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Abstract

Protein engineering of microbial rhodopsins has been successful in generating variants with 

improved properties for applications in optogenetics. Members of this membrane protein family 

can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided 

mutagenesis, and directed evolution have proven effective strategies for tuning absorption 

wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the 

development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin 

structure-function relationships.
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Introduction

Optogenetics refers to the ability to control or monitor cellular activities with light (‘opto’) 

using genetically encoded machinery (‘genetics’). For nearly a decade, a major focus has 

been neuroscience. Light-activated microbial rhodopsins can be transgenically expressed in 

neurons to reversibly control and sense neural activity with relevant speed and precision [1]. 

Coupling targeted perturbations stimulated by light to specific readouts (e.g., behavioral 

phenotypes or electrical recordings) enables the functional dissection of neural circuits [2-4]. 

Certain rhodopsins can also function as fluorescent voltage indicators providing optical 

detection of neuronal activity (and perhaps other electrically active cell types) [5-7]. 

Unfortunately, rhodopsins have broad activation spectra, making multiplexed control of 
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cells with various light colors challenging, and current fluorescent variants are extremely 

dim, which limits the scope of a potential “all-optical electrophysiology” [8-11]. 

Overcoming these challenges by improving rhodopsin-based tools has and will continue to 

require various elements of protein engineering. In this review, we present examples of how 

protein engineering has enhanced specific rhodopsin functions for applications in 

optogenetics. Specifically, we describe how rhodopsin actuators and sensors have been 

engineered and what limitations remain.

Rhodopsins are a family of light-activated integral membrane proteins that adopt a seven 

trans-membrane α-helical fold referred to as the G protein-coupled receptor fold. The 

polyene chromophore retinal is covalently attached to the ε-amino group of a conserved 

lysine residue on the seventh α-helix through a protonated Schiff base (PSB) linkage [12]. In 

microbes, rhodopsins can act as receptors that change conformation in response to light to 

trigger intracellular signaling, as pumps that drive protons or chloride ions across the cell 

membrane, or as non-specific cation channels [13].

Microbial rhodopsin pumps and channels are widely used for optogenetic applications. 

Light-triggered isomerization of retinal from all-trans to 13-cis initiates the rhodopsin 

photocycle and ultimately results in the movement of ions across the membrane [12]. When 

transgenically expressed in neurons, channelrhodopsins (ChRs) mediate light-dependent 

transport of cations into the cell, causing depolarization and stimulation of action potentials 

[1,14-17]. In contrast to the excitatory ChRs, both proton- and chloride-pumping rhodopsins 

can be used to selectively hyperpolarize the cell and inhibit action potentials through either 

pumping protons out or pumping chloride into the cell [1,18]. Collectively, these tools 

facilitate genetically targeted, reversible loss and gain of function experiments in vivo. Since 

these proteins allow light-dependent ‘actuation’ of neuronal activity, we refer to them as 

actuators (Figure 1, Table 1).

Over the past few years, several proton-pumping rhodopsins have been identified that 

exhibit weak fluorescence that is sensitive to changes in the local electronic environment 

(e.g., changes in pH and trans-membrane voltage) [5-7]. One proton pumping rhodopsin, 

Archaerhodopsin-3 (Arch) from Halorubrum sodomense, has been extensively characterized 

in mammalian neurons for both light-activated proton pumping and voltage sensitive 

fluorescence [5,8,9,19]. Wild-type Arch transports protons in response to light used to excite 

opsin fluorescence (635 – 655 nm). This activity can be attenuated or eliminated by 

introducing mutations at residues known to be critical for pumping [5,8,9,19], thereby 

creating a tool for voltage sensing independent of hyperpolarization. We refer to these 

rhodopsin variants as sensors (Figure 1, Table 2).

Spectral Tuning of Microbial Rhodopsins

Microbial rhodospsin actuators from nature are optimally activated by light in the range of 

450 – 570 nm. The absorption maximum of rhodopsin is determined by the energy gap 

between the resting state (S0) and excited state (S1) of the retinal chromophore. Narrowing 

or increasing the S0-S1 energy gap results in blue or red shifts, respectively. Stabilization of 

these states is governed by interactions between the protein and retinal, which itself is 

surrounded by a hydrophobic binding pocket with five conserved aromatic residues in 
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transmembrane helix 3, 5, 6, and 7 [20]. Experimental and theoretical work suggest that the 

amino acids surrounding retinal affect the S0-S1 energy gap by altering the polarity of the 

retinal binding cavity [21-23] and the distance between the Schiff base linkage to retinal and 

its counter-ion [24-26].

For optogenetics, identifying variants with well-separated absorption spectra is of great 

interest for multiplexed control of excitation and inhibition by different colors of light in a 

single cell or in a population of cells. Lin et al. reported a variant called ReaChR that is 

optimally excited by orange-red light with λmax in the range 590 – 630 nm [27]. ReaChR is 

an engineered chimeric variant of VChR1, a cation-conducting ChR from Volvo carteri, 

which is maximally excited at 589 nm [27,28]. ReaChR has helix 6 replaced with that of 

VChR2 (also from Volvo carteri), which improves protein expression, and has the sequence 

of ChR1 from Chlamydamonas reinhardtii at the N-terminus, which further improves 

plasma membrane localization. To further improve the chimera's properties a number of 

single amino acid mutations were tested based on mutations that had previously been shown 

to alter ChR properties. One such single amino acid mutation (L171I) increased the 

amplitude of the photoresponse at 610 nm and 630 nm [27]. The L171 position was 

previously mutated in the ChR chimera ChEF [29] and was targeted because of its position 

proximal to the retinal binding pocket. ReaChR demonstrates that transferring mutations or 

even parts of domains between variants can confer desired properties (i.e., improved 

photostability and membrane localization). More broadly, chimeragenesis has proven to be a 

good engineering strategy to achieve spectral shifts in ChRs: in an earlier study from Prigge 

et al., helix swapping between ChR1, ChR2, VChR1, and VChR2 resulted in variants with 

red- and blue-shifted spectra, though none as red-shifted as ReaChR [30].

Spectral tuning of ChRs using higher throughput approaches has remained a challenge in 

part due to limited ChR expression in Escherichia coli, a common host for directed 

evolution [31,32]. The presence of predicted N-glycosylation sites in several rhodopsins 

suggests that glycosylation, which E. coli does not naturally perform, is required for 

functional ChR expression [32]. If the lack of glycosylation is limiting expression, then 

expressing ChRs in E. coli with a re-constituted eukaryotic glycosylation pathway (which 

was recently reported in [33]) may be possible. ChRs can be expressed in Pichia pastoris 

[34], suggesting that directed evolution should be possible in this system or in laboratory 

yeasts such as Saccharomyces cerevisiae.

In contrast to ChRs, proton-pumping rhodopsins (PPRs) can typically be expressed in E. 

coli. Recently, spectral tuning of a PPR from Gloeobacter violaceus called GR was 

performed by directed evolution in moderate-throughput (2,000 variants/round of screening) 

using E. coli to express the variants [23*]. Site-saturation mutagenesis at 19 positions 

around the retinal chromophore followed by recombination of beneficial mutations and 

further site-saturation mutagenesis generated large spectral shifts in absorption spectra 

relative to wildtype GR. Collectively, variants with shifts of +/− 80 nm compared to 

wildtype GR were achieved. The large shifts, however, came at the cost of proton pumping 

capacity [23*]. Further characterization of evolved variants revealed that blue-tuning 

mutations modulate the polarity along the retinal chromophore. Blue-tuning mutations near 

the PSB generally increased polarity relative to the native residues, while blue-tuning 
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mutations near the beta-ionone ring decreased polarity [23*], consistent with recent 

theoretical predictions [35]. In contrast, red-tuning mutations occurred near the PSB linkage 

to retinal and likely disrupted its interaction with the negatively charged counter-ion [23*]. 

While directed evolution is clearly an effective strategy for spectral tuning, identifying 

variants with large shifts in absorbance and wildtype activity levels remains a challenge that 

the screening methods used to date have not been able to address.

Engineering Rhodopsin Ion Selectivity

Currently, inward-pumping chloride-transporting rhodopsins and outward-pumping proton-

transporting rhodopsins are widely used for inhibiting neurons [1]. Rhodopsin channels 

(ChRs) can transport many ions for every photon of absorbed light, while pumps can only 

move a single ion per photon. Increased efficiency of ion translocation enables targeted 

perturbations with less light (often advantageous for optogenetics applications) but comes at 

the cost of transient perturbations of membrane conductance. Engineering potassium- and 

chloride-selective ChRs would enable selective inhibition in a way that better mimics 

natural neuronal physiology, with decreased photon flux. While ChRs’ non-specific influx 

of cations can effectively stimulate neuronal activity, enhanced selectivity for calcium could 

enable direct control of a number of cellular processes dependent on intracellular calcium 

ions (e.g., muscle contraction, release of neurotransmitters from nerve terminals, and gene 

expression). Ion-specific rhodopsins would be invaluable tools for studying downstream 

physiological responses to specific ions/second messengers both in neuroscience and 

beyond.

Recently, two groups independently engineered ChR chloride channels that can silence 

neurons [36**,37] with the aid of the dark state crystal structure of the ChR variant, C1C2 (a 

chimera of ChR1 and ChR2) [20] (Figure 2). Berndt et al. speculated that since the ion-

selectivity pore in C1C2 is less ordered than that in potassium-selective channels [38-40], 

natural cation-specific activity is driven by the electrostatic potential surrounding the C1C2 

pore and vestibule [36**]. By identifying single amino acid mutations in this region that 

modified the channel reversal potential and combining the single mutations into a variant 

called inhibitory C1C2 (iC1C2), they created a chloride-specific channel that can silence 

action potentials in response to light [36]. Wietek et al. took a different approach: using 

molecular dynamics simulations, they identified 5 residues that form a hydrophobic barrier 

in darkness to prevent water from entering the protein vestibule [37]. One of these residues, 

E90, when mutated to lysine or arginine, decreased ChR2's reversal potential and turned 

ChR2 into a light-activated chloride channel at membrane holding potentials above about 

−40 mV. Introduction of the T159C mutation improved membrane targeting of the protein in 

mammalian cells [37]. The resulting variant, ChloC, required two mutations to transform 

ChR2 into an effective tool for silencing action potentials in neurons in the presence of light 

[37].

Ideally the inhibitory channels would have a decelerated channel closure, which would 

enable a prolonged ion-conducting state with a brief light stimulation. This has been 

achieved for the excitatory channel, ChR2, by introduction of a mutation at C128 which 

significantly decreased the time for channel closure once light is turned off (off kinetics, 
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τoff) of the ChR2 parent [41]. The C128 mutation was introduced into ChR2 by analogy to 

previous work done with bacteriorhodopsin (bR), a light-driven proton pump, showing that 

the equivalent position in bR, when mutated, affects kinetics of the photocycle and lifetimes 

of intermediates [42,43]. The C128 residue is within 4 Å of the 12th carbon of retinal and, 

based on the C1C2 crystal structure [20], the thiol group is associated with the π-electron 

system in the retinal molecule [20]. Berndt et al. applied the equivalent mutation in iC1C2, 

which resulted in an inhibitory channel with slower channel closure that was named 

SwiChRCT. Wietek et al. engineered a slow-closing version of the inhibitory channel ChloC 

with mutations at position D156, a residue thought to interact with C128 [37].

Exploring Natural Variants for New Rhodopsin Actuators

Combining protein engineering with environmental sample mining via de novo 

transcriptome sequencing has led to the identification of dozens of new rhodopsins [44,45]. 

Two new valuable ChRs recently identified, Chronos (activated with low intensity blue 

light) and Chrimson (activated with red light), together enable wavelength specific 

multiplexed perturbations of neurons [45]. A single mutation, K176R (which was previously 

shown to enhance photocurrents at the equivalent position in ChR2 [46]), was introduced 

into Chrimson to improve its slow kinetics to generate ChrimsonR [45]. Screening members 

of the cruxhalorhodopsin family led to identification of Halo57 from H. salinarum [44]. 

Introducing two single mutations into Halo57 to boost photocurrents and appending 

trafficking sequences from [47] resulted in an optimized variant called Jaws, a red-shifted 

inhibitor of neuronal activity [44]. A major limitation in synchronous sensing and perturbing 

of neuronal activity for all-optical electrophysiology is that the light used to activate the 

actuator can perturb the fluorescence readout of the sensor. A highly light-sensitive, blue-

shifted channelrhodopsin variant (sdChR, [45**]) identified in a screen of plant genomes 

was further engineered for faster kinetics and improved membrane localization to produce 

CheRiff to enable subcellular excitation [9] (Figure 3).

Engineering of Rhodopsin Voltage Indicators

Adam Cohen and colleagues recently discovered that rhodopsins can be used as genetically 

encoded voltage indicators (GEVIs); however, the natural proteins suffer from extremely 

low quantum efficiencies (~10−4) [5]. Eliminating pumping activity while retaining fast 

kinetics also presents an engineering challenge since the relationship between pumping, 

fluorescence, and kinetics is not completely understood. The photocycle of Arch, a leading 

candidate for GEVI development, is thought to proceed as follows: absorption of a photon 

initiates the photocycle (g → M), leading to an equilibrium between the M state (protonated 

counter-ion) and N state (protonated Schiff base) [48]. Following conversion of N → Q 

(through absorption of photon at 540 nm) and excitation of the Q-state (absorption of photon 

at 570 nm), a photon at 710 is emitted as fluorescence as Arch returns to the N intermediate 

[48]. Retinal thermally isomerizes back to all-trans (N → O) and a proton is released at the 

extracellular side (O → g). Based on this model, mutants with a longer-lived Q-state should 

exhibit increased fluorescence.

Directed evolution is an effective strategy for enhancing the brightness of Arch [9,49,50]. 

For example, introduction of mutations near the lysine that forms the covalent Schiff base 

McIsaac et al. Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



linkage to retinal and screening for fluorescence enabled identification of two variants of 

Arch, one a double mutant, D95E/T99C (Archer) and another containing 5 mutations 

(referred to as QuasAr1). Both Archer and QuasAr1 show enhanced voltage sensitive 

fluorescence with emission in the far-red (maximal emission > 680 nm) [8,9,49]. Both of 

these engineered variants have improved brightness and dynamic range compared to two 

previously published variants, Arch EEQ and Arch EEN [19].

Directed evolution of Archer revealed two fluorescence enhancing mutations, V59A and 

I129T [49], that were independently identified at the homologous positions in bR (V49A 

and I119T) and shown to stabilize the Q-state intermediate [51]. Many mutations at P60 

(<5Å from retinal) also increase Arch fluorescence [49]; similarly, many mutations at the 

homologous bR position (P50) stabilized the Q state [51]. These observations are consistent 

with the Q state being the fluorescent state in the Arch photocycle [48].

Since their absorbance is sensitive to changes in electric potential [52], rhodopsins can also 

potentially be used in FRET sensors, assuming the absorbance overlaps with the emission of 

a bright fluorescent protein. Recently, a FRET-opsin sensor (a fusion between L. maculans 

[Mac] rhodopsin and mOrange2 [a monomeric orange fluorescent protein [53]]) was 

developed, achieving a response time of ~5 ms following a step change in membrane 

voltage and successful detection of sub-threshold events [7]. To eliminate Mac pumping, the 

PSB counter-ion D139 was replaced with glutamine (Q). While replacing the counter-ion 

with a neutral residue is a general strategy for eliminating pumping, the D139N variant 

retained sufficient pumping activity to perturb neural spiking patterns; thus, D139Q or its 

equivalent is the preferred mutation for Mac-based sensors [7]. However, current Mac-

mOrange2 derivatives have a lower dynamic range (defined as voltage-dependent changes 

with respect to the probe's baseline fluorescence) than recently engineered Arch variants 

[8,9,49]. Using an expression vector that can drive expression in both prokaryotic and 

eukaryotic cells, Zou et al. developed a screening strategy in which brighter Arch-mOrange2 

variants can be identified in E. coli and subsequently transfected into HEK293 cells to 

measure their voltage sensitivity [50*]. This engineering strategy accelerates the speed at 

which brighter, multi-colored, and voltage-sensitive rhodopsins can be identified and has 

resulted in FRET sensors with rise times in the range 1 – 7 ms [50*].

Engineered rhodopsin-based sensors are still quite dim, with quantum yields of <1%. 

Alternative voltage sensors have been engineered by fusing the Ciona intestinalis voltage-

sensor containing domain (Ci-VSD), a non-rhodopsin protein that undergoes a voltage-

dependent conformational change, to a fluorescent protein [54]. The issue of slow kinetics of 

these non-rhodopsin sensors [55] has been largely overcome [56], but they exhibit non-

linear voltage sensitivity, which may limit their capacity for detecting sub-threshold events 

[56]. Despite being fused to bright fluorescent proteins and increased basal fluorescence 

over rhodopsins, the spectral overlap between Ci-VSD-based sensors and rhodopsins limits 

their compatibility for all-optical electrophysiology (Figure 3); furthermore, rhodopsins 

appear to be less susceptible to photo-bleaching [8].

McIsaac et al. Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Rhodopsins are powerful tools for brain research. Identifying actuators with shifted and 

narrowed spectra would improve the ability to multiplex perturbations with different colors 

of light, whereas enhancing ion specificity will enable more physiological studies within and 

beyond neuroscience. Brighter rhodopsin sensors have been engineered, but further 

improved brightness would facilitate imaging populations of neurons (and perhaps other 

electrically-active cell-types such as cardiomyocytes) with wide-field microscopy. The 

development of opsin-FRET sensors could also enable monitoring different cell types with 

different colors of light [50], a potentially powerful application of all-optical 

electrophysiology. Future work would greatly benefit from an understanding of how 

characterized mutations impact the photocycle and the protein structure and thereby 

contribute to the desirable properties found in engineered rhodopsins. Chimeragenesis, 

structure-guided mutagenesis, and directed evolution have and will continue to play central 

roles in the development of improved rhodopsins for optogenetics.
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Abbrevations

Arch Archaerhodopsin-3

bR bacteriorhodopsin

ChR Channelrhodopsin

ChR1 Chlamydomonas reinhardtii channelrhodopsin-1

ChR2 Chlamydomonas reinhardtii channelrhodopsin-2

C1C2 chimera of ChR1 and ChR2

GEVI genetically encoded voltage indicator

HEK293 cells human embryonic kidney 293 cells

FRET Förster resonance energy transfer

GR Gloeobacter violaceus rhodopsin

PPR proton-pumping rhodopsin

PSB protonated Schiff base

sdChR Scherffelia dubia channelrhodopsin

VChR1 Volvox carteri channelrhodopsin-1

VChR2 Volvox carteri channelrhodopsin-2
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Highlights

• Rhodopsins are useful sensors and actuators of neuronal activity.

• Bifunctional rhodopsin constructs facilitate all-optical electrophysiology.

• Protein engineering can enhance rhodopsin properties for optogenetics.
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Figure 1. Rhodopsins can be used as actuators and sensors in optogenetics
Actuators transport ions across the membrane to activate or repress neuronal activity. ChRs 

transport positively charged ions into the cell, while proton-pumping rhodopsins (PPRs) 

move protons out of the cell. In the ideal case, engineered rhodopsin sensors emit light as 

fluorescence in the farred in a voltage-dependent fashion.
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Figure 2. Residues that affect ion selectivity in the channelrhodopsin C1C2
The illustration shows crystal structure of C1C2, with putative ion gating residues S102, 

E129 and N297 highlighted in green. Mutation of the gating residue N297 to D results in a 

significant increase in selectivity for Ca2+, while mutation of E129 to Q or A results in a 

significant decrease in the channel's Ca2+ selectivity [20]. Mutating the highly conserved 

gating residue E129 [45] has significant effects on the channel's selectivity for Cl− in both 

the C1C2 backbone and the ChR2 backbone (position E90 in the ChR2 backbone) [36,37]. 

Mutation of E90 in ChR2 to R or K increases the reversal potential as a result of increased 

Cl− selectivity to generate a light activated inhibitory channel [37]. Residues outside of the 

putative ion gate also influence channel selectivity (residues highlighted in purple). 

Mutations Q95A, E162 and D292A have all been shown to enhance H+ selectivity. Mutants 

K132A and Q95A display increased K+ permeability in the C1C2 backbone [20].
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Figure 3. Bifunctional constructs for all-optical electrophysiology
Archer, an engineered Archaerhodopsin-3 variant, enables optical monitoring of voltage 

with red light, and perturbation of membrane potential with blue light (left) [8]. 

Alternatively, one rhodopsin can be used for sensing with red light, while an engineered 

ChR can be used for perturbing the membrane with blue light (right) [9].
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