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Abstract

Developments in the use of genomics to guide natural product discovery and a recent emphasis on 

understanding the molecular mechanisms of microbiota-host interactions have converged on the 

discovery of natural products from the human microbiome. Here, we review what is known about 

small molecules produced by the human microbiota. Numerous molecules representing each of the 

major metabolite classes have been found that have a variety of biological activities, including 

immune modulation and antibiosis. We discuss technologies that will affect how microbiota-

derived molecules are discovered in the future, and consider the challenges inherent in finding 

specific molecules that are critical for driving microbe-host and microbe-microbe interactions and 

their biological relevance.

INTRODUCTION

Symbiotic relationships – including mutualism, commensalism, and parasitism – are 

ubiquitous in nature (1). Some of the best known symbioses are between a microorganism 

and a multicellular host; in these inter-kingdom relationships, the fitness of the microbe-host 

system (the holobiont) often relies on a diverse set of molecular interactions between the 

symbiotic partners (2, 3). Examples include food digestion, nitrogen and carbon fixation, 

oxidation and reduction of inorganic molecules, and the synthesis of essential amino acids 

and cofactors (2, 4–6). In light of the critical role of a molecular dialog in maintaining a 

productive mutualism, the community of researchers studying the symbiosis between 

humans and their microbiota has begun moving from a focus on ‘who’s there’ to ‘what are 

they doing’. The accompanying emphasis on molecular mechanism has sparked a concerted 

hunt for the mediators of microbe-host interactions, including microbiota-derived small 

molecules.

It is now possible to identify biosynthetic genes in bacterial genome sequences and, in some 

cases, predict the chemical structure of their small molecule products. This genome mining 

has led to the discovery of a growing number of molecules, and recently developed 

algorithms (7–9) have not only automated biosynthetic gene cluster identification, but also 

have led to the unexpected discovery of numerous biosynthetic gene clusters in genomes of 
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the human microbiota (10) . In addition, a wealth of natural products have been discovered 

from bacterial and fungal symbionts of insects, nematodes, sponges and ascidians, and 

plants (11–15). The many known examples of microbe-host mutualisms in which the 

microbe synthesizes a metabolite important for the ecology of the pair raise an intriguing 

question: To what extent are mammals, including humans, a part of this paradigm?

In this review, we review what is known about natural products from the human microbiota, 

examining in depth the diverse chemistries and biological functions of these molecules. We 

focus predominantly on commensal bacterial species, although we include a few notable 

examples of small molecules from bacterial pathogens. We then discuss recent insights into 

the metabolic potential of the human microbiota from computational analyses, and conclude 

by considering four approaches to identify and discover the function of ‘important’ 

molecules out of a complex cellular and molecular milieu. Some prominent microbiota-

derived metabolite classes are not covered here, including short- chain fatty acids (SCFAs) 

and trimethylamine-N-oxide (TMAO); for an in-depth discussion of their role in microbe-

host interactions in the gut, see (16).

THE MENU OF MOLECULES

A wide range of natural products have been isolated from human-associated bacteria. These 

molecules cover the entire spectrum of chemical classes that have been isolated from 

terrestrial and aquatic bacterial species and include well-characterized mediators of microbe-

host and microbe-microbe interactions. Exploring their chemistry and function provides an 

entry point for understanding the effects of the microbiota on human health and disease.

Ribosomally synthesized, post-translationally modified peptides (RiPPs)

Most human-associated bacteria live in complex communities and compete with other 

species for resource-limited niches. RiPP natural products, which are unusually prevalent 

among the microbiota (10) , are often active against a limited set of species closely related to 

the producer (i.e., narrow-spectrum) and are therefore thought to determine which strain of a 

bacterial species (or species of a genus) colonizes a niche. RiPPs are divided into numerous 

subclasses (17) , five of which include members that have been isolated from human-

associated bacteria: lantibiotics, bacteriocins, microcins, thiazole/oxazole-modified 

microcins (TOMMs), and thiopeptides (see Outlook section for a discussion about 

thiopeptides).

Lantibiotics and bacteriocins—Lantibiotics and bacteriocins are the most commonly 

isolated RiPPs from members of the human microbiota; dozens have been found to date. 

Lantibiotics are short peptides (<40 amino acids) with chemical crosslinks formed post-

translationally by connecting the terminal thiol of a cysteine residue to a dehydrated serine 

or threonine. The resulting ‘lanthionine’ contains a thioether bond, which is typically more 

redox-stable than a disulfide. In contrast, bacteriocins are longer peptides (>40 amino acids) 

and are usually unmodified. Microbiota-derived lantibiotics are predominantly produced by 

the Firmicutes, and are usually active against a narrow spectrum of Gram-positive bacteria 

that are closely related to the producing strain.
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Some microbiota-derived lantibiotics are produced by commensals (18), including the 

salivaricins from oral resident Streptococcus salivarus (19–22), a cocktail of five lantibiotics 

from the skin commensal Staphylococcus epidermidis (23–27), and ruminococcin A from 

the gut commensals Ruminococcus gnavus and Clostridium nexile (Table 1) (28, 29). Each 

of these molecules inhibits pathogens that are closely related to the producer. Lantibiotics 

have also been isolated from human pathogens: staphylococcin Au-26 (also known as Bsa) 

from Staphylococcus aureus (30, 31), SA-FF22 from Streptoccous pyogenes (32, 33), and 

the two- component lantibiotic cytolysin from Enterococcus faecalis (34) exert antibacterial 

activity against a range of common human commensals, indicating that lantibiotic 

production are used by commensals and pathogens to compete and establish resilient 

colonization.

Microcins and thiazole/oxazole modified microcins (TOMMs)—Microcins are 

prototypical narrow-spectrum antibacterials. They contain a wide range of unusual post-

translational modifications including, the conversion of cysteine and serine residues to 

thiazoles and oxazoles (microcin B17), the addition of adenosine monophosphate (microcin 

C7) or a siderophore to the C-terminus (microcin E492, Figure 2) and internal amide 

crosslinking forming a lasso-like topology (microcin J25) (35–38) . As they derive 

exclusively from enterobacteria and have potent (typically nM) antibacterial activity against 

close relatives of the producer (35) , their role in the Gram-negative microbiota is analogous 

to that of lantibiotics in the Gram-positive microbiota. Most microcins have been isolated 

from E. coli strains and are widely distributed in both commensal and pathogenic 

enterobacteria (35, 39–41).

TOMMs are similar to microcin B17 in their biosynthesis and post-translational 

modifications, but encompass a larger family of natural products from both Gram-positive 

and Gram-negative bacteria (17, 42). The best-studied example is streptolysin S from the 

human pathogen Streptococcus pyogenes (43) . Despite intensive efforts for almost a 

century, the precise chemical structure and mechanism of action of streptolysin S have not 

been fully determined (43). However, streptolysin S contains multiple oxazole and thiazole 

residues that are required for its hemolytic activity (44, 45). Related biosynthetic gene 

clusters from other human pathogens and commensals have been characterized (43), 

including listeriolysin S from Listeria monocytogenes (46) and clostridiolysin S from 

Clostridium botulinum and Clostridium sporogenes (47) .

Heat-stable enterotoxin—While most RiPPs from the human microbiota are thought to 

mediate microbe-microbe interactions, heat-stable enterotoxin is a RiPP produced by strains 

of E. coli associated with diarrheal disease and has a well-characterized host target. It is a 

14-amino acid peptide stabilized by three internal disulfide bonds (48) and mimics the effect 

of the host peptide hormones guanylin and uroguanylin by agonizing guanylate cyclase 2C, 

a transmembrane protein expressed in intestinal epithelial cells with an extracellular ligand 

binding domain and a cytoplasmic catalytic domain (49) . Guanylate cyclase 2C generates 

cGMP to stimulate electrolyte secretion into the gut lumen. A single amino acid variant of 

heat-stable enterotoxin was approved by the FDA in 2012 for the treatment of constipation 

ssociated with irritable bowel syndrome (linaclotide, Figure 1) (50) . The enzyme that 
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introduces disulfide crosslinks post-translationally into heat-stable enterotoxin is not 

encoded in its biosynthetic gene cluster, raising the question of whether the endogenous 

disulfide bond formation (Dsb) system is responsible, and whether other small peptides from 

enterobacteria undergo similar post-translational processing. Importantly, heat-stable 

enterotoxin indicates that a modified peptide can survive the proteolytic milieu of the gut 

lumen and target a host receptor expressed in intestinal epithelial cells, delivering a potent 

biological activity without absorption into host circulation.

Products of amino acid metabolism

Gut bacteria living in an anaerobic environment require an electron acceptor to drive 

fermentation or an anaerobic electron transport chain (51) . Commonly amino acids are used 

as electron acceptors, resulting in the production by gut bacteria of high levels (in some 

cases, >100 mg/day) of reductive amino acid metabolites, such as phenylpropionic acid and 

phenylacetic acid - molecules that are not found in most other habitats. Importantly, the 

amounts of these metabolites produced vary widely among individuals and, unlike RiPPs, 

they are generally permeable and accumulate systemically in the host (52). For example, 

humans with comparable levels of dietary tryptophan but distinct gut bacterial communities 

can end up with markedly different profiles of gut metabolites following microbiotal 

metabolism. One prominent tryptophan metabolite, indole, is derived from tryptophan by as-

yet-unidentified enzyme(s) that are presumably homologs of tryptophanases seen in other 

bacterial species. In its unmodified form, indole serves as a signalling agent in bacterial 

communities (53). In addition, following absorption through the intestinal epithelium, indole 

is 3-hydroxylated and O-sulfated in the liver to become indoxyl sulfate, a well-known 

uremic toxin that is known from germ-free rodent studies to be derived entirely from the GI 

microbiota (54) . Indoxyl sulfate is present at a wide range of concentrations in human urine 

(10–200 mg/day), likely reflecting differences among individuals in diet and in the level of 

indole-producing bacterial species in the gut community (55) . A second reductive 

tryptophan metabolite, indolepropionic acid (Figure 2), is found in mouse serum if 

Clostridium sporogenes is present in the gut (52) . Although the function of this molecule is 

unknown, several other Clostridium spp. producers have been identified. A third tryptophan 

metabolite, the decarboxylation product tryptamine, is a biogenic amine neurotransmitter 

that is synthesized by a variety of gut bacteria (56) and has been linked to signaling in the 

enteric nervous system (57), one of several findings that reveal a role for the microbiota in 

the gut-brain axis (58–61). Thus, tryptophan can be diverted to end products with distinct 

biological activities depending on the composition of the gut community.

The metabolic products of aliphatic amino acids are equally prominent but less well 

characterized. Notable examples include δ-aminovaleric acid, which derives from arginine, 

proline, and ornithine, and acts as an electron source for secondary fermenters (62) ; and α-

aminobutyric acid, which derives from threonine or methionine. Notably, the 

neurotransmitter γ-aminobutyric acid (GABA), the decarboxylation product of glutamate, is 

both produced and consumed by various species of gut bacteria (62) , although its potential 

role in microbe-host signaling remains unexplored. Many of the less common short-chain 

fatty acids, including isobutyric, valeric, 2- and 3-methylbutyric, caproic, and isocapropic 
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acids, are also the products of reductive amino acid metabolism, but it is not known whether 

their signaling properties differ from those of the better known SCFAs (62) .

Oligosaccharides

Oligosaccharides provide some of the best-characterized examples of how small molecules 

from the human microbiota can mediate microbe-host interactions. Diffusible 

oligosaccharides are well known in the natural products community (63, 64) but the best-

studied oligosaccharides from the human microbiota are cell-associated. Capsular 

polysaccharides from Bacteroides and Streptococcus show that capsular polysaccharides are 

not simply structural or nonspecifically adhesive, they can have highly specific ligand-

receptor interactions that result in immune modulation, similarly to glycolipids (see below).

Species of Bacteroides, the most abundant bacterial genus in the human gut, produce an 

array of capsular polysaccharides, the best characterized of which is polysaccharide A from 

Bacteroides fragilis. Polysaccharide A is an oligomer in which the tetrasaccharide repeating 

unit consists of four derivatives of galactose: galactofuranose, N-acetylgalactosamine 

(GalNAc), 4,6- pyruvoylgalactose, and 4-amino-6-deoxy-GalNAc. Although the 

biosynthesis of polysaccharide A has just begun to be explored (65, 66) , its biological 

activity has been investigated in detail. Polysaccharide A signals through TLR2 to induce 

regulatory T cells to produce the tolerogenic cytokine IL-10. This signaling event restricts 

the activity of Th17 cells, promotes B. fragilis colonization and suppresses Helicobacter 

hepaticus-induced colitis (67, 68) . Remarkably little is known about the structures and 

biological activities of the tens to hundreds of other Bacteroides capsular polysaccharides, 

although they are likely to be the most abundant natural products in the human gut (10) .

Cell-associated oligosaccharides can also play a defensive role, as is the case with the richly 

diverse capsular polysaccharides elaborated by species of Streptococcus, including a family 

of capsular polysaccharides from group B Streptococcus, a pathogen (69) . Although the 

repeating unit varies in size, composition, and connectivity among group B Streptococcus 

serotypes, a common chemical feature is a terminal sialic acid, which blocks phagocytosis 

by inhibiting the deposition of the complement component C3b (69) .

An area of great promise in the microbiome is the identification of microbially derived 

ligands for host receptors. In addition to recent studies on the role of short-chain fatty acids 

and G-protein-coupled receptor 43 (GPR43) in regulatory T-cell function (70) , glycolipids 

and saccharides are significant candidate ligands. One example is muramyl dipeptide, a 

glycopeptide fragment of the repeating unit of peptidoglycan, which is a ligand for 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and forms the 

scaffold for the immune -stimulatory osteosarcoma drug mifamurtide (Table 2) (71, 72) . 

Additionally, the large number of uncharacterized oligosaccharide biosynthetic loci in the 

human microbiome are particularly interesting in light of the C-type lectin receptors in the 

dectin/langerin/DC-SIGN family, which are known to bind oligosaccharides and modulate 

immune cell function, but for which few convincing ligands have been discovered (73) .
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Glycolipids and Terpenoids

Perhaps the best known microbiota-derived molecule is lipopolysaccharide (LPS), a 

glycolipid that is a major component of the outer membrane of Gram-negative bacteria 

(Figure 2). LPS is the ligand for the innate immune receptor TLR4 and has been reviewed 

extensively elsewhere (74); here, we focus on two other families of bacterial glycolipids 

with similar immunomodulatory activities: the Bacteroides glycosphingolipid α-

galactosylceramide and the mycolic acids of Mycobacterium and Corynebacterium.

Glycolipids—α-Galactosylceramide is a glycosphingolipid that was originally discovered 

nearly two decades ago as a natural product from a sponge and was later found to be a 

potent ligand for CD1d- restricted natural killer T (NKT) cells (75). Even though >1000 

papers have been published on synthetic derivatives of this sphingolipid and the 

identification and stimulation of NKT cells, the source of the ‘native’ ligand for CD1d has 

remained a mystery (76). Recently, Bacteroides fragilis, a common gut commensal, was 

discovered to produce α-galactosylceramide (77) . Colonization of germ-free mice as 

neonates by wild-type B. fragilis suppress NKT cells in the gut and block oxazolone-

induced colitis (78) . These findings suggest that the ‘native’ ligand for the highly conserved 

mammalian receptor CD1d might originate in the microbiota rather than the host. This may 

be true for other ‘orphan’ receptors expressed in immune and epithelial cells.

Mycolic acids are distinctive components of the cell wall of Mycobacterium (mostly 

pathogens) and Corynebacterium (both pathogens and skin and oral commensals). They 

consist of an all-carbon backbone with two lipid tails, one of which can be 40–60 carbons 

long in Mycobacterium, and are present both as free carboxylic acids and as esters of cell-

wall polysaccharides. In addition to being important structural components of the capsule 

(79) , glucose monomycolate serves as a ligand for CD1b-restricted T cells, eliciting a 

specific immune response against infection (80–83) . Another glycolipid derivative of 

mycolic acid, trehalose-6,6-dimycolate, is a potent immune elicitor that binds to the C-type 

lectin Mincle to induce macrophage activation and a T-cell response characteristic of 

vaccination (84) . Mycolic acid has many chemical modifications, including methylation and 

cyclopropanation, both of which appear to shield it from immune detection: the MmaA4-

catalyzed methylation of mycolic acid by M. tuberculosis blocks IL-12 production and 

prevents detection and elimination by macrophages (85) , and an M. tuberculosis mutant that 

is deficient in mycolic acid cyclopropanation is attenuated and hyperinflammatory in a 

mouse model of infection (86) .

Terpenoids—The major microbiota-derived terpenoids are not synthesized de novo by the 

microbiota; they are secondary bile acids, derivatives of the host-derived primary bile acids 

cholic acid (CA) and chenodeoxycholic acid (CDCA) (Figure 1). CA and CDCA are 

biosynthesized in the human liver, conjugated to taurine or glycine, and then excreted in 

bile; although 90% of the bile acid pool is absorbed in the terminal ileum, the remaining 

10% enters the large intestine (87). Here, the bile acid pool reaches concentrations of ~1 

mM and varies widely in composition among healthy humans. Numerous biochemical 

transformations of CA and CDCA are performed by gut bacteria, including deconjugation 

from taurine and glycine, oxidation and subsequent epimerization of the hydroxyl groups at 
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C3, C7 and C12, dehydration and subsequent reduction of the hydroxyl group at C7, and 

esterification with ethanol at the C24 carboxylate. Among these, one modification – 

dehydroxylation at C7 – has been characterized most extensively (87–89).

Several species of Firmicutes (e.g., Clostridium scindens and Clostridium hylemonae) 

dehydroxylate CA and CDCA at the C7 position to form deoxycholic acid (DCA) and 

lithocholic acid (LCA), respectively. The high flux of this biochemical transformation 

results in DCA and LCA making up nearly two-thirds of the fecal bile acid pool (87) . Both 

DCA and LCA are toxic to human cells and have been implicated in hepatoxicity and colon 

cancer (90). 7-Dehydroxylation is carried out by the 8-gene bai operon. This gene cluster is 

thought to perform eight successive chemical transformations in a pathway for which the 

early oxidative steps have been characterized biochemically, but the later, reductive steps 

remain speculative (89) . Little is known about the biosynthetic genes for other secondary 

bile acids, although there is preliminary evidence that some bile acid pathways might be 

collaborative, in the sense that they involve transformations by more than one gut bacterial 

species.

The carotenoids are terpenoids, exemplified by staphyloxanthin, the golden-coloured 

pigment for which Staphylococcus aureus is named. Staphyloxanthin is composed of a 

glucose residue that is esterified with both a fatty acid (12-methyltetradecanoate) at the C6” 

position and a carotenoid (4,4’-diaponeurosporen-4-oate) at the C1” position (91) . The core 

structure of staphyloxanthin is assembled by two biosynthetic enzymes: a 

glycosyltransferase, which esterifies the C1” position of glucose, and an acyltransferase, 

which esterifies its C6” position. The unusual 4,4’-diaponeurosporen-4-oate originates from 

dehydrosqualene by further dehydrogenation and oxidation steps (92, 93) . The conjugated 

double bonds of staphyloxanthin’s carotenoid tail serve as a ‘sponge’ for oxygen radicals, 

protecting S. aureus against killing by hydrogen peroxide, superoxide and hydroxyl radical, 

which are produced by host neutrophils and macrophages (94, 95) .

Polyketides and Nonribosomal Peptides

Although polyketides (PKs) and nonribosomal peptides (NRPs) are among the largest 

classes of natural products in soil and aquatic bacteria, relatively few are known from 

human-associated bacteria. Two recently discovered examples come from the common 

pathobionts Staphylococcus aureus and Streptococcus mutans (Table 1 and Figure 1). A 

conserved NRPS gene cluster in S. aureus encodes a family of pyrazinones, which are 

derivatives of the ubiquitous diketopiperazines (96, 97). Although the role of the 

pyrazinones in regulating the expression of S. aureus virulence factors remains unclear (96, 

98), they are unlikely to function exclusively in the context of pathogenesis since they are 

also produced by the skin commensal Staphylococcus epidermidis (97) . Isolates of S. 

mutans, the leading cause of dental caries, harbor a genomic island encoding hybrid PKS/

NRPS pathways (99) . The product of one of these pathways, mutanobactin, contains an 

unusual 1,4-thiazepan-5-one ring, which originates from the cyclization of a cysteine and a 

glycine residue. The biological activity of the mutanobactins has not been fully determined, 

but may involve modulating growth and biofilm formation by the fungal pathogen Candida 

albicans (100–102) .
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Four pathogen-derived NRPs and PKs cause disease: cereulide, mycolactone, colibactin, and 

tilivalline. Cereulide, a dodecadepsipeptide toxin, is responsible for the emetic effects of the 

food-poisoning pathogen Bacillus cereus (103, 104). The ester bonds in cereulide’s 

alternating ester/amide backbone enable the molecule to have high affinity for potassium 

ions, which causes mitochondrial toxicity and results in uncoupling of oxidative 

phosphorylation (105, 106).

Mycolactones are PK toxins produced by the causative agent of Buruli ulcer, 

Mycobacterium ulcerans (107, 108). These molecules, which cause the necrosis, ulceration, 

and immune suppression associated with this disease, are encoded by a >100 kb type I PKS 

biosynthetic gene cluster that includes two genes >40 kb. Interestingly, a heterogeneous 

suite of mycolactone derivatives is produced by different strains of M. ulcerans, which may 

explain the variation observed in the virulence of the strains and their geographical 

distribution among affected countries (107, 109–112).

Colibactin is produced by a subset of enterobacteria, including strains of E. coli B2, 

Enterobacter aerogenes, Klebsiella pneumoniae, and Citrobacter koseri (113, 114) . 

Exposure of mammalian cells to colibactin producing E. coli and K. pneumoniae induces 

DNA damage in vitro and in vivo. Surprisingly, the colibactin gene cluster is present in one 

of the most commonly used probiotic E. coli strains (E. coli Nissle 1917 or EcN) (114–118). 

Considerable efforts have been made to study the biosynthesis of colibactin (119–121), and 

its chemical structure has recently been characterized, revealing a unique spirocyclopropane 

warhead that crosslinks DNA (122). It is not yet clear what role colibactin plays in the 

ecology of the interaction between E. coli and the host, and how the genotoxic activity of 

colibactin benefits its producer.

Tilivalline is an NRP toxin produced by colitogenic strains of the pathobiont Klebsiella 

oxytoca (Figure 2) (123) . Importantly, tilivalline is essential for the inflammatory pathology 

characteristic of antibiotic-associated hemorrhagic colitis, and induces apoptosis in cultured 

human epithelial cells. Although the discovery of tilivalline sheds light on one mechanism 

of antibiotic-induced colitis, there are likely to be alternative mechanisms, since K. oxytoca 

is present in, at most, 10% of the healthy human population (124).

Much is known about the biosynthesis of NRPS-derived and NRPS-independent 

siderophores in a broad range of human pathogens, and their role in iron acquisition as an 

essential component of bacterial pathogenesis, both of which have been reviewed 

extensively elsewhere (125–127). In contrast, very little is known about the mechanisms by 

which commensals acquire iron and, to our knowledge, no iron acquisition system has ever 

been shown to be required for colonization by a commensal.

OUTLOOK

We have used ClusterFinder (7) to identify biosynthetic gene clusters in the human 

microbiome as a way to assess the metabolic potential of the human microbiota (10). Of 

>14,000 putative natural product biosynthetic gene clusters identified in human-associated 

bacterial genomes, 3,118 were present in one or more of the 752 whole-genome shotgun 

metagenomic sequence samples from the NIH Human Microbiome Project (HMP). 
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Although each of the major natural product classes is produced by the human microbiota, 

oligosaccharide and RiPP gene clusters are predominant, underscoring the need to improve 

analytical chemical techniques to purify and assay these molecules. Nearly all of the gene 

clusters that were present in >10% of the subjects in the study are uncharacterized, 

highlighting the potential of studying these genetic elements and the small molecules they 

encode.

There are two central challenges facing the field: First, from the wealth of microbiota-

derived molecules, which ones are the functionally ‘important’ ones? Second, what 

experimental systems are appropriate for testing the activity of an individual molecule from 

a complex milieu?

Identifying significant microbiota-derived molecules

Human-associated microbial communities can consist of hundreds of abundant bacterial 

species and perhaps thousands of molecules at physiologically relevant concentrations. 

Figuring out which of these molecules drive a phenotype and how they act requires new 

computational and experimental approaches.

Initial mapping of metagenomic sequence data onto coarse KEGG or COG gene categories 

provides a way of seeing coarse changes, e.g., a shift from oligosaccharide toward amino 

acid catabolism in a community. Resolution is not yet high enough to make reliable 

predictions about specific biosynthetic pathways or products. Methods that predict the gene 

content of a sample from 16S data can predict pathways that are present or absent in every 

member of an operational taxonomic unit (OTU) (128) , but have limited utility for 

biosynthetic pathways, which are highly variable even among closely related strains of a 

bacterial species (129, 130) .

Methods are needed that take genomic and metagenomic sequence data as an input and use 

it to predict, at high resolution, pathways for specific molecules. Multiple algorithms will 

likely be needed: some for identifying clustered biosynthetic pathways, characteristic of a 

conventional secondary metabolite, and others for predicting unclustered pathways more 

commonly found in primary metabolism. The dearth of knowledge about primary metabolic 

pathways in anaerobes from the gut community is a critical gap in current knowledge, and 

addressing this problem will be a major achievement.

Nicholson, Holmes and colleagues have pioneered the use of metabolomics to profile 

microbiota-derived metabolites in a variety of sample types and disease models, developing 

powerful and widely applicable analytical pipelines (131, 132) (Figure 3a). Using similar 

approaches, a range of microbiota-derived molecules have been connected to specific 

bacterial species through the metabolomic profiling of various artificial and disease- 

associated communities from mice (52, 59, 133, 134). However, although metabolomic 

profiling is capable of measuring hundreds to thousands of known metabolites in a single 

run, its application (known as untargeted metabolomics) to discovering molecules of interest 

is more laborious and generally requires purification and structural characterization of 

milligram quantities of compound.
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Although bioassay-guided fractionation is immensely powerful, it is painstaking and 

difficult to scale, so it is better suited for unusually important phenotypes of interest, 

including the search for ligands for orphan G-protein coupled receptors (GPCRs) expressed 

in the gut (Figure 3b). A derivative of this approach in which microbes, not molecules, are 

“fractionated” was recently used to identify a cocktail of 17 gut bacterial strains that induce 

regulatory T cells and attenuate colitis. This activity was further correlated with short-chain 

fatty acids produced by this anti-inflammatory cocktail of bacteria (135, 136) .

An alternative to bioassay-guided fractionation is the candidate molecule approach (Figure 

3C). We used this method for the discovery of the potent thiopeptide antibiotic, lactocillin, 

from Lactobacillus gasseri, a prominent member of the vaginal community (10, 137). 

Initially, we made a systematic analysis of all biosynthetic gene clusters for small molecules 

in genomes of human-associated bacteria and identified 13 novel thiopeptide gene clusters, 

four of which are present in >20% of the HMP samples at one of the body sites. 

Thiopeptides are a class of antibiotics with potent activity against Gram-positive bacteria 

that bind to a site on the 50S subunit of the bacterial ribosome. One member of this class, 

LFF571, is currently in a phase II clinical trial (138). Lactocillin has been purified, 

structurally characterized, and shown to have low-to-mid nanomolar antibiotic activity 

against vaginal pathogens but not against vaginal commensals.

Another class of molecules ideally suited to the candidate molecule approach is secondary 

bile acids: bile acids, and the sterol scaffold more generally, are rich in biological activity 

and there are numerous host receptors for these molecules (87). The levels of secondary bile 

acids vary widely among individuals, although the bile acid pool in the gut lumen is held at 

a physiologically relevant concentrations. Although dozens of secondary bile acids are 

known, very few have been assigned a biological activity or have known biosynthetic genes, 

making this a promising area for detailed experimental investigation.

Studying individual molecules from a pool

The discoveries of highest impact will come not from simply cataloging new microbiota- 

derived molecules, but from studying the biological activities of individual molecules in a 

complex molecular milieu. With the exception of fecal metabolite profiling, few microbiota-

derived molecules have been detected in host-derived samples. More sensitive analytical and 

synthetic techniques (e.g., nanospray desorption electrospray ionization (nanoDESI) mass 

spectrometry) are needed to verify the production of a molecule in the skin, oral, and vaginal 

communities. An alternative approach – the detection of RNA transcripts for a particular 

bacterial gene cluster in metatranscriptomic data – has been used to profile the expression of 

the cluster in a native sample. This approach is consistent with, but not proof of, small 

molecule production in the ‘native’ habitat of the microbiome (10).

Although preliminary studies to study the biological effects of target molecules have been 

carried out for three microbiota-derived RiPPs (139–143), their biological relevance have 

not yet been tested experimentally. Although colonization studies in gem-free mice have the 

advantage of simplicity, there are drawbacks: (i) a molecule derived from a mono-colonist 

could be produced at super-physiological levels, leading to a false signal; (ii) the activity of 

some molecules, e.g., immune modulators, may require the activity of co-stimulatory signals 
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from other bacterial species; and (iii) the biological relevance of certain molecules, e.g. 

antibacterials, may only be observed when other members of the microbiota are present. 

Faith et al. have overcome some of these challenges in studies on regulatory T cells in the 

gut, by using small subsets of gut bacterial strains to colonize mice (Figure 3d) (144) .

Similar experimental systems have recently been developed for the skin. Conventional mice 

can be colonized by individual skin commensals and the T-cell response can be tracked over 

long time periods (145) . By contrast, few experimental systems are available for 

interrogating the role of small- molecule-mediated interactions in the community structure 

(146) and dynamics (137) of oral and vaginal communities.

Many molecules of interest are produced by bacterial species that are difficult to manipulate 

genetically, such as the anaerobic Firmicutes (Clostridium and its relatives). Two 

technologies would be transformative for their study: gene knock out and expression (147) , 

and synthetic-biology-based approaches to ‘refactor’ biosynthetic gene clusters and express 

them in a more genetically tractable host (148) .

Conclusion

Much is known about which bacterial species are most abundant in human-associated 

communities and how they vary among individuals. Yet comparatively little is known about 

the most abundant bacterially derived or modified small molecules in the gut, despite the 

fact that these molecules are present at high micromolar concentration, their levels can vary 

greatly among individuals, and the human host is chronically exposed to them for decades. 

Certain low- abundance molecules with potent biological activities may also be significant. 

Against this backdrop, it seems likely that in the near future the suite of microbiota- derived 

molecules in an individual’s gut community will not be left to chance. Pharmaceutical 

companies go to great lengths to get a single molecule into the human gut at a comparable 

concentration. Discovering the most abundant, widely (or variably) distributed, and 

biologically active molecules produced by the microbiota – and connecting them to the 

genes that encode them – are critical first steps in understanding which molecules have 

desired effects and which are deleterious, what receptors they target, and how therapeutic 

communities of microorganisms can be designed in which the production and non-

production of molecules can be genetically specified.
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ONE-PAGE SUMMARY

Background

Two developments in distinct fields are converging to create interest in discovering 

natural products from the human microbiome. First, the use of genomics to guide natural 

product discovery has led to the unexpected discovery of numerous biosynthetic gene 

clusters in genomes of the human microbiota. Second, the microbiome research 

community is moving from a focus on ‘who’s there’ to ‘what are they doing’, with an 

accompanying emphasis on understanding microbiota-host interactions at the level of 

molecular mechanism. This merger has sparked a concerted hunt for the mediators of 

microbe-host and microbe-microbe interactions, including microbiota-derived small 

molecules.

Advances

Numerous small molecules are known that are produced by the human microbiota. The 

microbiota-derived ribosomally synthesized, post-translationally modified peptides 

(RiPPs) include widely distributed lantibiotics and microcins with narrow-spectrum 

activity that are presumptive mediators of interactions among closely related species, and 

Escherichia coli heat-stable enterotoxin, a guanylate cyclase 2C agonist from which the 

recently approved GI motility drug linaclotide was derived. Fewer amino acid 

metabolites are synthesized by the microbiota, but they are produced at very high levels 

that vary widely among individuals (e.g., indoxyl sulfate at 10–200 mg/day). Gut 

bacterial species convert common dietary amino acids into distinct end products, such as 

tryptophan to indoxyl sulfate, indole propionic acid and tryptamine – indicating that 

humans with the same diet but different gut colonists can have widely varying gut 

metabolic profiles. Microbially produced oligosaccharides differ from other natural 

products because they are cell-associated (i.e., non-diffusible) and because many more 

biosynthetic loci exist for them than for other small molecule classes. Well-characterized 

examples, such as Bacteroides polysaccharide A, show that oligosaccharides may not 

simply play a structural role or mediate adhesion; rather, they can be involved in highly 

specific ligand-receptor interactions that result in immune modulation. Similarly, the 

(glyco)lipids α-galactosylceramide and mycolic acid can play roles in immune signaling. 

The most prominent microbiota-derived terpenoids are microbial conversion products of 

the cholic acid and chenodeoxycholic acid in host bile. These secondary bile acids can 

reach high concentration (mM) in the gut and vary widely in composition among 

individuals. Several canonical virulence factors from pathogens are derived from 

nonribosomal peptides (NRPs) and polyketides (PKs), but less is known about NRPs and 

PKs from the commensal microbiota. A recent computational effort has identified 

~14,000 biosynthetic gene clusters in sequenced genomes from the human microbiota, 

3,118 of which were present in one or more of the 752 metagenomic sequence samples 

from the NIH Human Microbiome Project. Nearly all of the gene clusters that were 

present in >10% of the samples from the body site of origin are uncharacterized, 

highlighting the potential for identifying the molecules they encode and studying their 

biological activities.
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Outlook

There are two central challenges facing the field. The first is to distinguish, from among 

thousands of microbiota-derived molecules, which are the ‘important’ ones, i.e., the ones 

that drive a key phenotype at physiologically relevant concentrations? Second, which 

experimental systems are appropriate for testing the activity of an individual molecule 

from a complex milieu? Meeting these challenges will require the development of new 

computational and experimental technologies, including a capacity to identify 

biosynthetic genes and predict the structure and target of their biological activity, and 

new systems in which germ-free mice are colonized by mock communities that differ 

only by the presence/absence of a biosynthetic gene cluster.
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Figure 1. Structurally diverse small molecules from the human microbiota
The diversity of chemical classes produced by the human microbiota rivals that of 

microorganisms from any ecological niche. Representative molecules are shown for each of 

the major molecular classes discussed: the RiPPs lactocillin and linaclotide; the amino acid 

metabolites indolepropionic acid and tryptamine; the oligosaccharide polysaccharide A; the 

lipids/glycolipids mycolic acid and α-galactosylceramide; the terpenoid deoxycholic acid, in 

which carbons 3, 7, and 12 of the bile acid scaffold are labeled; the nonribosomal peptides 

corynebactin, tilivalline, and mutanobactin; and the polyketide mycolactone.
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Figure 2. Small-molecule mediated microbe-host and microbe-microbe interactions
The microbiota produce a range of small molecules from various classes with distinct 

targets. Four examples are shown: the nonribosomal peptide tilivalline, whose host target is 

unknown; the ribosomally synthesized and post-translationally modified peptide microcin 

E492 (MccE492), a narrow spectrum antibacterial; lipid A, the glycolipid core of 

lipopolysaccharide, which targets TLR4 in host immune cells; and indole propionic acid, a 

reductive metabolite of tryptophan that enters host circulation but whose biological activity 

is poorly understood. These metabolites are each produced by different species of the 

microbiota, but are shown here in a single cell for schematic purposes. The following are 

abbreviations for domains in the nonribosomal peptide synthetase that produces tilivalline: 

A = adenylation domain, T = thiolation domain, C = condensation domain, R = terminal 

reductase domain.
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Figure 3. Approaches to discovering small molecules from the microbiota
(A) Samples from germ-free and colonized mice can be analyzed by untargeted 

metabolomics to identify molecules that are present in a microbiota-dependent fashion. (B) 

A mouse harboring a reference gut community can be subjected to antibiotic treatment, a 

dietary shift, or another perturbation. Comparative metabolomics can be used to identify 

microbiota-derived molecules whose abundance changes as a consequence of the 

perturbation. (C) Candidate bacterial gene clusters or bacterial species can be selected by 

metagenomic profiling (e.g., for gene clusters or species that are widely distributed, or differ 

in abundance between cases and controls). Comparative metabolomics can then be used to 

identify molecules produced by a gene cluster or bacterial species of interest. (D) Subsets of 

bacteria from a fractionated complex community or designed synthetic communities can be 

used to colonize mice in order to identify specific bacterial species whose presence 

correlates with the production of a molecule of interest.
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