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Abstract

Randomized clinical trials (RCTs) are conducted to guide clinicians’
selection of therapies for individual patients. Currently, RCTs in
critical care often report an overall mean effect and selected
individual subgroups. Yet work in other fields suggests that such
reporting practices can be improved. Specifically, this Critical Care
Perspective reviews recent work on so-called “heterogeneity of
treatment effect” (HTE) by baseline risk and extends that work to
examine its applicability to trials of acute respiratory failure and
severe sepsis. Because patients in RCT's in critical care medicine—and
patients in intensive care units—have wide variability in their risk
of death, these patients will have wide variability in the absolute
benefit that they can derive from a given therapy. If the side effects of
the therapy are not perfectly collinear with the treatment benefits, this

Guyatt and colleagues’ classic User’s Guide
to the Medical Literature II (1) states, “if
the patient would have been enrolled in
the study had she been there—that is, she
meets all the inclusion criteria, and
doesn’t violate any of the exclusion

criteria—there is little question that the
results are applicable.” If this is true and
there are no contraindications, then it

is often argued that the patient should
receive the treatment found to be
superior by such a well-conducted

will result in HTE, where different patients experience quite different
expected benefits of a therapy. We use simulations of RCTs to
demonstrate that such HTE could result in apparent paradoxes,
including: (1) positive trials of therapies that are beneficial overall but
consistently harm or have little benefit to low-risk patients who met
enrollment criteria, and (2) overall negative trials of therapies that still
consistently benefit high-risk patients. We further show that these
results persist even in the presence of causes of death unmodified by
the treatment under study. These results have implications for
reporting and analyzing RCT data, both to better understand how our
therapies work and to improve the bedside applicability of RCTs. We
suggest a plan for measurement in future RCTs in the critically ill.

Keywords: heterogeneity of treatment effect; acute respiratory
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randomized clinical trial (RCT). This
logic motivates many guidelines and
quality measures.

However, there are clear examples
where such logic fails patients. Perhaps the
best example is carotid endarterectomy for
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At a Glance Commentary

Scientific Knowledge on the
Subject: Although randomized
clinical trials (RCTs) provide the best
evidence of the effect of a treatment on
a population, the average effect from an
RCT may be a misleading guide to how
any given patient will do.

What This Study Adds to the
Field: We suggest that a patient’s
baseline risk of death, measured just
before treatment, may be an important
determinant of how much a treatment
will help any given patient. This
Critical Care Perspective shows why
that might be true and how changes in
the analysis and reporting of RCT's
might improve the usefulness of RCT's
at the bedside.

stroke reduction in symptomatic patients.
In a major RCT, the average effect of
surgery was greater than 10% absolute risk
reduction in stroke or death at 3 years—a
tremendous result (2). However, the
benefits were largely accrued by patients at
highest risk of imminent stroke. Even in
the context of this very positive RCT,
surgery worsened the risk of stroke for those
trial participants with lower baseline risk (3).
This is not merely a problem of the
external validity. Instead, in this case, a
well conducted RCT resulted in an average
outcome that poorly reflected outcomes of
many patients within the RCT. In direct
contradiction of the received wisdom
articulated by Guyatt and colleagues
quoted above, there are times when one
should not apply the results of an RCT

at the bedside, even to patients who
would clearly have been eligible for
that RCT.

RCTs are the gold standard for testing
the effect of a treatment on outcome, and
this Critical Care Perspective fully agrees
with that view. However, we should
remember that the main result of an RCT is
the average effect across the tested
population (4-8), which does not directly
address which particular patients will
benefit, or how much. It might be that few
patients can expect the average benefit, as
the magnitude of benefit and risk of adverse
effects can vary significantly across a tested
population. This raises an important
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question—are there subgroups of patients
in a trial who are particularly likely

or unlikely to benefit? The carotid
endarterectomy example is not unique.
Similar examples exist in other areas of
medicine (9, 10). It is increasingly urgent
that we understand whether such
so-called heterogeneity of treatment
effect (HTE) might be clinically relevant
in critical care medicine, and, if so, how
changes in reporting of trials might
improve the translation potential

of RCTs.

RCTs in acute respiratory failure and
sepsis often report subgroup analyses in
recognition that there may be meaningful
HTE between patients. In real intensive
care units (ICUs), however, high-risk
patients are high risk because of multiple
risk factors, but conventionally reported
one-at-a-time subgroup analyses fail to
capture such variation in risk. The
population of patients at higher risk from
a given acute organ dysfunction will
nonetheless include many younger patients
lacking other organ dysfunctions, blunting
the separation in risk that can be achieved
in such subgroup analyses (11, 12). For
example, there are 17 variables in the
Simplified Acute Physiology Score (SAPS)
IT score (13); only the risk difference
between a Glasgow Coma Scale of less
than 6 and greater than 14 is as large as the
interquartile range (IQR) of SAPS II
scores seen in recent ARDSnet trials
(see Frequently Asked Question [FAQ] 1
in Appendix 1 in the online supplement).
We need to move beyond conventional
subgroup analyses, because they
simply do not capture enough variation
in risk.

This Critical Care Perspective
examines the implication of risk-stratified
HTE analysis for the reporting and bedside
use of RCTs. To do so, we conducted
simulations of RCTs in acute respiratory
failure, drawing from distributions of
actual patient data (all results also hold for
severe sepsis, as shown in Appendix 2).
First, we demonstrate the extent to
which HTE could plausibly produce
overall trial results that substantially
over- or underestimate the true benefit of
subsets of patients identifiable through
risk-stratified analysis. Second, we discuss
the implications of this phenomenon for
the reporting and application of RCTs.
Finally, in Appendix 1, we present an FAQ
where we directly address some of the

concerns raised during our development of
these ideas.

Could HTE Matter in Trials in
Critical Care?

The core argument for examining HTE

by baseline risk of death is as follows (14).
If a treatment results in a consistent relative
risk reduction (RRR) and if baseline risk
varies, then the treatment must have
substantial variation in absolute risk
reduction between patients with different
baseline risk. If a treatment reduces
mortality due to respiratory failure by 25%
in all patients, then 1 death from
respiratory failure is prevented for every

8 patients treated when baseline risk is 50%,
whereas only 1 death is prevented for
every 200 patients treated when baseline risk
is 2%. Thus, patients with low risk of dying
from the treatment’s target condition have
such a small chance of benefitting that it can
easily be overwhelmed by even a small
treatment-related harm, such as increasing
renal damage, susceptibility to infections,
or later complications—especially if

the risks of such adverse effects are
independent of the risks of dying of the
target condition.

Although the logic is straightforward,
its relevance to critical care medicine is less
clear. For example, if critical care RCT's
enroll only very sick patients at high risk of
dying from the condition of interest, then
risk may simply not vary much between
patients in our RCTs. But more generally,
there is the possibility that RCT's in critical
care are different than those in stroke or
outpatient cardiovascular prevention, where
much of this logic was first recognized.

In the ICU, our primary outcome is typically
mortality. This is not merely due to the
high lethality of the conditions we treat, but
also because both the conditions themselves
and the therapies used to treat them can
have diverse multisystem effects—many of
which are challenging to monitor or
underrecognized at the time of phase III
RCTs. As such, in the ICU, we do not have
the luxury of a clean separation between
therapy-caused adverse events and the
natural history of the conditions that we are
seeking to treat. As such, this Critical Care
Perspective also asks whether the logic of
HTE by baseline risk of death is relevant in
such a complex situation.
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Testing the Potential
Relevance of HTE

To begin exploring the potential impact of
HTE, we constructed simulated clinical
trial populations, taking great care to ensure
the realism of the simulations. We chose
simulation, rather than analysis of actual
critical care trials, because simulation allows
for the design of multiple scenarios,
facilitating exploration and quantification of
the impact of varying key factors affecting
patient outcome, such as baseline risk of
death, RRRs, adverse-effect rates, and so
forth (12). Simulations have the additional
virtue that the “true” effect is known as a
consequence of the simulation specification,
and the frequency with which the “truth”
can be detected under realistic scenarios
can be estimated.

We simulated RCT's using data from
7,255 nonsurgical mechanically ventilated
patients from the hospitals of the U.S.
Department of Veterans Affairs (15-19).
The dataset has numerous strengths,
including granular clinical data and
detailed risk adjustment using a validated
score (16, 17, 20), with an area under the

Table 1. Characteristics of Patients
Receiving Nonsurgical Mechanical
Ventilation

Characteristics

Total, n (%)

Age, yr, mean (SD) 66.35 (11.65)
Sex, n (%)
Male 7,081 (97.1)
Female 214 (2.9)
Race, n (%)
White 5,120 (70.2)
African American/black 1,437 (19.7)
Unknown 636 (8.7)
Other 102 (1.4)
Total hospital LOS, d, 15.93 (15.71)
mean (SD)
Admission source, n (%)
VA emergency 3,719 (51.0)
department
VA outpatient clinic 2,639 (36.2)
Other 937 (12.8)
Discharge status, n (%)
Outpatient (home) 2,973 (40.8)
Nursing facility 973 (13.3)
Death 2,803 (38.4)
Other 546 (7.5)
Severe sepsis, n (%) 5,243 (71.9)
30-d mortality, n (%) 2,901 (39.8)

Definition of abbreviations: LOS = length of stay;
VA = Department of Veterans Affairs.
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receiver operating characteristics curve
greater than 0.85 for 30-day mortality.
The patients in these data are described in
Table 1. We used the patients’ risk of
death calculated on their ICU admission
day, modeling RCTs where enrollment
and randomization happen early in the
ICU stay. The mean risk of 30-day
mortality was 39.8%, with a median of
34.8% (IQR =21.5-54.6%). The smallest
predicted risk of 30-day mortality was
3.6%, with 99% having a risk of death
predicted to be 7.5% or greater. This is
similar to the ranges of mortality risk seen
in critical care RCTs; for example, across
the ARDSnet trials ARMA (lower tidal
volume), LaSRS (Late Steroid Rescue
Study), High v Low PEEP, and FACTT
(Fluid and Catheter Treatment Trial),
the patients had a median SAPS II
predicted risk of death at randomization
of 37.0% (IQR =19.6-59.8%; A. Walkey,
personal communication; see also

Ref. 11)

In the simulations, we assumed that
each individual’s odds of 30-day mortality
were influenced by four factors: (I) severity
of acute respiratory failure; (2) comorbid
conditions (such as chronic health
problems or other features of the critical
illness); (3) the treatment’s reduction in
mortality from the primary illness; and
(4) the treatment’s fatal adverse-effect rate.
As a starting point for our modeling, we
assumed that the treatment has a
constant RRR for the primary
illness (and therefore a larger absolute
reduction in patients at higher risk),
consistent with current RCT practice of
reporting a single summary RRR for the
entire population (see FAQs 4 and 5 for
discussion of alternative assumptions).
Similarly, as a starting point, we assumed
any adverse effects would be independent
of other health factors (e.g., the risk of
death due to drug-related bleeding was not
correlated with the risk of dying from
the primary illness; see FAQ 5 for an
examination of when adverse events
increase with baseline risk of death; our
main findings hold in that situation as
well). We generated three clinical trial
scenarios. For each scenario, we simulated
10,000 trials of 2,500 patients with 1:1
randomization to therapy or placebo.

This sample size of 2,500 was chosen to
represent current larger RCTs being
planned in critical care, erring on the
conservative side.

Appendix 3 presents a more detailed
description of the logic behind the
simulations. Appendix 4 provides all the
Stata 13 code necessary to conduct the
simulations.

Scenario 1: “Positive” Trials of a
Therapy That Reduces Acute
Respiratory Failure-related Mortality
For scenarios 1 and 2, we assumed that
patients’ baseline risk of 30-day mortality is
completely due to acute respiratory failure.
Adverse outcomes resulting from the
therapy—Dboth recognized adverse events
and unknown effects—occur in 3 of 100
patients treated. These numbers were
chosen to result in a well powered RCT
with a statistically significant overall effect
size in the range for which many current
trials are powered and a plausible,
nontrivial, serious adverse effect rate (21).
In scenario 1, the therapy reduces death due
to the primary illness by a constant RRR
20%, and “positive” trials were identified as
those simulations with a statistically
significant RRR for the trial as a whole, with
P less than 0.05 as the conventional
significance threshold.

In 8,706 of 10,000 simulations, the
simulated RCT was positive (power = 87%
in this scenario), showing a statistically
significant median relative risk (RR) of
0.85 (95% confidence interval for trials in
the scenario = 0.77-0.94; IQR = 0.82-0.87).
This resulted in a mean reduction in
absolute mortality from 39.8 to 33.6% in
the 8,706 positive RCTs.

However, despite a constant
treatment-related adverse-effect rate and
RRR, patients in the 8,706 positive trials
experience dramatically different
likelihoods of benefiting from the
treatment. Indeed, such “positive” trials
routinely contain subgroups that are
predictably more likely to be harmed than
helped. Figure 1 is stratified by decile of
prerandomization risk of death. Patients at
high risk of dying of the condition have a
dramatic reduction in that risk when
treated—a mean absolute mortality
reduction of 16.3% and a number needed
to treat (NNT) of only 6. Indeed, the
patients in the highest three deciles of risk
all receive substantial benefits from the
therapy, with NNT of approximately 10
or less. In contrast, treatment increases
the chance of death in the lowest risk
decile, albeit modestly, and an additional
20% of patients are in deciles of risk
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Figure 1. Scenario 1: heterogeneity of treatment effect in positive trials. This figure shows the results
of the 8,706 simulated trials from scenario 1 (see main text) that showed a statistically significant
benefit of the therapy in patients with acute respiratory failure requiring mechanical ventilation.
Nonetheless, the lowest decile of risk showed very little effect. The upper panel shows the results in
each arm, stratified by decile of risk; the lower panel shows the net effect: the rate of mortality in the

control arm minus the rate in the treated arm.

receiving more marginal benefits, with
NNTs of 45 and 90.

Interpretation and comment: proven
therapies could predictably harm some
patients. The most important of our results
may be that the included population of
RCTs of effective therapies may still contain
subsets of patients who are more likely to
be harmed than benefited by that therapy.
This is not a facile restatement that even
an effective treatment will have adverse
effects so some patient will, a posteriori, be
worse off. Instead, this is the finding that,
when applying the results of acute
respiratory failure trials to populations who
would have met inclusion criteria for that
trial, there may be a priori-identifiable
groups of patients—for whom standard
evidence-based medicine and guideline advice
would recommend the treatment—who are
nonetheless predictably made worse by that
treatment. Such patients could be
identified if trials were to examine
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risk-based HTE, and thereby spared such
harm (or resource waste) when the trial
results are translated into clinical
practice. David Kent and others (8, 22,
23) have shown that such patients are
best identified by stratifying patients
based on composite risk scores, rather
than traditional one-at-a-time subgroup
testing.

HTE in general, by baseline risk of
death in particular, is a problem both within
a trial and in applying trials in clinical
practice. Within a trial, the more uneven the
distribution of patients (with a majority of
patients at lower risk than the population
mean risk, as so often occurs [24]), the
greater the danger that a positive mean
outcome obscures treatment-related harm
in many lower baseline risk subjects.(7, 8)
(see sepsis results in Appendix 2). When
applying a trial at the bedside, the
clinician is faced with the reality that
most patients are not at the average

baseline risk of death. Presenting results
stratified by baseline risk better informs
decisions on the appropriateness of the
therapy for the particular patient—
although the extent to which these
stratified results should influence
practice depends on the extent to which
the HTE analyses were prespecified in
the analyses plan and have been
replicated.

Scenario 2: “Negative” Trials of a
Therapy That Reduces Acute
Respiratory Failure-related Mortality
In scenario 2, we simulate a “negative”
clinical trial of a potentially efficacious
therapy, one which reduced the RR

by 15% (rather than 20% in scenario 1) so
as to yield a large number of negative trials.
All other factors, including the adverse
event rate, were kept constant, resulting in a
smaller population-averaged treatment
effect (median RR =0.90 [95% confidence
interval = 0.81-0.99]) and lower statistical
power (55%) than that in scenario 1.
Examining the “negative” trials (45% of all
simulated trials), we again see substantial
HTE (Figure 2). Those patients in the
lowest three deciles had a net increase in
mortality from the tested therapy, but
hidden in these “negative” trials were
patients at the highest risk of dying who
had a substantial risk reduction from the
therapy (NNT =9 and 14 in the two
highest-risk deciles of patients). This means
that, in these RCT's with no statistically
significant difference in the average
treatment effect—and many patients for
whom the treatment offered little benefit or
frank harm—there were still patients for
whom the trial revealed that the therapy
was highly effective.

Interpretation and comment: negative
trials that benefited some patients. The same
logic of HTE by baseline risk also applies to
“negative” trials, those without an average
difference between treated and controls.
Such therapies may, of course, be truly
ineffective for all patients. However, as
shown in scenario 2, it may be that the trial
population included many patients at low
risk for the outcome of interest. In such
cases, analysis on the basis of an aggregate
risk score would have increased ability to
detect the subpopulations in which this
therapy could be beneficial. Of course, this
would be only preliminary evidence,
demanding further testing in a new RCT
with more refined inclusion criteria—but it
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Figure 2. Scenario 2: heterogeneity of treatment effect in negative trials. This figure shows the results
of the 4,504 simulated trials from scenario 2 (see main text) that failed to show a statistically significant
benefit of the therapy in patients with acute respiratory failure requiring mechanical ventilation.
Nonetheless, the highest deciles of risk showed consistent benefit (lower mortality in treated arm than in
the control arm). The upper panel shows the results in each arm, stratified by decile of risk; the lower
panel shows the net effect: the rate of mortality in the control arm minus the rate in the treated arm.

could prevent efficacious therapies from
being erroneously discarded.

Scenario 3: “Positive” Trials Even
Though Much of the Risk of Death Is
Unrelated to Acute Respiratory
Failure, and Thus Unaffected by the
Therapy

In scenario 3, we recognize that death
may also be due to other health factors
unaffected by the therapy (e.g., comorbidities
or organ failures already established prior
to treatment initiation). We considered
three levels of other causes of death for
scenario 3, where the proportion of death
due to acute respiratory failure (or sepsis,
in Appendix 2) was 0.25, 0.5, and 0.75 of
the total mortality rate. We kept mortality
due to adverse effects at a constant absolute
3% and adjusted the RRR iteratively until the
simulations produced roughly the same
overall average results as those in scenario 1.

Critical Care Perspective

This scenario demonstrates that, as the
fraction of total risk that is treatment
responsive declines (and other causes of
death increase), the treatment-responsive
RRR needs to increase (see Appendix 2,
Table El in the online supplement) to
maintain an overall positive treatment
effect. As shown in Table 2, considerable
HTE persisted, despite wide variation in the
likelihood that death was due to acute
respiratory failure versus other causes.

Interpretation and comment: other
causes of death do not solve HTE. In
complex syndromic illnesses, such as acute
respiratory failure and severe sepsis, it is
less likely that a single therapy treats all
possible mechanisms of death. This may be
true if for no other reason than those
syndromes often cause secondary organ
failures, which then themselves have a risk
of death independent of their etiology.
Critically, such other causes would not be

affected by the treatment being tested in the
RCT. One might hope that in the presence of
such alternative mechanisms of death,
HTE—and the possibility of predictable
treatment-related harm in lower-risk
subgroups—might be less prominent. We
found that, in trials of a given overall effect
size, even with many other causes of death,
HTE can persist—with lower-risk groups
having NNTs an order of magnitude worse
than those in higher-risk groups.

Implications of Potential HTE

The preceding simulations used real
distributions of risk of death and plausible
treatment effect sizes and adverse event
rates, as seen in recent acute respiratory
failure trials. These results demonstrate
that these trials could potentially have
clinically meaningful HTE hidden within
positive and negative trials in both acute
respiratory failure and, as shown in
Appendix 2, severe sepsis. Wide variation in
baseline risk of death is present in current
RCT study populations, both in ARDSnet
and the PROWESS (Recombinant Human
Activated Protein C Worldwide Evaluation
in Severe Sepsis) trial. In “positive” trials
with statistically significant reductions in
mortality, there may be an identifiable
subgroup of patients for whom treatment
offers little expected benefit or even
expected harm. Similarly, even in some
“negative” trials, it was possible to identify
subgroups of patients for whom treatment
substantially decreased their risk of dying.
We have shown that this risk-based HTE
may plausibly be present even if the risk of
death responsive to treatment accounts

for only a modest percentage of the overall
risk of death for enrolled subjects.

Patients who are at relatively lower risk of
death can easily receive little benefit or even
net harm from a treatment that has
substantial net benefit in higher-risk subjects.

Implications for Clinical Trial Conduct
and Reporting

This work, and the body of literature to
which it contributes, have several key
implications for future respiratory failure
and severe sepsis trials. These stem from the
fact that HTE is a clinical and mathematical
reality when treatment-related harms and
treatment-related benefits are less than
perfectly collinear. The reality is that recent
large clinical trials, even after restricting
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Table 2. Heterogeneity in Treatment Effect in Positive Trials Persists with Increasing

Other Causes of Death

Treatment-Responsive Risk

100%

Risk of other causes of death 0%
Deciles of baseline risk, NNTs
1 (lowest risk)

2 a0
3 45
4 30
5 22
6 16
7 13
8 10
9 8
0

10 (highest risk) 6

(642)

75% 50% 25%
25% 50% 75%
212 95 50
57 41 26
38 27 20
27 22 16
21 18 15
16 15 14
13 13 13
10 11 13
8 10 13
6 8 11

Definition of abbreviation: NNTs = numbers needed to treat.

NNTs correspond to the absolute change in mortality in simulations associated with positive trials.
The first column with 100% treatment-responsive risk is composed of the same data as scenario 1,
shown in Figure 1. Numbers in parentheses represent numbers needed to harm.

entry based on biological criteria, include
quite wide-ranging risks of death (see also
FAQ 1.) Furthermore, the frequent
multisystem effects (known and not yet
known) of both our conditions under study
and of our therapies require consideration
of broad, patient-centered endpoints (such
as mortality) for which HTE by baseline
risk of death may be particularly
prominent.

We provide pragmatic
recommendations for prespecified analyses
for HTE in Table 3, and some suggestions
on the interpretation and follow-up of
significant HTE analyses in FAQ 7. Such

a priori specification is particularly
important to allow credible examinations
within negative trials of subsets of patients
who would truly benefit from the therapy
under study. Most examinations of HTE by
baseline risk in an individual trial may be
underpowered, but still worth reporting for
transparency and to inform bedside decision
making, by the same logic that RCTs now
report subgroup analyses. Patient-level
meta-analyses may be a particularly ripe
opportunity to test for the magnitude of
HTE by baseline risk, taking advantage of
their larger sample size. It is worth noting
that reporting HTE may be relevant even

Table 3. Pragmatic Recommendations to Examine Heterogeneity of Treatment Effect
by Baseline Risk of Death in a Trial with Mortality as Outcome

® Collect prerandomization data for an existing, well-validated severity of iliness score (e.g.,
APACHE, SAPS) for the RCT’s primary outcome. If existing scores are not deemed
adequate to the population under study, collect relevant data points to develop an
internally validated risk score (22). This is referred to as the baseline risk of death score.

® As primary subgroup analysis, present absolute rates of the primary outcome stratified by

quintile* of baseline risk of death score.

® Test the statistical significance of the HTE as by testing the statistical significance of the
interaction on the absolute scale between the baseline risk of death as a continuous*
variable and the treatment (recognizing that this is likely underpowered in a single trial, as

most subgroups are).

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; HTE =
heterogeneity of treatment effect; RCT = randomized clinical trial; SAPS = Simplified Acute Physiology

Score.

Recommendations on interpreting such results are expanded upon in Frequently Asked Question 7 in

the online supplement.

*Note that these are pragmatic recommendations at present; there is ongoing research into the
optimal number of quantiles over which the stratification should be presented and the optimal
parameterization of the significance testing for HTE.
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without clear treatment-related harm.
Many new therapies—inside the ICU
and out—are extremely expensive.
Decisions to adopt those therapies may be
made on their cost-effectiveness ratios,
which are dramatically altered by an
order of magnitude change in the NNT.

Limitations

Our work has a number of limitations
that should be kept in mind. Foremost, we
have used simulations to demonstrate the
possibility of these results. That is, these
results constitute an “existence proof”—we
have shown that, under plausible
conditions relevant to critical care, HTE by
baseline risk of death could be of a
magnitude to be clinically relevant in

the decision whether or not to apply a
treatment to a given patient. However, we
have not yet demonstrated that any specific
treatment shows a consistently reduced
benefit or harm in a specific group of
patients. Given existing RCT reporting
standards, which rarely call for stratification
by aggregate risk scores, quantifying the
magnitude of HTE in past trials may be
challenging—but need not be so in future
trials.

Beyond the limitations of this specific
contribution, the literature on HTE by
baseline risk of death is an active area of
research where several important questions
are not fully resolved. For example, better
methodologies are needed to quantify and
assess the clinical importance of HTE and its
replicablity. A consensus statistical best
practice for quantification of HTE has not
yet emerged, but is needed. Equally
important, additional theoretical work is
necessary to understand the dynamics of
HTE in the context of less-simplified
situations we consider here. For
example, although existing work routinely
simplifies severity of illness to a single score,
it may (or may not) be useful to distinguish
those aspects of severity of illness driven by
an acute illness, and those aspects driven
by pre-existing comorbidity. Furthermore,
there is work to be done understanding the
interplay between HTE by baseline risk of
death and HTE by specific biological
mechanisms of a given treatment (see also
FAQs 2 and 9). Nonetheless, we believe this
HTE literature is sufficiently advanced
that certain specific changes in reporting
and analysis of RCT's are warranted at this
stage, as proposed in Table 3. The
implications of finding evidence of HTE are
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discussed in FAQ 7, and potential
misinterpretations of such a finding are
discussed in FAQ 8.

Conclusions

In conclusion, this work suggests that a
single average treatment effect from an RCT
might be a misleading guide to physicians
for their use of a given treatment in an
individual patient, as we may not know what
characteristics make the patient “average” in
the relevant sense. Even among patients
who meet enrollment criteria, some

patients will generally have a much greater
absolute risk reduction from treatment than
others—and the treatment may even
increase the risk of death in some. In short,
the mean result should not be the only
message that we hear from the rich data
collected in RCTs. A hallmark of the
modern ICU is the exceptionally wide
range of short-term risk of death seen in
conventional ICU patients (25)—a
variation in risk that may exceed the
variation found in most other clinical
contexts. Because such variation in
baseline risk is a major driver of

clinically significant HTE, the ICU may
be a pre-eminent site within which
improved analyses and reporting of
clinical trials can lead to more effective
and efficient decisions, and smarter
patient care.
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