knee joint of rats in the lateral-medial 

direction, respectively. To position the knee properly, the lower end of the loading rod and 

the upper end of the stator were designed to form a pair of semispherical cups. The lateral 

and medial epicondyles of the femur together with the lateral and medial condyles of the 

tibia were confined in the cups (Fig. 1 D) [22]. The tip of the loader had a contact area of 15 

mm in diameter. Knee loading was conducted one week after operation. Anesthesia was 

induced with 2% isoflurane at a flow rate of 1.0 to 1.5 L/min. With the custom-made loader, 

knee loading (5 N force) was laterally applied to the left and right knee successively at 15 

Hz for 5 min/day for 5 weeks. Animals were sacrificed 5 weeks after loading. Femurs and 

tibias were collected, and bone marrow cells were isolated.

Measurements of bone mineral density (BMD) and bone mineral content (BMC)

The animals were anesthetized by 2% isoflurane at a flow rate of 1.0 to 1.5 L/min, placed on 

the platform in the prone position, and images were acquired in about 5 min. Bone mineral 

density (BMD, g/cm2) and bone mineral content (BMC, g) of the femur were measured by 

peripheral dual-energy X-ray absorptiometry (pDEXA) before surgery and sacrifice. 

Changes in BMD and BMC were determined and statistical analysis was conducted.

Vessel remodeling assay

To evaluate vessel remodeling of the femoral head, a blood circulation assay was performed. 

Chinese ink was infused 6 weeks after the operation using the procedure with minor 

modification [23]. The animals were anesthetized by an intraperitoneal injection of 10% 

chloral hydrate (3 ml/kg). The chest was opened and the heart was exposed. A needle was 

inserted into the left ventricle for ink infusion, and the right atrium was cut. Animals were 

flushed with a heparin-saline solution (25,000 units in 250 ml of 0.9% sodium chloride) 

until clear liquid flowed from the circulation. The 5% gelatin/ink solution (the ratio between 

Chinese ink and water was 1:1) was injected into the circulation until the skin of animals 

became uniformly black. After euthanizing the animals, a pair of femoral heads was 

harvested.

Histology and immunohistochemistry assay

After sacrifice, bilateral femoral heads were harvested and fixed in 10% neutral buffered 

formalin for 2 days. Samples were decalcified in 10% ethylenediaminetetraacetic acid 

(EDTA, pH 7.4) for 40 days and embedded in paraffin. The samples were cut with a Leica 

RM2255 microtome (Leica Microsystems Inc., Bannockburn, IL) into 5-μm thick slices 

along the coronal plane. Sections were stained with hematoxylin-eosin (H&E) for examining 

osteonecrosis and histological parameters. The images of the femoral head were captured 

with an Olympus BX53 microscope and Olympus DP73 camera. Measurement of bone mass 
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was performed within the trabecular area on the femoral head, in which bone volume 

fraction BV/TV (in %, TV, total tissue area, calculated from the total tissue area; and BV, 

trabecular bone area, calculated from the total trabecular area) was determined [24–27]. 

Furthermore, we used tartrate resistant acid phosphatase (TRAP) staining to determine 

osteoclast activity according to the standard protocol (Sigma). The ratio between length of 

TRAP-positive cells and total circumference of bone trabecula was calculated. It represented 

the activity of osteoclast. As described previously, MacNeal’s staining was used for 

identifying osteoblasts [28, 29]. The quantification of osteoblast cells number was 

normalized to the bone trabecular surface in each histological section. Immunohistochemical 

staining was performed using immunohistochemical kit and 3, 3′-diaminobenzidine (DAB) 

substrate kit according to the protocol of manufacturer. The sections were incubated with the 

primary antibody of VEGF (1:50) overnight at 4°C. The ratio of VEGF positively stained 

area to total field area was calculated [23, 30]. For ink infusion, the samples were cut into 

25-μm thick slices. The vessel number per field and the ratio of vessel volume to total field 

area were calculated, respectively. For all histological assays, five fields per slice (100–

400×) were randomly selected, and the structural and vascular parameters were determined 

using Cellsense Standard software (Olympus).

Bone marrow-derived cells culture and osteoblast/osteoclast differentiation

The method to collect bone marrow-derived cells was described previously [31]. The tibias 

were flushed with DMEM containing 2% fetal bovine serum (FBS). The cells were 

separated using Ficoll low-density gradient centrifugation. For osteoclast differentiation, 

cells were cultured in MEM-α with 10% FBS, 30 ng/ml M-CSF and 20 ng/ml RANKL. For 

osteoblast differentiation, cells were cultured in osteogenic differentiation medium 

(MesenCult proliferation kit) with supplemented reagent. All cell cultures were maintained 

at 37°C in a humidified atmosphere of 5% CO2.

Colony-forming unit-granulocyte-macrophages (CFU-GM) and Colony-forming unit-
macrophage/mononuclear (CFU-M) assay

CFU-GM and CFU-M assay were conducted using the procedure described previously [31, 

32]. Bone marrow-derived cells were seeded onto 6-well plates at a density of 2.5×104 cells/

well. The culture medium was composed of methylcellulose with 30 ng/ml M-CSF and 20 

ng/ml RANKL. Cells were cultured at 37°C in a 5% CO2 incubator for 7 days. The number 

of colonies was counted in each well using phase-contrast microscopy. The colony numbers 

of CFU-M were converted to the numbers per tibia.

Osteoclast formation assay

Bone marrow-derived cells were seeded onto 96-well plates at a density of 1×105 cells/well, 

and cultured in MEM-α supplemented 10% FBS, 30 ng/ml M-CSF, and 20 ng/ml RANKL 

for two days [33]. On the third day, the culture medium was replaced by MEM-α 

supplemented with 10% FBS, 30 ng/ml M-CSF, and 60 ng/ml RANKL, and cells were 

grown for an additional 3 days. We used a tartrate resistant acid phosphate (TRAP) staining 

kit (Sigma) and determined osteoclast formation on day 6 according to the manufacturer’s 

protocol. TRAP-positive multinuclear cells (more than 3 nuclei) were identified as 
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osteoclasts. Five fields per well (400×) were randomly selected, and the ratio of the 

osteoclast area to the total field area was determined using Cellsense standard software.

Osteoclast migration assay

Migration of osteoclasts was evaluated using a transwell assay as described previously with 

minor modifications [31]. Bone marrow-derived cells (2×106 cells/ml in 6-well plates) were 

cultured in MEM-α supplemented 10% FBS, 30 ng/ml M-CSF and 20 ng/ml RANKL for 4 

days. The osteoclast precursor cells (1×105 cells/well) were loaded onto the upper chamber 

of transwells and allowed to migrate to the bottom chamber through an 8-μm polycarbonate 

filter coated with vitronectin (Takara Bio Inc., Otsu, Shigma, Japan). The medium in the 

upper chamber was replaced with free serum MEM-α, and the lower chamber contained 

MEM-α consisting of 1% bovine serum albumin (BSA) and 30 ng/ml M-CSF. After 6 h 

reaction, cells were stained with crystal violet, and the number of osteoclast precursor cells 

in the lower chamber (attached onto the bottom of the transwells) was counted. Five fields 

per well (200×) were randomly selected and photographed for counting.

Osteoclast adhesion assay

Bone marrow-derived cells were cultured in MEM-α supplemented 10% FBS, 30 ng/ml M-

CSF and 20 ng/ml RANKL for 4 days. Then osteoclast precursor cells were plated onto 96-

well plates coated with vitronectin at a density of 1×105 cells/well in MEM-α supplemented 

with 30 ng/ml M-CSF. After 30 min of incubation, cells were washed with PBS three times 

and fixed with 4% paraformaldehyde at room temperature for 10–15 min. Adherent cells 

were stained with crystal violet. Five fields per well (200×) were randomly selected, and the 

number of cells adherent to the bottom of plates was counted [34].

Pit formation assay

To determine bone resorption ability of bone marrow-derived cells, a pit formation assay 

was performed according to the previously described method with minor modifications [33]. 

UV-sterilized bovine cortical bone slices (120 μm thick) were placed in a bottom of a 24-

well plate. Bone marrow-derived cells were seeded onto the plate at a density of 1×105 cells/

well, and cultured for two days in MEM-α supplemented 10% FBS, 30 ng/ml M-CSF, and 

20 ng/ml RANKL. On the third day, the concentration of RANKL was increased to 60 

ng/ml, and the medium was changed every 2 days. The bone slices were stained with crystal 

violet on day 10. Five fields per well (400×) were randomly selected, and the ratio of the pit 

area to the total field area was determined.

Osteoblast differentiation assay

For osteoblast differentiation, 2×106 cells/ml bone marrow-derived cells were seeded onto 

6-well plates with osteogenic differentiation medium (MesenCult proliferation kit, 

supplemented with 10 nM dexamethasone, 50 μg/ml ascorbic acid 2-phosphate, and 10 mM 

β-glycerophosphate). The medium was changed every 2 days, and cells were cultured for 14 

days. ALP staining kit (Sigma) was used for alkaline phosphatase (ALP) staining. Cells 

were fixed in citrate-buffered acetone for 30 s, incubated in the alkaline-dye mix for 30 min, 

and counterstained with Mayer’s Hematoxylin for 10 min. Five fields (400×) per well were 
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randomly selected, and the ratio of the number of ALP-positive cells to that of the total cells 

was determined microscopically.

Colony-forming unit- fibroblast (CFU-F) assay

To evaluate the ability of fibroblast-like mesenchymal stem cell (MSC) colony formation in 

the CFU-F assay, 2×106 cells/ml bone marrow-derived cells were seeded onto 6-well plates 

with complete MesenCult medium. Fresh medium was exchanged every other day, and cells 

were cultured for 14 days. On day 14, cells were rinsed with PBS and stained using a 

HEMA-3 quick staining kit (Fisher Scientific, Waltham, MA, USA). The number of 

colonies with more than 50 cells was counted in each well, and the clusters of cells that did 

not present fibroblast-like morphology were excluded.

Statistical analysis

Data were expressed as mean ± standard error of mean (SEM). Data were analyzed with 

one-way analysis of variance (one-way ANOVA) and a post hoc test of least signicant 

difference (LSD). Correlation analysis of parameters was performed by using Pearson 

correlation coefficient test. Statistical significance was assumed at p < 0.05. The asterisks (*, 

**and ***) represent p < 0.05, p < 0.01 and p < 0.001, respectively.

Results

No infections were detected at the surgical site during the 6-week course of experiments. We 

did not observe any abnormal behavior, weight loss, or diminished food intake.

Knee loading enhanced femoral BMD/BMC of the osteonecrosis rats

To determine any change in bone in the osteonecrosis and knee loading groups, BMD and 

BMC were measured before surgery and sacrifice. During the 6-week period, the 

osteonecrosis group showed the lowest increase in femoral BMD and BMC (both p < 0.01) 

(Fig. 1E, F). However, knee loading significantly increased femoral BMD (p<0.05) and 

BMC (p < 0.01) (Fig. 1E, F).

Knee loading improved ischemic femoral head

To examine whether knee loading improves ischemic femoral heads, we determined the 

geometric parameters of femoral heads. The femoral head surface of the sham operated 

control was smooth, while that of the osteonecrosis group exhibited “moth eaten” 

appearance (indicated by the arrows). The surface of femoral head of the loading group 

presented between the two other groups (Fig. 2A). Geometric inspection revealed that 

compared to the sham operated control, the samples in the osteonecrosis group exhibited 

shorter height of the femoral head. Knee loading improved the height of the femoral head, 

although the increase approached statistical significance (data not shown).

In the sections stained with H&E (Fig. 2B), the osteonecrosis group exhibited a lower ratio 

of the trabecular volume to the tissue volume (BV/TV) (p < 0.001). Compared to the 

osteonecrosis group, knee loading increased BV/TV of the femoral head (p < 0.05; Fig. 2C).
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Knee loading enhanced vessel remodeling

To determine whether knee loading enhances vessel remodeling in the ischemic femoral 

head, we determined the expression of VEGF which immunoreactivity was mainly observed 

in endothelial cells. Several VEGF positive staining microvessels were found in sham and 

loading groups. However, it was seldom seen in osteonecrosis group (Fig. 3A). The ratio of 

VEGF positively stained area to total field area was calculated. Osteonecrosis decreased the 

expression of VEGF (p < 0.01), and knee loading significantly enhanced them (p < 0.01; 

Fig. 3B). We also analyzed microvessels using blood perfusion angiography (Fig. 3C). 

Osteonecrosis decreased both the vessel volume and the vessel number (both p < 0.001), and 

knee loading enhanced them (both p < 0.001; Fig. 3D, E).

Knee loading reduced the numbers of CFU-GM and CFU-M

To determine whether knee loading affected the proliferation of osteoclast progenitors, the 

CFU-GM and CFU-M assays were conducted. The numbers of CFU-GM and CFU-M per 

tibia were increased in the osteonecrosis group (both p < 0.001). However, the numbers of 

CFU-GM (Fig. 4A) and CFU-M (Fig. 4B) were significantly reduced by knee loading (both 

p < 0.001).

Knee loading suppressed osteoclast formation

To determine whether knee loading affected the formation of osteoclasts in vitro, bone 

marrow-derived cells were treated with M-CSF and RANKL. Compared to the sham group, 

cells from the osteonecrosis group exhibited a signicantly increased capacity to form 

matured osteoclasts (Fig. 4C). The loading group, however, presented significantly lowered 

matured osteoclasts (p < 0.001; Fig. 4D).

Knee loading suppressed migration and adhesion of pre-osteoclasts

To evaluate whether knee loading simultaneously suppressed migration and adhesion, we 

conducted assays for migration (Fig. 5A) and adhesion (Fig. 5B). The osteonecrosis group 

elevated both migration and adhesion (both p < 0.001), while knee loading signicantly 

attenuated both migration (p < 0.01; Fig. 5C) and adhesion (p < 0.001; Fig. 5D).

Knee loading suppressed bone resorption of osteoclasts

For the histological samples, TRAP staining showed that the ratio of TRAP-positive cells 

was increased in the osteonecrosis group (p < 0.01; Fig. 6A), and the elevated ratio in the 

osteonecrosis group was significantly suppressed by knee loading (p < 0.05; Fig. 6B).

The ratio of the pit area to the total field area was calculated (Fig. 6C). Cells from the 

osteonecrosis group exhibited an increased capacity to form pits. Compared to the 

osteonecrosis group, pit formation was signicantly suppressed by knee loading (p < 0.001; 

Fig. 6D).

Knee loading enhanced osteoblast differentiation in vivo and in vitro

We next determined whether knee loading had an effect on the differentiation of osteoblasts 

in vivo and in vitro. For the histological samples, MacNeal’s staining was used to identify 
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osteoblasts in the femoral head (Fig. 7A). The data showed that the number of osteoblasts 

was not significantly different in the sham and osteonecrosis groups. However, it signicantly 

increased in the loading group (p < 0.01; Fig. 7 B). For bone marrow-derived cells, the 

percentage of ALP-positive cells in total cells was not significantly different between the 

sham and osteonecrosis groups. However, the loading significantly increased the percentage 

of ALP-positive cells (p < 0.001; Fig. 7C, D).

Knee loading increased the number of CFU-F

To evaluate any effect of knee loading on the differentiation from marrow mesenchymal 

progenitors to fibroblasts, we performed the CFU-F assay 14 days after isolation of bone 

marrow-derived cells (Fig. 7E). The result revealed that the loading group generated a 

significantly higher number of CFU-F than the sham and osteonecrosis groups (p < 0.001; 

Fig. 7F).

The correlation analysis between the parameters of vessel remolding and bone healing

To evaluate whether vessel remolding was correlated with bone remolding, we selected 

parameters of vessel remodeling (vessel volume and vessel number) and bone remolding 

(BMD, BMC and BV/TV) to analyze the correlation. The statistic analysis indicated that 

vessel volume were positively corrected with BMD, BMC and BV/TV (r = 0.891, 0.898 and 

0.920, respectively, all p < 0.01). We also observed that vessel number were positively 

corrected with BMD, BMC and BV/TV (r = 0.901, 0.918 and 0.924, respectively, all p < 

0.01) (Fig. 8).

Discussion

ONFH is one of the serious orthopedic diseases in the hip joint [35]. Many therapies have 

been applied to animal models of ONFH to investigate the curative effect. Therefore, 

establishing a suitable animal model is indispensable to improve the diagnosis and therapy. 

Although various risk factors are considered [36], interruption of blood supply to the 

femoral head is a core factor [37]. So, the pathogenesis of animal models of ONFH is 

corrected with interruption of blood supply in femoral head directly and indirectly. There are 

multiple animal models such as spontaneous osteonecrosis, surgical-induced osteonecrosis, 

corticosteroid-induced osteonecrosis, endotoxin-induced osteonecrosis, and physical injury-

induced osteonecrosis [38]. Spontaneous osteonecrosis, for instance, induces osteonecrosis 

by compressing arteries that enter the femoral head [39]. In surgical-induced osteonecrosis, 

two major procedures are ligation of the femoral neck and cutting the ligamentum teres. 

Excessive corticosteroids intake is a risk factor, since concentrated corticosteroids can block 

microvessels by forming fat embolism [6, 23]. ONFH can also be induced by 

lipopolysaccharide alone or lipopolysaccharide combined with corticosteroids. Rabbits 

usually are sensitive to lipopolysaccharide, and its intravenous injection may lead to 

multifocal osteonecrosis in the femoral head [40]. Physical injury, such as exposure to low 

temperature with liquid nitrogen, may induce ONFH by promoting thrombosis in 

microvessels [41].
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An ischemic osteonecrosis model of Yorkshire pigs was employed by transecting the 

ligamentum teres and placing two ligatures around the femoral neck [42]. Using optical and 

CT imaging analysis, we demonstrated that the ligatures around the femoral neck were the 

primary cause of induction of avascular osteonecrosis. In our study, ONFH was induced by 

transecting the ligamentum teres and tightly placing a ligature around the femoral neck in a 

rat model for six weeks. Anatomical inspection revealed that compared to the sham operated 

control, the femoral head of the osteonecrosis group exhibited non-smooth and somewhat 

greater “moth eaten” appearance. The samples in the osteonecrosis group exhibited shorter 

height of the femoral head. Histological observation revealed that compared to the sham 

group, the osteonecrosis group exhibited the smaller BV/TV, vessel volume and vessel 

number. We also observed that ONFH stimulated maturation, migration, adhesion, and pit 

formation (bone resorption) of osteoclasts. In many skeletal diseases including osteoporosis, 

osteoarthritis and osteonecrosis, osteoclast activities increase [43–45], and our results accord 

with them. Furthermore, geometric inspection revealed that the samples in the osteonecrosis 

group exhibited a shorter height and width of the femoral head than the sham operated 

control group. Collectively, the animal model herein is a proper experimental model for 

mimicking an avascular osteonecrosis.

Knee loading presented multiple beneficial effects on vessel remodeling and bone 

remodeling. In bone remodeling, we observed that knee loading increased femoral 

BMD/BMC and BV/TV. Knee loading increased the height of the femoral head partially, 

although the increase approached statistical significance potentially because of a relatively 

short period to observation. In vessel remodeling, data in the blood perfusion assay indicated 

that knee loading suppressed the ONFH-induced decrease in the vessel volume and vessel 

number. We also determined the expression of VEGF (an essential angiogenic marker). 

Knee loading increased the expression of VEGF and the VEGF positive staining 

microvessels in femoral head of ONFH. It indicated that knee loading improved vessel 

remodeling by increasing both blood perfusion and angiogensis in ONFH. Our previous 

paper indicated that collateral circulation around the femoral neck was altered in a pig 

osteonecrosis model [42]. We would determine the effect of knee loading to collateral 

circulation around the femoral head in the further study. In bone homeostasis, balance 

between bone formation by osteoblasts and bone resorption by osteoclasts is required [46]. 

We conducted in vitro assays and evaluated the role of knee loading in the fate of bone 

marrow-derived cells. On one hand, our data indicated that knee loading suppressed 

maturation, migration, adhesion, and pit formation (bone resorption) of osteoclasts. On the 

other hand, we observed that differentiation of osteoblasts and fibroblasts was not affected 

in ONFH. However, knee loading enhanced differentiation of osteoblasts and fibroblasts. In 

addition, we used static bone histomorphometry to determine osteoblast (MacNeal’s 

staining) and osteoclast (TRAP staining) numbers in the femur. The data indicated that knee 

loading stimulated differentiation of osteoblasts and suppressed activity of osteoclasts in 

vivo. The results support the notion that knee loading achieves not only suppression of bone 

loss but also stimulation of bone formation. The results of correlation analysis indicated that 

a significant positive correlation was observed between vessel remodeling (vessel volume 

and vessel number) and bone remolding (BMD, BMC and BV/TV). Many factors can 

contribute to the observed bone healing including load-induced blood perfusion, a decrease 
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in bone-resorbing osteoclasts and an increase in bone-forming osteoblasts. The current 

histology and bone mineral density data are suggestive of the role of bone marrow-derived 

stem cells in load-driven bone healing, and they also establish a causal relationship between 

the observed vessel remodeling and bone healing effects with knee loading (Fig. 8).

Loading synovial joints such as the knee and ankle has been demonstrated to accelerate the 

healing of surgical wounds in the femoral neck and tibia, respectively [15, 17]. Joint loading 

is also reported to elevate the length of mouse limbs [47, 48]. Our previous microarray 

analysis using C57BL/6 female mice indicated that signaling pathways related to Wnt, 

PI3K, TGF-β and ECM-receptors are involved in the responses to joint loading [18]. 

Answering to a question whether these pathways mediate the observed bone remodeling as 

well as vessel remodeling requires further molecular analysis.

In conclusion, we demonstrate that knee loading is effective in improving ONFH in a rat 

model. Knee loading achieve bone healing through promoting both vessel remodeling and 

bone remodeling in the femur through the modulation of the fate of bone marrow-derived 

cells in the treatment of ONFH. Further studies should be performed to clarify the molecular 

mechanism underlying the role of bone marrow-derived cells in vessel remodeling as well as 

bone remodeling. The present study suggests that knee loading has a potential usage as a 

non-invasive physical therapy for ONFH.
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Highlights

Knee loading improves bone mass and bone mineral density in osteonecrosis of the 

femoral head in a rat model.

Knee loading enhances vessel remodeling through stimulating blood perfusion and 

angiogenesis.

Knee loading promotes bone remodeling by suppressing bone-resorbing osteoclasts 

and increasing bone-forming osteoblasts.

A significant positive correlation is observed between vessel remodeling and bone 

healing.
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Fig. 1. 
The surgical procedure and loading procedure, and the determination of femoral BMD/

BMC. (A) The hip joint capsule was transected and the femoral head was dislocated (Bar = 

10 mm). (B) ONFH was induced by transecting the ligamentum teres and tightly placing a 

ligature around the femoral neck (Bar = 10 mm). (C) Schematic diagram illustrated the 

loading equipment. (D) Loading was laterally applied to the left and right knee of rats 

successively (5 N at 15 Hz) with 5 min/day for 5 weeks (the loader was indicated by the 

arrow). (E, F) BMD and BMC of the femur were measured before surgery and sacrifice, and 

their changes were obtained. Osteonecrosis reduced a regular growth in femoral BMD and 

BMC. Knee loading increased femoral BMD and BMC. Sham = operated control group, ON 

= osteonecrosis group, ON+Loading = knee loading treated osteonecrosis group. Asterisks 

(* and **) represent statistical significance at p < 0.05 and p < 0.01, respectively (n = 6).
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Fig. 2. 
The bone healing effect of knee loading on ischemic femoral head. (A) The femoral head 

surface of the sham group was smooth, and the osteonecrosis group exhibited greater “moth 

eaten” appearance (indicated by the arrows). The femoral head of the loading group was 

repaired (Bar = 2 mm). (B) The histological parameters of trabecular in femoral head under 

the growth plate were determined by H&E staining (100×, Bar = 200 μm). The 

representative photographs were shown. (C) The osteonecrosis group exhibited a lower ratio 

of BV/TV. Compared to the osteonecrosis group, knee loading enhanced BV/TV of the 

femoral head. Asterisks (* and ***) represent statistical significance at p < 0.05 and p < 

0.001, respectively (n = 6).
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Fig. 3. 
Knee loading improved vessel remodeling in the femoral head. (A) The expression of VEGF 

was measured by immunohistochemistry assay. VEGF positive staining microvessels in 

femoral head were indicated by the red circles (200×, Bar = 100 μm). (B) The ratio of VEGF 

positively stained area to total field area was calculated. Osteonecrosis decreased the 

expression of VEGF, and knee loading enhanced them. (C) The density of microvessels was 

analyzed in the femoral head using ink blood perfusion angiography (100×, Bar = 200 μm). 

The representative photographs were shown. (D, E) Osteonecrosis decreased both the vessel 

number (D) and vessel volume (E), and knee loading significantly enhanced vessel number 

and volume. Asterisk (** and ***) represent statistical significance at p < 0.01 and p < 

0.001, respectively (n = 6).
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Fig. 4. 
Knee loading reduced the numbers of CFU-GM/CFU-M, and suppressed formation of 

osteoclasts. (A, B) The bone marrow-derived cells were seeded onto 6-well plates at a 

density of 2.5×104 cells/well. The culture medium was composed of methylcellulose with 30 

ng/ml M-CSF and 20 ng/ml RANKL. The CFU-GM and CFU-M assays were conducted at 

day 7. The numbers of CFU-GM and CFU-M per tibia increased in the osteonecrosis group. 

The numbers of CFU-GM (A) and CFU-M (B) of bone marrow-derived cells were reduced 

significantly by knee loading. (C) Bone marrow-derived cells were seeded onto 96-well 

plates at a density of 1×105 cells/well. Cells were treated with M-CSF and RANKL for four 

days. TRAP-positive multinuclear cells (more than 3 nuclei) were identified as osteoclasts, 

and the ratio of the osteoclast area to the total field area was calculated (400×, Bar = 50 μm). 

The representative photographs were shown. (D) Cells from the osteonecrosis group 

exhibited a signicantly increased matured osteoclasts. Knee loading significantly attenuated 

osteoclast formation. Asterisk (***) represent statistical significance at p < 0.001 (n = 6).
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Fig. 5. 
Knee loading suppressed migration and adhesion of osteoclasts. (A) Bone marrow-derived 

cells were treated with M-CSF and RANKL. Then, osteoclast precursors were plated onto 

vitronectin-coated polycarbonate membrane in 24-well plates at a density of 1×105 cells/

well at day 4. After 6 h, cells were stained with crystal violet (200×, Bar = 100 μm). The 

representative photographs were shown. (B) Bone marrow-derived cells were treated with 

M-CSF and RANKL for two days. Then osteoclast precursors were plated onto vitronectin-

coated 96-well plates at a density of 1×105 cells/well. After incubation for 1h, adherent cells 

were stained with crystal violet. The number of cells adherent to the bottom of plates was 

counted (200×, Bar = 100 μm). The representative photographs were shown. (C) The 

osteonecrosis group activated osteoclast migration, while knee loading signicantly 

attenuated osteoclast migration. (D) Cells from the osteonecrosis group exhibited a 

signicantly increased capacity of osteoclast adhesion. Knee loading significantly reduced 

osteoclast adhesion. (** and ***) represent statistical significance at p < 0.01 and p < 0.001, 

respectively (n = 6).
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Fig. 6. 
Knee loading suppressed bone resorption of osteoclasts. (A) TRAP staining was used to 

evaluate bone resorption in the femoral head (400×, Bar = 50 μm). TRAP-positive cells, red 

color, indicated by the arrows. The representative photographs were shown. (B) TRAP 

staining showed that the ratio of the number of TRAP-positive cells was increased in the 

osteonecrosis group. The activity of osteoclasts in the osteonecrosis group was significantly 

suppressed by knee loading. (C) Bone marrow-derived cells were treated with M-CSF and 

RANKL for 10 days. Then, the bone slices were stained by crystal violet. The ratio of the pit 

area to the total field area was determined (400×, Bar = 50 μm). The representative 

photographs were shown. (D) Cells from the osteonecrosis group exhibited a signicantly 

increased capacity to pits formation. However, bone resorption was suppressed by knee 

loading. Asterisks (*, ** and ***) represent statistical significance at p < 0.05, p < 0.01 and 

p < 0.001, respectively (n = 6).
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Fig. 7. 
Knee loading stimulated differentiation of osteoblast and CFU-F. (A) MacNeal’s staining 

was used to identify osteoblasts in the femoral head (400×, Bar = 50 μm). Osteoblasts, 

located on trabecular surface, were indicated by the arrows. (B) MacNeal’s staining showed 

that the number of osteoblasts was not significant different in the sham and osteonecrosis 

groups. However, it signicantly increased in the loading group. (C) Bone marrow-derived 

cells were cultured in 6-well plates for 14 days. ALP staining was used to detect osteoblast 

differentiation. The ratio of the numbers of ALP-positive cells to that of total cells was 

determined (400×, Bar = 50 μm). The representative photographs were shown. (D) The ratio 

of the number of ALP-positive cells to that of total cells was not significantly different in the 

sham and osteonecrosis groups. However, this ratio was signicantly increased in the loading 

group. (E) Bone marrow-derived cells were cultured in 6-well plates with a complete 

MesenCult medium for 14 days. Fibroblasts were stained using a fibroblast staining kit. The 

number of colonies per well was counted (Bar = 8 mm). The representative photographs 

were shown (the clone were indicated by the circles). (F) Cells in the loading group 

generated a significantly higher number of CFU-F than the sham and osteonecrosis groups. 

(** and ***) represent statistical significance at p < 0.01 and p < 0.001, respectively, and ns: 

p > 0.05 (n = 6).

Liu et al. Page 22

Bone. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Proposed mechanism of knee loading protects against ONFH by enhancing vessel 

remodeling and bone healing.
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