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Abstract
A well-known tumor suppressor, p21, acts parado-

xically by promoting tumor growth in some cellular 
conditions. These conflicting functions have been 
demonstrated in association with the HBx gene and in 
hepatocarcinogenesis. The molecular behavior of p21 
depends on its subcellular localization. Nuclear p21 
may inhibit cell proliferation and be proapoptotic, while 
cytoplasmic p21 may have oncogenic and anti-apoptotic 
functions. Because most typical tumor suppressive 
proteins also have different effects according to 
subcellular localization, elucidating the regulatory 
mechanisms underlying nucleo-cytoplasmic transport 
of these proteins would be significant and may lead 
to a new strategy for anti-hepatocellular carcinoma 
(HCC) therapy. Chromosome region maintenance 1 
(CRM1) is a major nuclear export receptor involved 
in transport of tumor suppressors from nucleus to 
cytoplasm. Expression of CRM1 is enhanced in a variety 
of malignancies and in vitro  studies have shown the 
efficacy of specific inhibition of CRM1 against cancer 
cell lines. Interestingly, interferon may keep p21 in 
the nucleus; this is one of the mechanisms of its 
anti-hepatocarcinogenic function. Here we review 
the oncogenic property of p21, which depends on 
its subcellular localization, and discuss the rationale 
underlying a new strategy for HCC treatment and 
prevention.
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Core tip: A well-known tumor suppressor, p21, can act 
paradoxically by promoting tumor growth, depending 
on its subcellular localization. Nuclear p21 may 
inhibit cell proliferation while cytoplasmic p21 may be 
associated with anti-apoptotic and oncogenic functions. 
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These conflicting roles are reviewed in the context 
of the HBx  gene and hepatocarcinogenesis. Because 
most tumor suppressors act in a similar manner to p21, 
regulation of their nucleo-cytoplasmic export, which is 
mainly effected via  chromosome region maintenance 1, 
may be a basis for developing a new strategy for anti-
hepatocellular carcinoma therapy. 
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INTRODUCTION
Primary liver cancer is the 5th most common cancer 
in men and the 7th in women, with high mortality 
worldwide; therapeutic options for cure are urgently 
needed[1,2]. Hepatocellular carcinoma (HCC) accounts 
for most primary liver cancer. Although there is a 
geographic difference in incidence of HCC caused 
by some etiological variation, the major etiological 
agents are hepatitis B (HBV) and hepatitis C virus 
(HCV) infection. Once these viruses infect liver, they 
ingeniously evade host immune surveillance and 
induce chronic necroinflammation, leading to fibrosis 
and, ultimately, liver cirrhosis. Hepatocytes, via their 
innate regenerative capacity, continue to proliferate in 
order to compensate for the necrotic tissue. Genetic 
alterations continuously accumulate during these 
processes, resulting in pathogenic liver changes such 
as cirrhosis from which HCC frequently arises[3]. Once 
HBV-related cirrhosis is established, HCC develops at 
an annual rate of about 4% in Japan, for example[4].

Several lines of evidence support the direct 
involvement of HBV in the transformation processes. 
HBV is like a retrovirus in that it integrates into the 
host genome, causing chromosomal abnormalities. 
In addition, the HBx gene acts like an oncogene 
by trans-activating many genes involved in cellular 
transformation.

No common molecular mechanisms that account for 
the extremely complex process of hepatocarcinogenesis 
have yet been elucidated. Genetic alterations reported 
have been heterogenous, involving abnormalities of 
many signal transduction pathways[2,3]. However, a 
fundamental abnormality in hepatocarcinogenesis, like 
other malignancies, is deregulation of the cell cycle. The 
main regulators of the cell cycle are cyclin-dependent 
kinase inhibitors (CDKI), such as p21, p27, and p16, 
widely known as tumor suppressors. However, it is 
noteworthy that these tumor suppressors can function 
in an oncogenic manner depending on their precise 
intracellular localization. In this review, we explore 
the relevance of the intracellular localization of p21, in 
particular, and its function, to highlight the possibility 

that regulating the intracellular localization of tumor 
suppressors may be a potential future anti-HCC strategy 
in the context of both directly-killing tumor cells and 
preventive role.

P21 AS AN ONCOGENE
First identified in 1993[5,6], p21 is a universal CDKI 
that causes G1 growth arrest downstream of p53[7,8]. 
p21 binds to CDKs and inhibits the kinase activity, 
leading to growth arrest at specific stages in the cell 
cycle[9,10]. p21 also induces cellular differentiation and 
senescence.

Although p21 is one of the major tumor suppressors, 
it also can promotes oncogenesis. High expression of 
p21 is associated with poor prognosis of cancer[11-13]. 
Although mutation of the p21 gene has been reported 
in bladder cancer[14], most reported studies failed to 
show the loss-of-function mutations of p21[15-17]. These 
results suggest that p21 may not be a classical tumor 
suppressor.

Experimental results of using genetically-engineered 
mice also support conflicting functions of p21. Spon
taneous tumors occurred in p21-deficient mice, 
providing evidence that p21 is a tumor suppressor[18]. 
p21 also causes genomic instability[19]. However, 
the timing of tumor formation in p21-deficient mice 
was later than p53-deficient mice[20]. Moreover, the 
occurrence of lymphoma was suppressed when p21-
deficient mice were crossed with p53 or ATMdeficient 
mice[21,22]. This result indicates that p21 also acts in 
an oncogenic way in particular conditions, reflecting 
its versatile function[9]. In addition, mammary gland 
tumorigenesis was accelerated in mice in which p21 
was overexpressed in cytoplasm[23], and the cyclin-
binding motif of p21 has been reported to have a 
direct tumorigenic function[24].

HCC, HBX AND P21
There have been many reports regarding the 
expression of p21 in HCC tissues. p21 was found to 
be down-regulated in HCC tissues, demonstrating 
its tumor suppressive function[25-27]. Kao et al[28] also 
reported that p21 expression was observed in 37% 
of HCC tissues, regardless of p53 expression, and 
was an independent survival good prognosis factor. 
While most of the reports show that p21 acts as a 
tumor suppressor, expression levels of p21 in liver 
cirrhosis have been reported to be correlated with the 
cumulative incidence of the occurrence HCC[29] and 
to be dominant in cytoplasm when histology became 
more undifferentiated[30].

There are also some reported studies examining 
the relationship between HBV and p21. Some reports 
have shown that the HBx gene exerts oncogenic 
activity by suppressing p21 expression[31,32] and that 
HBx genes having core promoter mutations suppress 
p21 more effectively[33]. Inversely, HBx enhanced p21 
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in some reports[34,35]. Park et al[34] reported that when 
the cell cycle was prolonged by enhancement of p21 
by HBx, cells had survival advantages and chances for 
gene mutations, eventually leading to preneoplastic 
hepatocytes. In addition, Yano et al[36] reported that 
HBx enhanced cytoplasmic p21 in protein kinase C 
(PKC)-dependent manner to induce cell proliferation. 
These conflicting results may partly come from 
differences in experimental conditions, but mostly 
reflect the conflictive function of p21. 

ASSOCIATION BETWEEN MOLECULAR 
BEHAVIOR OF P21 AND ITS ONCOGENIC 
FUNCTION
What molecular behavior of p21 does correlate with its 
tumor-promoting function? It is well-known that p21 
has not only inhibitory effects on cell cycle, but also 
has a promoting role. p21-associated CDKs exist in 
both active and inactive states[37]; p21 promotes the 
assembly of CDK4,6 and cyclin D and exerts oncogenic 
activity without inhibiting kinase activity[38]. Mantel et 
al[39] found a high level of induction of p21 in a myeloid 
cell line that was induced to proliferate by growth 
factors. p21 also induces nuclear retention of cyclin D1, 
inhibiting its cytoplasmic degradation[40]. p21 induces 
cell cycle progression in glioma[41] and in vascular 
smooth muscle cells[42] by promoting the formation of 
active cyclin-CDK complexes with PKC-alpha. Because 
the lymphoma observed in p21-deficient mice has 
high levels of apoptosis[21], the oncogenic activity of 
p21 may be closely associated with its anti-apoptotic 
function

P21 has a dual function with regard to apoptosis. 
p21 halts the cell cycle and prevents apoptosis 
induced by genotoxic agents. This anti-apoptotic 
function of p21 may be associated with its oncogenic 
property. However, p21 acts as a pro-apoptotic in 
some conditions. Forced expression of p21 induces the 
apoptotic response against cisplatin in glioma[43] and 
in ovarian cancer[44]. p21 is a modulator of apoptosis 
in a p53-dependent or -independent manner[10]. 
Masgras et al[45] reported that cellspecific sensitivity to 
oxidative stress determined whether the cell was fated 
to undergo p21-induced cell death.

ACTIONS OF P21 DEPEND ON 
SUBCELLULAR LOCALIZATION
The dual functions of p21, apoptotic or anti-apoptotic, 
depend on its subcellular localization[9,46]. Nuclear p21 
is anti-proliferative and cytoplasmic p21, which is anti-
apoptotic, may be associated with oncogenic function. 
Cytoplasmic p21 is associated with poor prognosis 
or the aggressiveness of human cancer[11,12,30,47]. 
Cytoplasmic localization of p21 is closely associated 
with the phosphorylation status. Phosphorylation at 

Thr57 and Ser130 by extracellular signal-regulated 
kinase (ERK) inhibits nuclear localization of p21 
and causes its cytoplasmic accumulation, inducing 
cell cycle progression[48]. Phosphorylated p21 that 
locates in cytoplasm has anti-apoptotic action by 
inhibiting the apoptotic proteins. Koster et al[49] 
reported that cytoplasmic p21 conferred resistance 
against cisplatin-induced apoptosis, while it became 
pro-apoptotic when it entered in the nucleus by the 
inhibition of AKT. Involvement in signal transduction 
of phosphorylated p21 differs depending on the site of 
the phosphorylated amino acid; Thr145 by AKT[50,51] or 
Ser130 by p38 and JNK[52]. Cytoplasmic p21 prevents 
apoptosis by inhibiting procaspase 3[53], and apoptosis 
signal-regulating kinases (ASK) 1[54].  

As a summary, p21 as a tumor suppressor may 
be associated with nuclear location that may be 
associated with inhibition of cell proliferation and pro-
apoptotic function, while oncogenic, anti-apoptotic p21 
may require a cytoplasmic location. Thus, the shifting 
subcellular localization of p21 may be the clearest way 
to explain its functional versatility. 

It is well known that not only p21 but most tumor 
suppressive proteins have different effects in different 
subcellular compartment. Cancer cells respond to 
what are typically tumor suppressors, such as p21, 
Rb, p53, p27, breast cancer susceptibility gene (BRCA) 
1 and FOXO (forkhead box-containing, O subfamily) 
by proliferating when these molecules relocate 
from nucleus to cytoplasm[55,56]. Thus, based on the 
discussion above regarding p21, it is possible to extend 
this view to tumor suppressors in general. Regulating 
the subcellular localization of these proteins may 
become a core rationale for anti-cancer strategy[55,56]. 

REGULATION OF THE SUBCELLULAR 
LOCALIZATION OF TUMOR 
SUPPRESSORS AND ITS POTENTIAL 
APPLICATION TO ANTI-HCC TREATMENT
Transport of macromolecules across the nuclear 
envelope occurs through nuclear pore complexes 
(NPC). Karyopherins, such as exportins and importins, 
are nuclear transport receptors that recognize nuclear 
export signal (NES) and nuclear localization signal 
(NLS) sequences, respectively, and transport cargo 
proteins at the NPC sites[55,57]. Subcellular localization 
of tumor suppressors is regulated by this nucleo-
cytoplasmic transport system[55,56,58,59]. 

CRM1 (Exportin-1/chromosome region maintenance 
1) is a major nuclear export receptor that forms 
NPC with nucleoporins, such as NUP214 and NUP88, 
transporting nuclear proteins with NES sequence 
to cytoplasm[55-59]. CRM1 is deeply involved in the 
mechanisms of cell proliferation by regulating the 
subcellular localization of tumor suppressors which have 
NES sequences, such as p53 and p21. For example, p53 
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return cytoplasmic p21 to the nucleus and contributed 
to the prevention of hepatocarcinogenesis[36]. This was 
also true of p53 that was bound to cytoplasmic HBx and 
returned to the nucleus after IFN-treatment[76] (Figure 
1). These observations suggest that natural substances 
such as IFN may be involved in an innate carcinogenesis 
prevention mechanisms, possibly by regulating CRM1. 
In fact, CRM1 is involved in the cytoplasmic localization 
of STAT2, which shifts to the nucleus by the action of 
IFN[77]. In addition, IFN inhibits beta-catenin signaling 
through the up-regulation of the nuclear RanBP3 which 
is a nuclear export factor[78]. 

FUTURE PERSPECTIVE
Sorafenib is a tyrosine kinase inhibitor widely used 
for the treatment of advanced HCC, and many other 
molecular-targeted drugs are now in development[79]. 
However its effect is still limited in many patients and 
the appearance of drug-resistance is a significant 
problem. Regulation of CRM1 involves many genes 
and specific multiple pathways associated with 
nuclear-cytoplasmic export; a new therapeutic 
strategy could be based on these developing concepts. 
Because such regulation would normalize molecular 
changes caused by multiple genes, its use might not 
cause drug resistance, or even being suggested to 
reverse drug resistance[55]. Thus, combination of such 
regulation with specific inhibitor use might maximize 
the impact of treatment. While expecting some 
promising results of clinical trials, taking the molecular 
approach to explore innate mechanisms regulating 
nuclear-cytoplasmic distribution of tumor suppressors 
will become an intriguing theme for development of 
cancer prevention strategies. In particular, IFN might 

accumulates in the nucleus when poly (ADP-ribosyl)ation 
blocks its interaction with CRM1[60], while interaction 
with SUMO (small ubiquitinlike modifier) promotes its 
export to cytoplasm by CRM1[61]. p21 inhibits CRM1 by 
binding phosphorylated cyclin D, which promotes its 
nuclear accumulation[40]. 

Cancer cells use nucleo-cytoplasmic transport 
system for their proliferation and inhibition of apoptosis. 
CRM1 expression is enhanced in many cancer tissues. 
High expression of CRM1 in gastric, ovarian, and 
pancreatic cancers show poor prognosis[62-64]. The 
increase in CRM1 leads to cytoplasmic abundance of 
tumor suppressors and cell cycle regulators, which in 
turn results in their aberrant activation. Knock-down 
of CRM1 expression prevents nuclear export of p27, 
resulting in cell cycle arrest[65]. Specific suppression 
of CRM1 caused nuclear retention of p21 and induced 
apoptosis[66]. The cellular apoptosis susceptibility 
(CAS)/importin pathway was found to be enhanced 
in HCC, confirming the importance of the transport 
machinery[67].

Orally available selective inhibitors of nuclear export 
(SINEs) which specifically inhibit CRM1, have been 
developed in recent years[58,59]. SINEs specifically bind 
Cys528, located in NES-binding groove of CRM1, to 
promote nuclear retention of p53, p21, p27, Rb, and 
BRCA 1[68]. The effects on hematologic malignancies 
of KPT-330, the most effective SINE, have been 
reported[69-73]. KPT-330 had anti-proliferative effects 
and induced apoptosis of an HCC cell line[74] in which 
p53-upregulated-modulator of apoptosis was markedly 
up-regulated; and this was shown to be one of the 
similar mechanisms by which sorafenib exerts anti-
HCC effects[75]. 

Interestingly, interferon (IFN)-beta was reported to 

Figure 1  Outline of the overall aspects of this review. The subcellular localization of p21 and other tumor suppressors is regulated by CRM1. Inhibition of CRM1 
by specific inhibitors and IFN may play a role in future anti-hepatocellular carcinoma strategies. CRM1: Chromosome region maintenance 1; IFN: Interferon; SINE: 
Selective inhibitors of nuclear export.
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influence these mechanisms and play a role in anti-
hepatocarcinogenesis. Future uses of this drug should 
be pursued in light of this functional biological aspect. 
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