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Abstract
Hepatocellular carcinoma (HCC) is the 5th most 
common malignancy which is responsible for more 
than half million annual mortalities; also, it is the third 
leading cause of cancer related death. Unfavorable 

systemic side-effects of chemotherapeutic agents and 
susceptibility to the degradation of small interfering 
RNAs (siRNAs), which can knock down a specific 
gene involved in the disease, have hampered their 
clinical application. So, it could be beneficial to 
develop an efficient carrier for the stabilization and 
specific delivery of drugs and siRNA to cells. Targeted 
nanoparticles have gained considerable attention as 
an efficient drug and gene delivery system, which 
is due to their capability in achieving the highest 
accumulation of cytotoxic agents in tumor tissue, 
modifiable drug pharmacokinetic- and bio-distribution, 
improved effectiveness of treatment, and limited side-
effects. Recent studies have shed more light on the 
advantages of novel drug loaded carrier systems vs  
free drugs. Most of the animal studies have reported 
improvement in treatment efficacy and survival rate 
using novel carrier systems. Targeted delivery may be 
achieved passively or actively. In passive targeting, 
no ligand as homing device is used, while targeting 
is achieved by incorporating the therapeutic agent 
into a macromolecule or nanoparticle that passively 
reaches the target organ. However, in active targeting, 
the therapeutic agent or carrier system is conjugated 
to a tissue or cell-specific receptor which is over-
expressed in a special malignancy using a ligand called 
a homing device. This review covers a broad spectrum 
of targeted nanoparticles as therapeutic and non-
viral siRNA delivery systems, which are developed 
for enhanced cellular uptake and targeted gene 
silencing in vitro  and in vivo  and their characteristics 
and opportunities for the clinical applications of drugs 
and therapeutic siRNA are discussed in this article. 
Asialoglycoprotein receptors, low-density lipoprotein, 
ganglioside GM1 cell surface ligand, epidermal growth 
factor receptor receptors, monoclonal antibodies, 
retinoic acid receptors, integrin receptors targeted by 
Arg-Gly-Asp peptide, folate, and transferrin receptors 
are the most widely studied cell surface receptors 
which are used for the site specific delivery of drugs 
and siRNA-based therapeutics in HCC and discussed in 
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Core tip: Targeted nanoparticles have gained con
siderable attention as an efficient drug and gene 
delivery system in hepatocellular carcinoma owing to 
their capability for achieving the highest accumulation 
of cytotoxic agents in tumor tissue, modifiable drug 
pharmacokinetic- and bio-distribution, improved 
effectiveness of treatment, and limited side-effects. 
This review covers a broad spectrum of targeted nano
particles as therapeutic and non-viral small interfering 
RNA (siRNA) delivery systems, which are developed 
for enhanced cellular uptake and targeted gene silen
cing in vitro  and in vivo . Their characteristics and 
opportunities for the clinical applications of drugs and 
therapeutic siRNA are discussed in this article.
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EPIDEMIOLOGY
Hepatocellular carcinoma (HCC) as the 5th most 
common malignancy is the most common primary 
liver cancer and is responsible for more than half 
million annual mortalities, which makes it the third 
leading cause of cancer related deaths[1]. This disease 
more dominantly affects males than females, the 
ratio of which is usually around 3:1 or 4:1 in most 
populations[2]. At the moment, HCC is most prevalent 
in East Asia; but, it is rapidly pervading through most 
of the Western nations and the number of diagnosed 
patients is rapidly increasing[1,3].

Etiology
Several risk factors are held responsible for the 
occurrence of HCC, but with varying importance levels 
in different regions. This disease mostly occurs in 
persons with a history of other liver diseases such as 
cirrhosis, which is the unique nature of HCC and points 
to the most important risk factors as Hepatitis C and B 
as well as alcoholic and non-alcoholic fatty liver. Other 
important risk factors are toxic exposure to aflatoxins 
and vinyl chloride, diabetes mellitus, obesity, diet, 
hemochromatosis, Wilson’s disease, type 2 diabetes, 
hemophilia, and genetic factors[4]. The overall average 

5-year survival rate of HCC is estimated as 70% for 
the patients undergoing surgery[5].

SIGNS AND SYMPTOMS
There are several staging systems for HCC which 
determine the course of treatment and treatment 
prognosis[6]. HCC patients may show jaundice, 
bloating from fluid in the abdomen, easy bruising 
from coagulopathy, loss of appetite, unintentional 
weight loss, nausea, vomiting, or fatigue. Patients 
usually complain about right upper quadrant pain, 
weight loss, and deterioration of liver function in 
cirrhotic cases. Most symptoms are unspecific such as 
abdominal pain, malaise, fever, jaundice, and anorexia. 
Ascites, hemorrhage, and encephalopathy may also 
occur; but, a large number of population may remain 
asymptomatic[7].

DIAGNOSIS
HCC screening is recommended for high risk patients 
and the most frequently used surveillance methods 
are testing serum α-fetoprotein (AFP) and abdominal 
ultrasound in 6 mo intervals[8,9]. Ultrasound is often 
the first imaging and screening modality which is 
used. In the patients with higher suspicion of HCC 
(such as rising alpha-fetoprotein and des-gamma 
carboxyprothrombin levels), the best method of 
diagnosis involves a computed tomography (CT) scan 
of the abdomen using intravenous contrast agent. A 
biopsy is not needed to confirm the diagnosis of HCC if 
certain imaging criteria are met. An alternative to a CT 
imaging study would be magnetic resonance imaging 
(MRI)[8,9].

MANAGEMENT AND TREATMENT 
MODALITIES FOR HCC
Non-medicinal managements of HCC
If benefits outweigh surgery risks, the patient is a 
candidate for surgical modalities such as liver resection 
in the case of early-stage non-cirrhotic patients and 
liver transplantation in the case of chronic disease and 
cirrhosis. However, early-stage HCC patients that are 
not qualified for surgical interventions can alternatively 
benefit from minimally invasive treatments such as 
percutaneous ablation and intermediate-stage HCC 
cases that have not shown vascular invasion and 
cancer related symptoms could undergo trans catheter 
arterial chemoembolization (TACE), which is usually 
performed for unresectable tumors or as a temporary 
treatment while waiting for liver transplant[10]. Other 
managements include: interventional radiology; 
http://en.wikipedia.org/wiki/File:HepatoCellular_Ca.
JPG; radiofrequency ablation (RFA) using high 
frequency radio-waves to destroy tumor by local 
heating; selective internal radiation therapy (SIRT) 
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used to destroy the tumor and thus minimize exposure 
of healthy tissue; intra-arterial iodine-131-lipiodol 
administration and percutaneous ethanol injection (PEI) 
as well-tolerated methods; combined PEI and TACE for 
the tumors of larger than 4 cm in diameter; and portal 
vein embolization as a method using a percutaneous 
trans hepatic approach in which an interventional 
radiologist embolizes the portal vein supplying the side 
of the liver and the tumor. There are currently two 
products of embolic microspheres: SIR-Spheres and 
Thera Sphere. The latter is an FDA approved treatment 
for primary HCC. SIR-Spheres are FDA approved for 
the treatment of metastatic colorectal cancer, but 
outside the United States. Cryosurgery is also another 
management of HCC that is a new technique and can 
destroy tumors in the liver. High intensity focused 
ultrasound is another therapeutic treatment of HCC[10]. 
Figure 1 summarizes various treatment strategies for 
HCC at different stages according to the Barcelona 
Clinic Liver Cancer algorithm.

Therapeutics of HCC
Palliative and restricted therapy to a localized region 
of the body could also be used in intermediate- to 
advanced-stage patients, for whom embolization is 
not feasible. Some examples of locoregional therapy 
methods are internal radiation and hormonal therapy 
including antiestrogen therapy with tamoxifen (usually 
considered ineffective), octreotide (somatostatin 
analogue), and adjuvant chemotherapy. No randomized 
trial has shown the benefit of neoadjuvant or adjuvant 
systemic therapy in HCC. Single trial has shown a 
decrease in new tumors among the patients receiving 
oral synthetic retinoid for 12 mo after resection/
ablation. Results have not been reproduced[11].

Since systemic chemotherapy is not proved to 
significantly increase survival rate in HCC patients and 

due to the overall side-effects of chemotherapeutic 
agents, their dose limitation, and possibly the 
expression of multi drug resistance gene (MDR-1) 
in HCC, chemotherapy is now considered one of the 
palliative therapies for HCC, while the survival rate of 
incurable HCC patients remains poor[12].

Doxorubicin is one of the most frequently used 
cytotoxic agents for the chemotherapy of non-
resectable HCC tumors, even though it has high toxic 
side-effects and has shown no increased survival 
rate[13]. Randomized phase Ⅱ and Ⅲ studies have 
also compared the response rates of doxorubicin 
vs the frequently used PIAF regimen consisting of 
cisplatin/interferonα-2b/doxorubicin/5-fluorouracil; 
while the response rates have been slightly enhanced, 
the survival rates are not significantly improved[14,15]. 
Gemcitabine has been found to be more effective 
in hepatic cancers and the combination regimen of 
gemcitabine and oxaliplatin (GEMOX) along with 
bevacizumab has slightly increased the survival time in 
a phase Ⅱ study[16].

Studies on interferon-α (IFN-α) immunotherapies 
have suggested that IFN-α could have survival 
benefits for non-curable HCC patients when used in 
combination with other agents[17].

Many molecular targeted therapies are also under 
phase Ⅱ and Ⅲ studies. A receptor tyrosine kinase 
inhibitor, sorafenib, as an FDA approved drug, may be 
used in the patients with advanced HCC. Sorafenib is 
a small molecule that inhibits tumor-cell proliferation 
and tumor angionesis. It correspondingly increases the 
rate of apoptosis in other tumor models. Sorafenib is 
one of the molecular targeted small molecule agents, 
which blocks vascular epithelial growth factor receptors 
(VEGFRs) 1, 2 and 3 and platelet derived growth factor 
receptor b (PDGFR-b) through multikinase inhibition 
and leads to the inhibition of tumor growth and 
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Figure 1  Schematic representation of various treatment strategies for hepatocellular carcinoma at different stages according to the Barcelona Clinic Liver 
Cancer algorithm. RFA: Radiofrequency ablation, PEI: Percutaneous ethanol injection; TACE: Trans catheter arterial chemoembolization.
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angiogenesis[18,19]. Results of meta-analysis based on 
phase Ⅱ and Ⅲ trials have suggested that sorafenib-
based chemotherapy is superior to placebo-based 
chemotherapy in terms of overall survival without 
considerable increase in toxicity[20].

Bevacizumab is another molecular drug which is, in 
fact, a humanized monoclonal antibody against VEGF 
and, hence, results in the blockade of angiogenesis. 
Findings of phase Ⅱ clinical trials have suggested 
that bevacizumab might increase the survival rate 
of patients with nonmetastatic HCC[21]. Erlotinib 
and sunitinib are also other small molecules for the 
inhibition of thyrosine kinase that have been found 
effective in phase Ⅱ trials[22,23]. Cetuximab and lapatinib 
are other molecular therapeutics that are currently 
under phase Ⅱ studies for non-resectable HCC[24].

Small interfering RNA-based treatment of HCC
Small interfering RNA (siRNA) is a double-strand RNA 
molecule which is also named short interfering RNA 
or silencing RNA with 20-25 base pairs in length. 
siRNA interferes with the expression of specific genes 
with complementary nucleotide sequences. It causes 
mRNA to get broken down after transcription and 
result in no translation[25]. RNA interference (RNAi) 
may represent a powerful strategy to interfere in 
key molecular pathways involved in cancer and has 
established a new area of clinical therapy for HCC. 
siRNA induced RNAi presents an effective and simple 
method to silence a wide range of cancer-associated 
genes. A number of siRNAs have been established 
that are capable of silencing some different types of 
human HCC gene targets, such as livin, cyclin E, VEGF, 
COP9 signalosome subunit 5, c-Myc, and so on[26-29]. 
The most important molecular and biochemical 
markers of human hepatocellular carcinoma effective 
in progression and poor prognosis include glypican-3, 
Dickkopf-1, S100A4, S100A14, SOX6, SUOX, 
AKR1B10, and CD34, cystine/glutamic acid transporter, 
GRK6, GPR87, metallothioneins, retinoic acid-induced 
protein 3, synovial sarcoma X breakpoint 2, protein 
phosphatase magnesium-dependent 1 delta, BCL9, 
interferon regulatory factor-1 and 2, CDK4, LASP-1, 
PTP4A3, fatty acids, PAK5, hnRNPL, cylindromatosis 
gene, melanoma-associated antigen family protein 
D-4, EphA3, and Flotillin-1[30]. Knocking down of the 
genes of these biomarkers by siRNA may be used 
for the treatment of HCC. Li et al[31] presented the 
development of TetR siRNA therapeutics for HCC using 
an integrated approach, including the development 
of an efficient lipid nanoparticle (NP) delivery system, 
the identification of a robust therapeutic target that 
does not trigger liver toxicity upon target knock down, 
and the selection of potent and non-immunogenic 
siRNA molecules against the target. The TetR-ODC-
Luc, HepG2, or HuH7 cells were inoculated into the 
liver of 6 to 8 wk old severe combined immune-
deficient female mice to create various orthotopic HCC 

liver tumor models. The resulting siRNA-containing 
lipid NPs produced significant antitumor efficacy in 
orthotopic HCC models and, thus, represented a 
promising starting point for the development of siRNA 
therapeutics for HCC.

Kinesin spindle protein (KSP) plays a critical role 
in mitosis. Inhibition of KSP function leads to cell 
cycle arrest at mitosis and, ultimately, cell death. 
In the study done by Doan et al[32], KSP expression 
was suppressed by specific siRNA in Hep3B cells 
and evaluated its anti-tumor activity. KSP-siRNA 
transfection induced apoptosis and could increase 
chemo sensitivity to DOX in Hep3B cells, even at low 
doses compared to the control. This method may yield 
promising results for eradicating HCC cells in vitro.

Another important siRNA type in HCC is the specific 
gene silencing siRNA of AFP which is an oncoembryonal 
protein highly expressed in the majority of HCCs. AFP 
may be involved in multiple cell growth regulating, 
differentiating, and immunosuppressive activities. 
Effects of AFP gene silencing by siRNA on the apoptosis 
and proliferation of HCC cell line EGHC-9901, which 
highly expresses AFP has been investigated. Western 
blot and RT-PCR assay have demonstrated that siRNA-
AFP induces high expression of caspase-3, caspase-8, 
caspase-9, and Bcl-2[33].

p28GANK is an HCC oncogene. The adenovirus-
delivered siRNA (AdsiRNA) is applied to inhibit this 
oncogene in HCC cell lines and the antitumor effect 
is investigated. The T7-RNA polymerase system is 
used to screen the specific target site. AdSiRNA could 
suppress p28GANK expression by up to 80% in HCC 
cells. Depletion of p28GANK induces caspase-8- and 
caspase-9-mediated apoptosis of HCC cells. Finally, 
targeting p28GANK by adenovirus injection inhibits the 
growth of established tumors in nude mice. This study 
shows that the T7-RNA polymerase system screening-
based AdSiRNA can be used successfully to silence an 
oncogene. p28GANK may serve as a novel therapeutic 
target for treating HCC[34].

NANOPARTICLE-BASED DRUG DELIVERY
Nanoparticulate drug delivery systems are solid, 
colloidal particles with the particle size of 10 to 1000 
nm. However, in nanomedicine, they often refer to 
devices < 200 nm (i.e., the width of microcapillaries). 
There are two types of NPs: nanocapsules and 
nanospheres. Nanocapsules are vesicular systems 
in which a drug is confined to a cavity surrounded 
by a polymeric membrane, whereas nanospheres 
are matrix systems in which the drug is physically 
and uniformly dispersed. NPs can load the active 
ingredients in different forms of dissolved, entrapped, 
adsorbed, attached, and/or encapsulated into or onto 
a nanomatrix. Systemic unfavorable side-effects of 
chemotherapeutic agents and other drugs have led 
to research on the development of new agents or 
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therapeutic strategies. The main objectives are to 
achieve the highest accumulation of cytotoxic agents 
in tumor tissue, modify drug pharmacokinetic- and 
bio-distribution, improve effectiveness of treatment, 
and limit the side-effects.

Targeted delivery may be achieved passively 
or actively (Figure 2). In the passive targeting, no 
ligand is used as a homing device and targeting is 
achieved by incorporating the therapeutic agent 
into a macromolecule or nanoparticle that passively 
reaches the target organ. In this strategy, the leaky 
nature of vessels in cancer tissue and lack of well-
defined lymphatic system can enhance the permeation 
and retention of NPs, which is called the enhanced 
permeation and retention (EPR) effect. However, 
in active targeting, the therapeutic agent or carrier 
system is conjugated to a tissue or cell specific 
receptor which is over-expressed in special malignancy 
using a ligand called homing device[35].

CELL SURFACE RECEPTORS IN HCC
HCC has one of the worst prognoses for survival as it is 
poorly responsive to both conventional chemotherapy 
and mechanism-directed therapy. This issue is due 
to the lack of therapeutic concentration in the tumor 
tissue coupled with the highly toxic off-site effects 
exhibited by these compounds. Consequently, the 
best packaging for the therapy of HCC will involve 
three components: a potent therapeutic, a rationally 
designed drug delivery vehicle to enrich the target site 

concentration of the drug, and a surface ligand that can 
lead to greater propensity for internalization by tumor 
cells compared to parenchyma. Before addressing the 
variety of targeted drug delivery systems used in HCC, 
an introduction to the different receptors that are over-
expressed in this disease and may be used for the 
active targeting of chemotherapeutic agents loaded 
in NPs may be useful. Serotonin is a well-known 
neurotransmitter and vasoactive substance. Recent 
studies have indicated that serotonin contributes 
to liver regeneration and promotes tumor growth 
of human HCC. The serotonin receptors 1B and 2B 
are expressed, respectively, in 32% and 35% of the 
patients with hepatocellular cancer. Both receptors 
are associated with an increased proliferation index in 
Huh7 and HepG2 cell lines[36].

Gamma-aminobutyric acid and gamma-aminobutyric 
acid A receptor θ subunit play important roles in 
HCC development and progression and could be a 
promising molecular target for the development of 
new diagnostic and therapeutic strategies for HCC[37].

Over-expression of fibroblast growth factor receptor 
3 (FGFR3), which is a signal transduction and cell 
proliferation related gene in HCC, is another important 
receptor with an important role in liver carcinogenesis. 
FGFR3 may be an ideal candidate as a molecular 
marker in the diagnosis of HCC and a potential 
therapeutic target[38]. Epidermal growth factor receptor 
(EGFR) is frequently over-expressed in HCC. EGFR 
expression has shown borderline association with 
cirrhosis, but not with other examined clinicopathologic 

Figure 2  Different methods of targeted delivery of nanoparticles by passive or active mechanism. EPR: Enhanced permeation and retention.
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parameters. EGFR over-expression is present in a 
majority of HCC types, which suggests a role for EGFR 
antagonists in therapy[39].

Somatostatin receptor related alterations are 
potentially novel prognostic and predictive biomarkers for 
HCC with a special emphasis on the therapeutic potential 
of somatostatin analogues in HCC management[40].

Insulin receptor (IR) exists as two isoforms resul
ting from the alternative splicing of IR pre-mRNA. 
IR-B promotes the metabolic effects of insulin, 
while IR-A rather signals proliferative effects. IR-B is 
predominantly expressed in the adult liver. Alternative 
splicing of IR pre-mRNA is dysregulated in HCC, 
while it is normal in adjacent non-tumor liver tissue. 
Increased expression of IR-A during the neoplastic 
transformation of hepatocytes could mediate some of 
the adverse effects of hyperinsulinemia on HCC[41].

Prostaglandin E2 (PGE2) has been implicated in cell 
invasion in HCC via increased b1-integrin expression 
and cell migration by activating the PKC/NF-κB signaling 
pathway. Targeting PGE2/EP1/PKC/NF-κB/FoxC2/b1-
integrin pathway may represent a new therapeutic 
strategy for the prevention and treatment of this 
cancer[42]. High levels of adenosine accumulate in 
hypoxic tissues during the rapid growth of tumors, 
suggesting that the activation of adenosine receptors 
may facilitate tumor progress. A2b expression is up-
regulated in HCC and its expression level is correlated 
to tumor progression in HCC, which suggest that A2b 

may be a novel target for HCC therapeutic strategy[43]. 
The insulin-like growth factor (IGF) pathway is 
implicated in the pathogenesis of HCC and may be 
important in nonalcoholic fatty liver disease. Significant 
associations have been seen between IGF-1 expression 
and liver cirrhosis and survival after resection in 
patients with HCC, independent from their underlying 
liver disease[44].

Galactosamine-mediated targeted delivery of anti-
cancer drugs in the liver has been tested, because its 
receptor, asialoglycoprotein receptor 1 (ASGPR1), is 
expressed in the liver and not in other human tissues. 
Mammalian hepatic ASGPRs mediate the binding, 
internalization, and degradation of extracellular 
glycoproteins with exposed terminal galactose, lactose, 
or N-acetyl-galactosamine residues[45].

Androgen (AR) signaling has also been shown to 
suppress the metastasis of HCC among the patients 
with late-stage disease. In addition, there is evidence 
that therapy comprising Sorafenib and agents that 
enhance the functional expression of AR may suppress 
the progression of late-stage HCC[46].

Another surface receptor which is over-expressed 
in HCC is the folate receptor (FR). Folate is a basic 
component of cell metabolism and DNA synthesis and 
repair. Rapidly dividing cancer cells have an increased 
requirement for folate to maintain DNA synthesis, an 
observation supported by the widespread use of anti-
folates in cancer chemotherapy. FR levels are high in 
specific malignant tumors of epithelial origin compared 

to normal cells and are positively associated with 
tumor stage and grade, which raises the questions of 
its role in tumor etiology and progression. Although the 
precise mechanism of pathway(s) for FR uptake has 
not been exploited, phagocytosis is proposed from the 
observation that FR recycles between an acid-resistant 
(intracellular) and acid-sensitive (extracellular) pool. 
GPI-anchored proteins are diffusely distributed at the 
cell surface and it is proposed that FR is cross-linked 
by these proteins and then concentrated in clusters 
at the cell membrane surfaces called Caveolae, 
whereby the membrane would transiently close and 
internalize the folate-bound receptor complex. When 
the internal compartment of the cell shows increased 
acidification folate is separated from the receptor and 
using the energy generated from the acidic gradient 
moves across the membrane into the cytoplasm of the 
cell, then, the next cycle would be started at the cell 
surface membrane by the exposure of the receptors[47].

Transferrin receptor (TfR) is also over-expressed in 
many malignant cells, including breast cancer, pancreatic 
cancer, prostate cancer, colon cancer, lung cancer, and 
leukaemia[48-50] cells. It is also over-expressed in some 
cell lines of HCC including HepG2, J5, Bel-7402, Huh7, 
and SK-Hep-1. It is a carrier protein for Tf, imports iron 
into the cell by internalizing the Tf-iron complex through 
receptor-mediated endocytosis, and is regulated in 
response to intracellular iron concentration[51].

Retinoid analogues have been reported to inhibit 
the growth of HCC. Sano et al[52]’s study showed that 
retinoic acid receptor-alpha is the dominant receptor in 
HCC, which suggests that selective retinoid analogues 
of this receptor may be useful for chemotherapy.

TARGETED NANOPARTICLE-BASED 
DRUGS AND SIRNA DELIVERY IN HCC
In different works aiming to reduce undesirable side-
effects of therapeutic agents in non-target organs, 
scientists have tried to sign up one of these over-
expressed receptors for the active targeting of drugs to 
HCC by the conjugation of a specific ligand to the NPs 
which fit to the receptor and facilitate the endocytosis 
of the drug loaded carrier to the cells. In the following 
sections, it is attempted to illustrate the potentials of 
novel strategies based on targeted nanoparticulate 
delivery systems used in the treatment of HCC 
incorporating drugs or siRNA through different over-
expressed cell surface receptors. Table 1 summarizes 
some of the different targeted nanocarriers used 
for the delivery of therapeutic agents and in HCC, 
while Table 2 shows the reported delivery systems of 
targeted NPs for siRNA in this disease.

Passive targeting by pegylated NPs
As mentioned before, targeted drug delivery may 
be achieved by EPR effect via passive targeting. For 
this purpose, it is necessary for the carrier to have 
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Table 1  Summary of studied targeted nanoparticles used in vitro /in vivo  for drug delivery in hepatocellular carcinoma using 
different targeting moieties

Type of nanocarrier NPs composition Targeted for receptor Active moiety Specific Remarks Ref.

Synthetic or natural 
polymeric NPs

Polyethylenglycol (PEG), 
dithiodipropionate, 

hyaluronic acid

Asialogycoprotein 
receptor (ASGPR) , no 
receptor (EPR effect)

Doxorubicin 
(DOX)

The NPs were sensitive to acidic environment 
of endosomes and high intracellular Glutathion 

concentrations

[62]

Synthetic or natural 
polymeric NPs

poly(caprolactone), PEG no receptor (EPR 
effect)

Docetaxel The NPs had a long circulating characteristic and 
longer retention time in tumor cells

[63]

Synthetic or natural 
polymeric NPs

Galactose (GA), chitosan, ASGPR 5-FU - [66,74,75]

Synthetic or natural 
polymeric NPs

O-carboxymethyl chitosan, 
GA

ASGPR Paclitaxel 
(PTX)

- [68]

Synthetic or natural 
polymeric NPs

Hyaluronic acid (HA), GA ASGPR PTX The dual targeting allows for the NPs to get 
internalized by tumor cells more specifically

[69]

Synthetic or natural 
polymeric NPs

Hematoporphyrin, Bovine 
serum albumin (BSA)

LDL DOX The photosensitizing properties of 
hematoporphyrin allowed for an accurate 

monitoring of NP uptake by imaging

[88]

Synthetic or natural 
polymeric NPs

Heat-liable enterotoxin 
subunite B (LTB), BSA

Ganglioside GM1 
receptor

5-FU - [92]

Synthetic or natural 
polymeric NPs

Galactosylated chitosan, 
polycaprolactone

ASGPR Curcumin - [72]

Synthetic or natural 
polymeric NPs

Galactosylated chitosan, 
mPEG-SH

ASGPR Norcantharidin 
(NCTD)

The drug was actually loaded using ionic cross 
linkage between NCTD and chitosan

[76]

Synthetic or natural 
polymeric NPs

SM5-1, PLA Membrane antigens 5-FU - [96]

Synthetic or natural 
polymeric NPs

Apotransferin, BSA transferrin receptor DOX - [138]

Synthetic or natural 
polymeric NPs
Synthetic or natural 
polymeric NPs

Apotransferrin, Lactoferrin
Chitosan, retinoic acid (RA), 

Albumin

Transferrin receptor
RA receptor

DOX
DOX

-
-

[139]
[105]

Mixed NPs GA, DOX, Alginate ASGPR DOX - [70]
Mesoporous high 
surface area silica 
core fused to a 
liposome (protocell)

Silica, PEG, 
Zwitterionic lipids, 

phosphatidylethanolamine

SP94 receptor, no 
receptor (EPR effect)

DOX The fusogenic peptide used allows for more 
efficient internalization. The nanoporous silica core 

also gives the NPs, a significantly higher surface 
area

[64]

Nano micelle PEG, polycaprolactone, 
SPION, folate

Folate receptor Sorafenib The SPION loaded NPs could be efficiently 
monitored using MR imaging

[128]

Nano micelle RGD, PEG, stearic acid, 
chitosan

Integrins DOX - [112]

Nano liposome egg phosphatidylcholine, 
cholesterol, monomethoxy 

PEG-distearoyl 
phosphatidylethanolami
ne, and Lactose - dioleyl 

phosphatidylethanolamine 
(DOPE)

ASGPR DOX - [73]

Nano liposome Anti CD44 antibody, 
cholesterol, DOPE, DSPC, 

DSPE-(PEO)4-cRGDfK, 
DSPE-mPEG

CD44 DOX - [97]

Lipid nanocarriers Lactobionic acid, Stearyl 
amine, lecithin, glyceryl 
monostearate, oleic acid

AGPR 5-FU - [71]

Magnetic NPs FeCl2, FeCl3, CMC, EpCAM 
aptamer

Epithelial cell adhesion 
molecule

DOX These magnetic nanoparticles were suggested as a 
candidate for MR imagine of HCC

[113]

Magnetic NPs Fe3O4/Fe, silica no receptor (EPR 
effect)

ABT-888, 
Temozolamide

The co-delivery of the two drugs both inhibits 
transcription of survival genes and has cytotoxic effect

[65]

BSA NPs Glycyrrhizic 
acid (GA), BSA, 

10-hydroxycamptothecin 
(HCPT)

ASGPR FITC - [67]

Gold NP Gold, cetuximab EGFR gemcitabine When coupled with RF-hyperthermia, these NPs 
were significantly effective at tumor growth 

inhibition

[94]

Nanosuspension DSPE, PEG, FA, soy lecithin Folate receptor Docetaxel - [136]
Dendrimer poly(methacryloyl 

sulfadimethoxine) (PSD), 
PEG, Lactose

ASGPR DOX - [77]
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enough time to reach the affected area. Surface-
modification of delivery vehicles with polyethylene 
glycol (PEG), i.e., PEGylation, is a promising method 
for enhancing in vivo stability and performance of 
various non-viral drug and gene vectors, which results 
in the production of stealth NPs[53-59]. In addition, 
PEGylation can dramatically improve particle transport 
through biological obstacles, such as mucus[60]. The 
efficacy of nucleus-targeted drug- or gene-carrying 
NPs may be limited by slow transport through the 
molecularly crowded cytoplasm following endosome 
escape. NPs may stick to cytoskeletal elements and 
cellular organelles may be steric obstacles for the 
efficient intracellular transport of NPs. Therefore, 
surface coating of NPs with PEG can potentially reduce 
the adhesive interactions of colloids with intracellular 
components[61]. In this attempt, the dual sensitive 
spherical NPs of PEGylated dithiodipropionate-
hyaluronic acid copolymer (PEG-SS-HA) was produced 
and loaded with DOX by Xu et al[62]. This NP is prone 
to releasing its DOX content in response to the acidic 
pH of intracellular lysosomes and reduction by high 
intracellular glutathion (GSH) concentration. Due to 
PEGylation, NPs have a stealth circulation and are 
finally uptaken by liver cells because of the HA content. 
The in vitro studies have demonstrated that these 
NPs are effectively internalized by HepG2 cell line and 

cause the inhibition of cell growth.
Docetaxel loaded poly ethyleneglycol-poly 

(caprolactone) (mPEG-PCL) NPs are another example 
of passive targeted NPs used on hepatic cancer cell line 
H22 in vitro. This study results in the same cytotoxic 
effect as the free commercial Docetaxel. NPs have 
a long circulation, higher accumulation inside tumor 
parenchyma, longer retention time in tumor cells in 
vivo, and hence effective tumor growth inhibition[63].

Pegylation along with peptide targeted NPs have 
been used for efficient co-delivery of therapeutic and 
siRNA in HCC, one of which is a spherical, nanoporous 
high surface area silica core fused to liposomes. The 
obtained hybrid and supported lipid bilayer, named 
protocell, is then modified using a targeting SP94 
peptide, PEG, and fusogenic peptide. This novel 
nanocarrier has a much higher surface area that 
results in higher capacity for therapeutic loading as well 
as enhanced stability and selectivity compared to the 
liposomes with the same size. DOX, a low molecular 
weight model drug, and a siRNA model are loaded 
into these protocells. The protocells are demonstrated 
to be internalized rapidly by Hep3B cells and DOX 
is released in an efficient manner in physiological 
mimicking environments. The protocells designed here 
are potential candidates for the delivery of a disparate 
set of cargoes and therapeutic and siRNA cocktails with 

Virus-like NP MS2 capsid, Ricin toxin 
A chain, SP94, H5WYG 
fusogenic peptide, PEG

SP94 receptor DOX, cisplatin, 
5-FU

- [142]

Core-shell NP Poly(vinyl alcohol), 
albumin

Transferrin receptor DOX, sorafenib The synergistic effect of DOX and sorafenib here 
increased tumor inhibition more significantly

[141]

Miscellaneous PLGA, PVA, chitosan, 
Asialofetuin

ASGPR EPI Co-delivery of EPI with tocotrienols as anti-
oxidative agents, resulted in significantly lower 

cardiotoxicity and higher apoptosis level

[85]

Miscellaneous Benzyl malolactonate, PEG, 
Fluorescein amine, Biotin, 
cyclic Biotin-RGD peptide, 

streptavidin

Biotin Receptor, 
integrins

DOX The use of streptavidin for grafting a peptide 
suggests that a number of peptides could be grafted 
in NPs without needing any additional chemistry

[115]

Type of nanocarrier Active moiety Targeted receptor Suggested Mechanism Ref.

Lipid nanoparticle TetR siRNA - - [31]
Novel nonocarrier consisting of a silica core 
fused to liposomes (called protocell)

Model siRNA SP94 protein and EPR - [64]

Galactose mediated trimethylchitosan cysteine 
NPs

VEGF-siRNA and Survivin shRNA-
expression pDNA (iSUR-pDNA)

ASGPR Silencing of tumor growth genes [86]

A phospholipid-cholesterol nanocomplex Pokemon siRNA LDL receptor Cell growth inhibition [89]
A SPION called SilenceMag Human VEGF siRNA EGFR Tumor growth inhibition [95]
PEGylated Polyethyleneamine SPION Survivin siRNA Integrin Induction of apoptosis [114]
Virus-like nanoparticle of bacteriophage MS2 Anti-cyclin siRNA Folic acid receptor, SP94, 

transferrin receptor
Induction of apoptosis [142]

Lipid nanoparticle Integrin b1 siRNA integrin Inhibition of proliferation and 
tumor cell death

[116]
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NP: Nanoparticle; LDL: Low-density lipoprotein; EPR: Enhanced permeation and retention; FITC: Fluorescein isothiocyanate.

SPION: Superparamagnetic iron oxide nanoparticle; siRNA: Small interfering RNA; LDL: Low-density lipoprotein; EPR: Enhanced permeation and 
retention; EGFR: Epidermal growth factor receptor; ASGPR: Asialoglycoprotein receptor.
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the flexibility of selecting several targeting ligands and 
other characteristics[64].

Sometimes, passive targeting is potentiated by an 
external magnetic field to concentrate the NPs in the 
affected area. An example of this method of targeting 
is a study in which a poly (ADP-ribose) polymerase 
1 (PARP-1) inhibitor (ABT-888) in conjunction with 
the alkylating agent temozolomide (TMZ) is used as 
a therapeutic strategy to increase the cytotoxic effect 
of drug on HCC. Fe3O4/Fe core with a silica shell is 
prepared for the dual delivery of ABT-888 and TMZ. 
This nanosystem is tested in vitro on three tumoral 
and one non-cancerous cell lines of the liver. An 
extended release kinetic is achieved and the NPs are 
accumulated in tumor cells and show higher efficacy in 
apoptotic cell death compared to free drug[65].

Asialoglycoprotein receptors
Although PEGylation has been widely used to enhance 
the accumulation of NPs in tumor tissues through 
EPR effect, it still inhibits cellular uptake and affects 
intracellular trafficking of carriers. On the other hand, 
active targeting of molecules displays better cell 
selectivity and enhances the poor tumor penetration 
effect. As mentioned before, asialoglycoprotein 
receptors are another type of receptors over-
expressed on HCC cells. They are lectins which bind 
asialoglycoprotein; glycoproteins from which a sialic 
acid has been removed to expose galactose residues. 
The receptors, which are located on liver cells, remove 
the target glycoproteins from circulation. Glycyrrhetinic 
acid (GA) is one of the sugar type ligands, which is 
used for the targeted delivery of NPs to HCC. GA 
modified chitosan NPs are produced and loaded with 
5-FU. The NPs provide a sustained release system 
that halts tumor cell growth in vitro in a time and 
dose dependent manner. The in vivo studies on 
an ortothopic model of liver cancer in mouse have 
demonstrated significant tumor growth inhibition and 
prolonged life span[66].

In another study, glycyrrhizic acid modified 
NPs of bovine serum albumin are synthesized by 
different concentrations of each agent and loaded 
with 10-hydroxycamptothecin. These NPs have higher 
affinity for hepatic tumor cells and the treatment group 
shows a higher amount of tumor growth inhibition 
than the control group[67].

Use of glycyrrhizin modified O-carboxymethyl 
chitosan NPs loaded with paclitaxel is another 
example of targeted NPs toward ASGPRs, which are 
tested on HCC cell line of SMMC-7721. The blank 
NPs show complete biocompatibility and no toxicity. 
The cell internalization of glycyrrhizin conjugated 
NPs is almost 10 times higher than the non-targeted 
NPs. Furthermore, the tumor growth inhibition is 
significantly higher than non-targeted NPs and free 
paclitaxel[68].

A double target nanocarrier containing glycyrr

hetinic acid-grafted-hyaluronic acid (GAHA) NPs is also 
synthesized. This double target nanocarrier against 
liver tumor cells consist of a hyaluronic acid shell with 
glycyrrhetinic acid grafts encapsulating paclitaxel and 
is tested on two different cell lines of human HCC. 
The uptake of NPs is high in HepG2, which has both 
receptors for HA and GA. The carrier itself has a low 
cytotoxicity level and in vivo imaging studies have 
demonstrated a high accumulation level in tumor 
cells[69].

GA was also used as the targeting moiety to target 
ASGPRs by Guo et al[70]. A pH sensitive nanocarrier 
system consisting of GA modified alginate/doxorubicin 
(DOX) modified alginate is prepared and tested on the 
model of HCC. The release profile of DOX from NPs is 
prolonged compared to the half-life of free agent and 
responds to the pH of endosomes. The nanosystem 
could successfully decrease tumor growth in mice 
without any mortality.

Varshosaz et al[71] also developed galactosylated 
nanostructured lipid carriers (NLC) for the targeted 
delivery of 5-FU in HCC. They conjugated lactobionic 
acid to stearyl amine by chemical reaction. The 
targeted NLCs of 5-FU contained lecithin, glyceryl 
monostearate, oleic acid, or Labrafac as the oil phase 
and was dispersed in an aqueous phase containing 
Tween 80 or Solutol HS15 as the surfactants. NLCs 
were prepared by an emulsification-solvent diffusion 
method. The galactosylated NLCs of 5-FU were 
cytotoxic at the concentration of half dose of free 5-FU 
on HepG2 cell line and seemed promising in reducing 
5-FU dose in HCC.

Galactosylated chitosan-polycaprolactone (Gal-CH-
PCL) NPs loaded with curcumin are another type of the 
NPs targeted to ASGPRs. NPs have a controlled release 
and their PCL content is found to be a key factor for 
the release mechanism. NPs are efficiently uptaken by 
HepG2 cells in vitro and the curcumin loaded into NPs 
has a 6-fold higher cytotoxic effect than free curcumin. 
This issue suggests improved bioavailability by Gal-CH-
PCL NPs[72].

Another reported example of the targeted nana
noparticulate delivery systems is a lactosylated 
lipid called dioleylphosphatidylethanolamine (Lac-
DOPE), which is utilized as the targeting ligand 
on the modified liposome of methoxy pegylated 
distearoeylphosphatidylethanolamine (mPEG-DSPE) 
loaded with DOX which targets ASGPR of hepatocytes 
in HCC. The Lac-L-DOX nanoliposomes show a 
higher uptake by HepG2 hepatocellular cells and an 
enhanced cytotoxicity rate compared with the non-
targeted liposomal DOX in conjunction with the longer 
circulation time due to PEG modification. The in vivo 
studies have also demonstrated increased tumor 
growth inhibition in nude mice compared to both free 
and non-targeted liposomal drugs[73].

Galactosylated chitosan (GC) NPs are synthesized 
encapsulating 5-FU and tested in vivo and in vitro to 
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HCC cells. Studies have demonstrated higher apoptosis 
induction through p53 pathway by GC/5-FU and the 
test group has no such 5-FU related side-effects as 
liver injury or bone marrow suppression. These NPs 
also show a sustained release mechanism for 5-FU, 
which carrier could be promising for 5-FU delivery to 
hepatic cells without the usual immunosuppressive 
effects of this chemotherapeutic agent[74,75]. Another 
form of these NPs is prepared by cross-linking the 
GC using norcantharidin as the active pharmaceutical 
ingredient, whose in vivo antitumor activity is better 
than either the free norcantharidin or norcantharidin 
attached to CS NPs, but without galactose residue in 
mice bearing H22 liver tumors[76].

Lactose is another sugar used for targeting 
ASGPRs. In a study, lactose modified PEGylated poly 
(amido amine) (PAMAM) dendrimer that is turned 
into a pH sensitive system by poly (methacryloyl 
sulfadimethoxine) (LA-PEG-b-PSD-PAMAM) and DOX 
is loaded in PAMAM. The drug release is significantly 
higher at pH 6.5 compared to pH 7.4 in PBS. The 
modified dendrimers have a specific cellular uptake 
by hepatoma cells at pH 6.5 and in vivo studies show 
a higher tumor growth inhibition rate by the modified 
dendrimers[77].

Asialofetuin (AF) is a glycoprotein that possesses 
three asparagine-linked triantennary complex 
carbohydrate chains with terminal N-acetylgalacto
samine residues. This protein has high affinity to 
ASGPR on hepatocytes and enters the cells through 
this receptor[78,79]. Thus, AF has been used as a ligand 
to deliver drugs to hepatocytes and a competitive 
inhibitor to ASGPR[80,81]. AF-appended liposomes have 
widespread use as a hepatocyte-selective gene transfer 
carrier[82-84].

Epirubicin (EPI) loaded chitosan-poly(lactide-co-
glicolide) (PLGA) NPs were designed by Nasr et al[85] 
to target hepatocytes using asialofetuin and the NPs 
were tested on HepG2 cell line and HCC induced 
mouse model. Also, in an attempt for decreasing 
cardiotoxicity, these delivery systems were co-
administered with tocotrienols. The developed NPs 
reduced cell proliferation and tumor angiogenesis 
and also, when co-administered with tocotrienols, 
further enhanced apoptosis and decreased VEGF level 
dose dependently. The cardiotoxicity assessment 
demonstrated that EPI-NPs decreased the level of 
TNF-alfa induced inflammation, nitric oxide (NO), lipid 
peroxidation product of oxidative stress, and restored 
superoxide desmutase levels and also reduced 
glutathione levels in the heart. All these effects were 
enhanced when co-administered with tocotrienols.

The ASGPRs are not only used for the targeted 
delivery of therapeutic agents but also for siRNA based 
drug delivery. For example, NPs of galactose mediated 
trimethyl chitosan cystein (GTC) are developed for 
the oral delivery of VEGF-siRNA and Survivin shRNA-
expression pDNA (iSUR-pDNA). Co-administration of 

a pDNA and siRNA allows for both prompt and long-
lasting silencing effects on tumor growth genes. The 
NPs with moderate galactose density could effectively 
enter the tumor tissue both in vitro and in vivo and 
result in Survivin and VEGF gene silencing and, hence, 
decreased cell growth and angiogenesis and increased 
induction of apoptosis. Co-delivery of these two RNAs 
has a synergistic effect on halting tumor growth 
compared to single gene delivery[86].

Low-density lipoprotein receptors
HCC is frequently associated with paraneoplastic 
hypercholesterolemia. In familial hypercholesterolemia, 
the genetic mutation of low-density lipoprotein (LDL) 
receptor gene has been recognized as a pathogenesis 
of the disease[87].

In the study conducted by Chang et al[88], 
hematoporphyrin was used as an LDL target and 
photo-sensitizing agent in the treatment of HCC. 
Hematoporphyrin modified bovine serum albumin 
NPs were loaded with DOX. The designed NPs were 
evaluated in vitro on HepG2 cells and in vivo on 
mice inoculated by HCC. In both cases, efficacy was 
enhanced according to photodynamic toxicity session 
and eradiation time.

Cholestrol can also target LDL receptors. Therefore, 
a nanocomplex consisting of soybean phospholipids 
and cholesterol conjugated siRNA (Chol-siRNA) for 
Pokemon gene silencing mediated by reconstituted 
HDL (rHDL) for targeting HepG2 liver cancer cells 
was prepared. Pokemone protein is held responsible 
for oncogenesis in liver cells in vivo. NPs have a 
sustained release kinetic and highly efficient and 
specific delivery to HepG2 cell line. The in vitro studies 
have shown significant cell growth inhibition and 
reduction of Pokemon and Bcl-2 proteins (responsible 
for the inhibition of cell apoptosis) in the treated cells, 
whereas in vivo studies have demonstrated high 
uptake of carriers by tumor cells of HCC bearing nude 
mice upon iv administration as well as significant cell 
growth inhibition. Hereby rHDL is suggested as a 
superior liver cell delivery vector, which facilitates the 
specific transfection with siRNA[89].

Another reported delivery system which can 
target LDL receptors is the sterol containing solid 
lipid nanoparticles (SLNs) that is used for quercetin 
delivery, a potential chemotherapeutic drug. Low 
solubility of quercetin seriously limits its clinical use. 
Therefore, SLNs are designed for enhancing its cellular 
penetration using cholesterol analogues, i.e., sterols 
which make bilayers fluent for targeting HCC cells. 
Three sterol types including cholesterol, stigmasterol, 
and stigmastanol are used for the preparation of 
quercetin SLNs by emulsification solvent evaporation 
method. The IC50 of quercetin in cholesterol containing 
SLNs is about six and twice less than the free drug and 
phytosterol containing SLNs, respectively, and it causes 
more accumulation of the drug in HepG2 cells[90].
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Ganglioside GM1 cell surface ligand
The branched pentasaccharide chain of ganglioside 
GM1 is a prominent cell surface ligand, for example, for 
cholera toxin or tumor growth-regulatory homodimeric 
galectins[91]. Zhao et al[92] used heat-liable enterotoxin 
subunit B (LTB) as a ganglioside GM1 binding ligand 
for the targeted treatment of HCC. NPs of the mixture 
of LTB and bovine serum albumin are prepared and 
their internalization to hepatocellular cancer cell line 
SMMC-7721 is tested. 5-FU is loaded in these NPs and 
cytotoxicity is proved to be much higher than that of 
the untargeted NPs.

EGFR receptors
Hyperthermia is almost always used along with other 
forms of cancer therapy, such as radiation therapy and 
chemotherapy. Hyperthermia may make some cancer 
cells more sensitive to radiation or harm other cancer 
cells that cannot be damaged by radiation. There are 2 
very different types of hyperthermia: local hyperthermia 
or thermal ablation in which very high temperatures 
are used for destroying a small area of cells, such as 
a tumor. The other way is regional hyperthermia or 
whole-body hyperthermia in which the temperature 
of a part of the body (or even the whole body) is 
raised to a few degrees higher than normal. This type 
of hyperthermia helps other cancer treatments such 
as radiation, immunotherapy, or chemotherapy work 
properly. Local hyperthermia is most commonly done 
using high-energy radio waves and, consequently, is 
named RFA to treat tumors up to about 2 inches (5 
cm) across. This method is used for the patients in 
whom surgery is not possible to remove the tumor 
or for those who have recurrent tumors. It can also 
be added to other treatments like surgery, radiation 
therapy, chemotherapy, hepatic arterial infusion 
therapy, alcohol ablation, or chemoembolization. In 
this technique, a thin, needle-like probe is put into 
the tumor for about 10 to 30 min under the guidance 
of ultrasound, MRI, or CT scans. The high-frequency 
current produced in the tip of the probe creates heat 
between 122 °F-212 °F, which destroys the cells within 
the affected tumor area[93]. In this regard, Raoof et al[94] 
produced some gold NPs loaded with anticancer drug 
gemcitabin and tested them on the xenograft model 
of HCC. They used EGFR for the targeted delivery 
of gemcitabin. As mentioned before, this receptor is 
expressed on some HCC cell lines such as Hep3B and 
is specifically targeted by cetuximab as a monoclonal 
antibody. Using radiofrequency (RF), it induces a non-
invasive hyperthermia in targeted cells, but not in 
normal cells, which results in reduced growth and 
induction of apoptosis. This study suggests that an 
Au NP-gemcitabin system could be as effective as 
the conventional dosage of gemcitabine, but with the 
almost 275 times less dosage.

VEGF, a sub-family of growth factors, is a 
signal protein produced by the cells that stimulate 

vasculogenesis and angiogenesis. When VEGF is over-
expressed, it can contribute to the disease. Solid 
cancers cannot grow beyond a limited size without an 
adequate blood supply; cancers that can express VEGF 
are able to grow and metastasize. The influence of 
siRNA-VEGF on endothelial cell proliferation, apoptosis, 
and tube formation was analyzed in vitro by Raskopf 
et al[28]. Their results showed that two days after 
transfection, the VEGF expression was inhibited 70% 
in Hepa129 and 48% in SVEC4-10 cell lines. In vitro 
endothelial cell proliferation and tube formation were 
reduced by 23% and 38%, respectively. Reduced 
pAKT in hepatoma cells interfered in VEGF signaling. 
Intraperitoneal application of siRNA-VEGF inhibited the 
tumor growth by 83% or 63% in orthotopic tumors 
within 14 d. VEGF protein was reduced in both models 
by 29% and 44%. Microvessel density dropped to 
34% for the tumors from ex vivo transfected cells and 
39% for systemic treated tumors.

Human VEGF (hVEGF) siRNA was labeled with 131I 
using the Bolton-Hunter method and conjugated to a 
type of SPIOs named SilenceMag. Nude mice with HCC 
tumors were injected subcutaneously with 131I-hVEGF 
siRNA/SilenceMag and were then exposed to an 
external magnetic field (EMF). External application 
of an EMF attracted and retained more 131I-hVEGF 
siRNA/SilenceMag in HCC tumors as shown by MRI 
and biodistribution studies. The tumors treated with 
131I-hVEGF siRNA/SilenceMag grew nearly 50% slower 
in the presence of EMF than those without EMF and the 
control. Immunohistochemical assay confirmed that 
the tumor targeted by 131I-hVEGF siRNA/SilenceMag 
guided by an EMF had a lower VEGF protein level than 
the one without EMF exposure and the control. The 
synergic therapy of 131I-hVEGF siRNA/SilenceMag might 
be a promising future treatment option against HCC 
with the dual functional properties of tumor therapy 
and imaging[95].

Specific surface antigens targeted by monoclonal 
antibodies
One of the most successful therapeutic strategies for 
solid tumors and hematologic malignancies is based 
on treatment with the monoclonal antibodies of cancer 
in the last 20 years. For cancer cell surface antigen 
discovery, a combination of serological techniques with 
hybridoma technology leads to a series of landmark 
clinical trials that paves the way for new generation 
antibodies and subsequent clinical success. Therapeutic 
monoclonal antibodies target specific antigens 
found on the cell surface, such as transmembrane 
receptors or extracellular growth factors. In some 
cases, monoclonal antibodies are conjugated to radio-
isotopes or toxins to allow the specific delivery of these 
cytotoxic agents to the intended cancer cell target. 
One of these therapeutic monoclonal antibodies is 
Sorafenib (Nexavar), which targets VEGFR, PDGFR, 
KIT, and RAF antigens and is FDA approved for HCC. 
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Another antibody with specificity for liver tumor cells 
is SM5-1 which is a humanized mouse antibody. NPs 
of PLGA are prepared, conjugated with SM5-1, and 
loaded with 5-fluorouracil. They are then tested in vitro 
and in vivo on subcutaneous and liver tumor HCC-
LM3-fLuc cells. In both occasions, the targeted NPs 
have better efficacy in terms of inhibiting tumor cell 
growth[96].

Another reported antibody targeted NPs used 
to specifically target HCC was designed by Wang 
et al[97] who prepared a liposomal NP, mediated by 
CD44 antibody and loaded with herpes simples virus-
truncated thymidine kinase (HSV-ttk), renilla luciferase 
(Rluc), and red fluorescent protein (RFP) in an 
attempt to evaluate targeting efficacy by non-invasive 
molecular imaging. HepG2 cells were injected into the 
liver of NOD/SCID mice to model in situ liver cancer. 
Then, the growth status of tumor was monitored.

Retinoic acid receptors
Retinoid analogues have been reported to inhibit the 
growth of HCC. They strongly affect embryogenesis 
and carcinogenesis. The biological activity of retinoids 
is exerted through binding to specific nuclear receptors 
in the steroid/thyroid hormone family. Two major 
classes of retinoid receptors, RARs and retinoic X, 
have been identified, each of which consists of three 
distinct receptor subtypes: α, b, and g[98]. Retinoic acid 
receptor-α, is reported as the dominant receptor in 
HCC and its mRNA has been shown to be at low levels 
in the normal liver, but at high levels in HCC[52,99]. 
Retinoic acid is a derivative of vitamin A with an 
important role in the regulation of cell proliferation and 
differentiation[100] and its inhibitory effect on cancer 
cell growth is well established[101-104]. This receptor 
has been used to target doxorubicin in HCC by 
Varshosaz et al[105]. They graft retinoic acid to chitosan 
and synthesize copolymers with different degrees of 
substitution of retinoic acid on the chitosan. Then, 
the conjugate of retinoic acid-chitosan is grafted to 
albumin NPs for the targeted delivery of doxorubicin 
in HCC. NPs are produced by coacervation method. 
Cytotoxicity of doxorubicin loaded NPs on HepG2 cells 
using MTT assay shows that IC50 of drug loaded in 
these NPs is reduced to half and one third compared to 
the non-targeted NPs and free drug, respectively.

Integrin receptors targeted by Arg-Gly-Asp peptide
The tripeptide Arg-Gly-Asp (RGD) was originally 
identified as the sequence within fibronectin that 
mediates cell attachment. This tripeptide has been 
found in numerous proteins, including integrins, a 
family of cell-surface proteins, which act as receptors 
for cell adhesion molecules. RGD adheres to integrin 
receptors, especially αvb3 and αvb5, which are over-
expressed on the angiogenic endothelium in diseased 
tissues and various malignant tumors. RGD sequence 
is the cell attachment site of a large number of 

adhesive extracellular matrix (ECM), blood and cell 
surface proteins, and nearly half of more than 20 
known integrins recognize this sequence in their 
adhesion protein ligands. Integrins are transmembrane 
receptors which act like bridges for cell-cell and ECM 
interactions. When integrins are triggered, chemical 
pathways to the interior are activated. Some of these 
signals include chemical composition and mechanical 
status of ECM, which result in a response such as the 
regulation of cell cycle, cell shape, and/or motility or 
new receptors are added to the cell membrane. This 
issue allows rapid and flexible responses to events 
at the cell surface, for example, signal platelets to 
initiate an interaction with coagulation factors. Proteins 
that contain RGD attachment site, together with the 
integrins that serve as receptors for them, constitute 
a major recognition system for cell adhesion. When 
RGD peptides are insolubilized onto a surface, they can 
promote cell adhesion and inhibit it when presented to 
cells in solution. There are several types of integrins 
which may be present on the cell surface. Fibronectin, 
vitronectin, collagen, and laminin (http://en.wikipedia.
org/wiki/Ligands) are some of the common ligands 
for integrins[106]. The binding of a subset of the 
integrins which recognizes RGD motif within their 
ligands mediates both cell-substratum and cell-cell 
interactions. By cyclizing peptides with the selected 
sequences around the RGD and by synthesizing RGD 
mimics, it is possible to design reagents that bind 
selectively to only one or a few of the RGD-directed 
integrins. Integrin-mediated cell attachment influences 
and regulates many functions in various biological 
systems such as cell migration, growth, differentiation, 
and apoptosis. Therefore, drug design based on RGD 
structure may provide new treatments for diseases 
such as thrombosis, osteoporosis, and cancer[107].

Dual-ligand system may possess a synergistic effect 
and create a more ideal drug delivery effect. Based on 
the above factors, Mei et al[108] designed a multistage 
liposome system co-modified by RGD, TAT peptide, 
and cleavable PEG, which combined the advantages 
of PEG, specific ligand, and penetrating peptide 
(TAT). TAT is the basic region of the trans-activating 
transcriptional activator protein from HIV-1[109], which 
is able to transport different molecules and even 200 
nm nanocarriers across biological barriers to be taken 
up by various cell lines like HCC[110,111]. The cleavable 
PEG could increase the stability and circulation time 
of liposomes during circulation. After the passive 
extravasation to tumor tissues, RGD specifically 
recognizes the integrins over-expressed on HepG2 
cells of HCC and mediates efficient internalization in 
the synergistic effect of RGD and TAT. In vitro cellular 
uptake and 3D tumor spheroid penetration studies 
have demonstrated that the system could not only 
be selectively and efficiently taken up by the cells’ 
over-expressing integrins, but also penetrate into the 
tumor cells to reach the depths of the avascular tumor 
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spheroids. In vivo imaging and fluorescent images 
of tumor section have further demonstrated that this 
system achieves profoundly improved distribution 
within tumor tissues.

Studies of Cai et al[112] demonstrated that the 
targeting of RGD-coupled to poly(ethylene glycol)-
modified stearic acid-grafted chitosan (PEG-CS-SA) 
micelles to HCC tumor vasculature is a promising 
strategy for tumor-targeting treatment. DOX was 
entrapped in the micelles as a model anticancer drug. 
Qualitative and quantitative analyses of drug-loaded 
RGD-PEG-CS-SA micelles indicated significant increase 
of cellular uptake of DOX in HCC cell line (BEL-7402) 
that over-expressed integrins ανb3 and ανb5, but not 
in human epithelial carcinoma cell line (Hela). The 
competitive cellular-uptake test showed that the 
cellular uptake of RGD-modified micelles in BEL-7402 
cells was significantly inhibited in the presence 
of excess free RGD peptides. In vitro cytotoxicity 
tests demonstrated that DOX-loaded RGD-modified 
micelles could specifically enhance cytotoxicity against 
BEL-7402 compared to DOX-loaded PEG-CS-SA and 
free DOX.

Carboxy methyl cellulose-magnetic NPs have been 
synthesized using epithelial cell adhesion molecule 
(EpCAM) as a target on HCC cells. The in vitro MR 
imaging shows a higher uptake of the targeted 
magnetic NPs by cancer cells. DOX is loaded to these 
NPs and the accumulation of DOX in cancer cells is 
proved higher than that of free DOX or untargeted 
NPs. This nanoprobe is suggested to be useful for the 
delivery of therapeutics and imaging compounds[113].

PEG is grafted to polyethylenimine (PEI), modified 
by RGD tripeptide and functionalized by super 
paramagnetic iron oxide NPs (RGD-PEG-g-PEI-SPION) 
for the targeted delivery of Survivin siRNA to human 
HCC cell line Bel-7402. RGD conjugated NPs have 
higher efficacy in silencing Survivin gene in cancer 
cells compared to the non-targeted carriers. This gene 
suppression in conjunction with induced cell apoptosis 
leads to tumor growth inhibition in the mouse model of 
HCC. The SPION functionalized NPs also allow for the 
efficacious MIR imaging of targeted cells in vitro and 
in vivo, which suggests that this specific carrier might 
be a potential candidate for imaging and treatment 
purposes in human HCC[114].

Degradable and biocompatible building blocks 
of amphiphilic derivatives of poly(benzyl malate) 
are synthesized for the production of functional NPs 
bearing biotin molecules for the targeted delivery of 
an anti-cancer model drug, DOX. These NPs target 
the biotin receptors over-expressed on the surface 
of several cancer cells. Some of these biotinylated 
NPs are grafted to cyclic RGD peptide to produce 
biotinylated cyclic RGD NPs using the strong and 
highly specific interactions between biotin and the 
streptavidin protein. The fluorescent NPs grafted with 
cyclic RGD had A more efficient uptake by the HepaRG 

hepatoma cells compared to biotinylated fluorescent 
NPs. Furthermore, the targeting of HepaRG hepatoma 
cells with NPs bearing cyclic RGD is a very efficient 
and suitable targeting agent for liver cells[115]. Figure 3 
shows the schematic representation of the biotinylated 
cyclic RGD NPs loaded with DOX.

Knocking down of integrin subunits slows down 
the progression of HCC, which is due to the significant 
retardation of HCC progression, reduced proliferation, 
and increased tumor cell death accompanied by the 
reduced activation of the MET oncogene as well as 
expression of its mature form on the cell surface. MET 
is a receptor tyrosine kinase located at the membrane 
that is essential for embryonic development and 
wound healing. Hepatocyte growth factor (HGF) is 
the only known ligand of the MET receptor. MET is 
normally expressed by the cells of epithelial origin, 
while HGF expression is restricted to the cells of 
mesenchymal origin. Upon HGF stimulation, MET 
induces several biological responses that collectively 
give rise to a program known as invasive growth. 
Transformed proliferating cells from HCC are more 
sensitive to the knock-down of integrins than normal 
hepatocytes, which highlights the potential of small 
interfering RNA-mediated inhibition of integrins as 
an anti-cancer therapeutic approach. All integrin 
receptors in hepatocytes are down-regulated using 
the nanoparticulate delivery of short interfering RNAs 
targeting b1 and αv integrin subunits. Short-term (2 
wk) integrin knock-down does not cause apparent 
structural or functional perturbations of normal liver 
tissue. However, sustained integrin down-regulation for 
7 wk alters liver morphology[116].

Folate receptors
Folate is a basic component of cell metabolism, DNA 
synthesis, and repair, and rapidly dividing cancer cells 
have an increased requirement for folate to maintain 
DNA synthesis, an observation supported by the 
widespread use of antifolates in cancer chemotherapy. 
Because folate receptors (FR) are over-expressed 
in tumor cells, folate is frequently conjugated with 
different nanocarriers like polymeric micelles for 
targeted drug delivery to improve drug efficacy and 
safety of antitumor drugs[117,118]. FR is a glycosyl 
phosphatidinositol-anchored membrane protein which 
is over-expressed in 90% ovarian carcinomas and 
many types of other epithelial cancers like HCC. Folate 
receptors (FRα, FRb, and FRg) are cysteine-rich cell-
surface glycoproteins that bind folate with high affinity 
to mediate the cellular uptake of folate[119-123].

The expression levels of FR in normal tissues are 
much lower than in tumor tissues. FRα are especially 
expressed at high levels in numerous cancers to meet 
the folate demand of rapidly dividing cells under low 
folate conditions. FR is an ideal target for drug delivery 
thanks to its distinct expression between normal and 
malignant tissues. Folate dependency of many tumors 
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has been therapeutically and diagnostically exploited 
by the administration of anti-FRα antibodies, high-
affinity antifolates, folate-based imaging agents, and 
folate-conjugated drugs and toxins. Folate, the natural 
ligand of FR, has been extensively investigated for 
chemotherapeutic NP delivery considering its inherent 
high affinity, small size, and non-toxicity[124-127].

The effect of targeted folate-functionalized 
polyethyleneglycol-block-poly (e-caprolactone) (PEG-
PCL) micelles containing superparamagnetic iron oxide 
NPs (SPIONs) and sorafenib on the human hepatic 
carcinoma (HepG2) cells has been studied in vitro 
to observe the feasibility of the surveillance of this 
targeting therapeutic effect by magnetic resonance 
imaging. Magnetic resonance imaging using a clinical 
1.5 T scanner is performed to detect changes in 
the signal intensity of cells after incubation with the 
targeted micelles. The apoptotic rate in the targeted 
cells is significantly higher than that in the non-
targeted cells (P = 0.043). The T2 signal intensity on 
magnetic resonance imaging of the cells treated with 
the targeted micelles is significantly decreased with 
increasing the concentrations of sorafenib in the cell 
culture medium; but, there is no obvious decrease 
in signal intensity in the cells treated with the non-
targeted micelles. The results of this study show 
that polymeric micelles functionalized with folate and 
loaded with SPIONs and sorafenib inhibit proliferation 
and induce the apoptosis in HepG2 cells in vitro. The 
inhibitory events caused by targeted micelles could be 
monitored using magnetic resonance[128].

Although the expression of FR on HCC has been 
proved and its different cell lines like Bel-7402[129-131], 
Hep3B[132], PLC/PRF/5[133], and HepG2[134,135] have been 
reported to be FR positive, the last one is controversial 
and, in some references, it has been used as a FR 
negative cell line. For example, biodegradable DTX 
lipid-based nanosuspension (LNS) prepares as the 
base nanocarrier system. NPs of LNS which are loaded 
with DTX are either conjugated with folate (fLNS) 
or coated with PEG (pLNS). These two nanocarriers 
are tested on the tumor cell line of B16 as an over-
expressing folate receptor (FR+) and HepG2 as its 
under-expressing (FR-). In vitro studies have shown 
no difference between the antitumor effect of tLNS 
and pLNS in HepG2 cells, whereas in vivo studies in 
B16 bearing mice have demonstrated a higher tumor 
inhibition level with fLNS compared to pLNS and free 
agent. Expectedly, the uptake of fLNS is found to be 
higher after biodistribution studies[136].

Transferrin receptors
Cytotoxicity enhancement of two synthetic derivatives 
of temozolomide encapsulated in nanostructured 
lipid carriers (NLC) has been demonstrated for 
HCC cell lines of HuH-6 and HuH-7[137]. Two types 
of NPs were designed by Krishna et al[138]: one was 
the NPs of apotransferrin and the second was BSA 
conjugated to apotransferrin. Both were loaded with 
DOX and comparative studies were performed. The 
direct NPs of apotransferrin had a higher uptake by 
HCC cell’s nucleus, even though both were efficiently 

Figure 3  Schematic representation of the biotinylated cyclic Arg-Gly-Asp nanoparticles loaded with doxorubicin. PEG: Polyethylene glycol; RGD: Arg-Gly-Asp.
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internalized by TfR mediated endocytosis. The direct 
nanodrug showed an improved circulation and 
kinetic via intraperitoneal route and reduced the drug 
accumulation in the heart via iv route; therefore, lower 
DOX related cardiotoxicity was seen.

Decreased cardiotoxicity of DOX has been also 
reported by apotransferrin and lactoferrin modified 
NPs loaded with DOX which are applied in the rat HCC 
model induced by diethylnitrosamine. Enhancement 
of drug bioavailability and efficacy in a target-
specific mode is also achieved by these NPs[139]. 
Apo-human serum transferrin coupled with cisplatin 
could specifically deliver cisplatin to HepG2 cells in 
vitro, minimize the side-effects, and then stimulate 
apoptosis[140].

In the study by Malarvizhi et al[141], DOX was loaded 
to poly(vinyl alcohol) nano-cores and sorafenib was 
encapsulated in albumin nanoshell over the nanocore. 
Sofarenib inhibited the oncogenic signaling and hence 
a cytostatic effect, while DOX resulted in cytotoxicity. 
When targeted with transferrin ligand, the cellular 
uptake and cytotoxicity were enhanced. This core-shell 
nanoparticle with two relevant medications caused 
synergistic anti-cancer effects for the treatment of liver 
cancer.

CONCLUSION AND OUTLOOK
In this article, we highlighted the recent progress 
of utilizing targeted NPs as delivery system for 
therapeutic agents and siRNA in the treatment of 
HCC. According to these studies, targeted NPs have 
the potential to be used in the delivery of therapeutic 
agents to the tumor and effective delivery of siRNA 
to silence the corresponding genetic component 
involved in this disease. Various materials are used in 
modifying the physicochemical properties of targeted 
NPs to increase their stability, loading efficiency, 
and intracellular delivery, which have led to efficient 
targeted drug delivery and gene silencing. To prolong 
blood circulation time, the pegylated version of these 
nanocarriers can be developed. Surface functionalizing 
with targeting moiety has been shown to increase 
tissue accumulation and reduce adverse effects. Great 
efforts have been made to the coupling of polymer 
chains to NPs, especially in the context of the so-
called bioconjugation for biomedical applications. 
On the contrary, few works have been reported on 
the attachment of NPs with different natures for 
functionalizing agents for efficient co-delivery of 
siRNA and therapeutic agents. This field certainly 
needs to be further explored in the upcoming years 
in order to open very interesting possibilities for the 
preparation of novel materials through the assembly of 
functionalized NPs as nonviral inorganic/organic hybrid 
carriers. At the same time, the pharmacokinetic, 
pharmacodynamics, safety, and toxicity profiles of 
these carriers should be considered in preclinical and 

clinical studies to prove the efficacy of these materials 
as effective non-viral vectors in gene delivery.
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