Table 5.
GE11 event extraction with scikit-learn classifiers.
| Classifier | Parameters | Recall | Precision | F-score |
|---|---|---|---|---|
| BernoulliNB | alpha = 0.001,0.01,0.1,1,10,100,1000 | 53.41 | 14.93 | 23.34 |
| Perceptron | default | 38.82 | 61.73 | 47.67 |
| SVC | C=[10-3, 106], probability=True | 47.06 | 66.05 | 54.96 |
| LinearSVC | C=[10-3, 106] | 46.65 | 68.02 | 55.35 |
| ExtraTrees | n_estimators = 10,50,100 | 27.97 | 78.58 | 41.25 |
| RandomForest | n_estimators = 10,50,100,500 | 24.92 | 78.65 | 37.84 |
| SVMmulticlass | C=[1,106] | 54.98 | 52.89 | 53.92 |
The SVMmulticlass used in all TEES BioNLP Shared Task results is shown for reference. Performance is evaluated for task 1 on the development set with the downloadable GE11 evaluator.