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Inherent structure length in 
metallic glasses: simplicity behind 
complexity
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Yandong Wang1 & Zhaoping Lu1

One of the central themes in materials science is the structure-property relationship. In conventional 
crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects 
such as dislocations, impurities, and twins. However, the structure-property relationship in 
amorphous alloys is far from being understood, due to great difficulties in characterizing and 
describing the disordered atomic-level structure. Herein, we report a universal, yet simple, 
correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) 
and a unique characteristic structural length in metallic glasses (MGs). Our analysis indicates that this 
characteristic length can incorporate effects of both the inter-atomic distance and valence electron 
density in MGs, and result in the observed universal correlation. The current findings shed lights on 
the basic understanding of mechanical properties of MGs from their disordered atomic structures.

Modulus and strength of metallic materials are key properties for their engineering applications1,2, and 
the knowledge of structural information is prerequisite for understanding the deformation behaviour3,4. 
In crystalline materials with long-range periodic atomic packing, the relationship between their structure 
and mechanical properties has been theoretically developed and relatively understood5–8. However, in 
glassy materials, especially metallic glasses (MGs), such a structure-property correlation is still missing 
due to the difficulties in decoding the atomic packing in these disordered solids. Several efforts have 
been attempted to reveal a scaling behaviour between the glass transition temperature and strength9–13, 
and the strength has also been found to be proportional to the elastic modulus, corresponding to a 
nearly-constant yield strain11–13. However, a direct correlation between the characteristic length in the 
“structure” and these mechanical properties of MGs has not yet been established.

For amorphous solids, the total structure factor, S (q), and the resolved pair distribution function 
(PDF), g(r), are particularly useful in characterizing the non-crystalline structure (q is the wave vector 
in reciprocal space and r is the nearest neighbour distance between two atoms). From these statistical 
data, the atomic distribution within a given volume can be well described14–18. In principle, S (q) and g (r) 
was related by Fourier transformation19, and the first peak position of S (q) plots, usually denoted as q1, 
specifies the wavelength (λ  =  2π /q1) of g (r) at the medium-range length scale or above20,21. Particularly, 
q1 was found to be a key structural quantity to reflect critical characteristics in atomic network of amor-
phous matters, such as intermolecular bonding in amorphous ice, interconnected layers of some borates, 
and the weak chain in chalcogenide glasses22–24. It was found that different metallic glasses may have 
different q1 values and thereby different mechanical properties. For example, Zr-based BMGs generally 
have a smaller q1 and lower yield strength, as compared with Fe-based BMGs (a typical example is shown 
in Fig. 1). To find out whether there exists a relationship between q1 and mechanical properties of MGs, 
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most of available data in literature regarding the q1 values and elastic properties of MGs was complied 
in Table 125–92. By analyzing the structural length and mechanical properties of these MG alloy systems, 
we discovered a universal relationship between the elastic properties (i.e., the yield strength and moduli) 
and the wavelength λ  (i.e., 2π /q1).

Figure 2a indicates a strong dependence of the yield strength on the specific length scale λ  within the 
experimental error of measurements, and the fitted scaling relationship is:

223 1y
6 0 4σ = × λ ( )
− ± .

Where σ y is the yield strength (in unit of GPa) and λ  is the wavelength (in unit of Å). Note that the 
above relationship is generally applicable to different types of MGs, independent of their chemical com-
positions. With increasing λ , the yield strength of MGs rapidly decreases. For example, Co- and Fe-based 
MGs containing metalloid constituents have relatively small λ , but high yield strength, whereas Ca- and 
RE- (rare earth) based MGs exhibit large λ  but low yield strength.

Elastic constant, especially the shear modulus, has been shown to be the dominant parameter con-
trolling atomic shear and, consequently, the yielding of metallic glasses10–13. Using the current data, an 
intriguing correlation between the shear modulus, G, and the specific length scale λ  is also established 
as shown in Fig. 2b:

Figure 1.  S(q) curves (a) and compressive stress-strain curves (b) of two representative Fe- and Zr-based 
BMGs, showing distinct structural characteristics and deformation behavior.
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Alloy
q1, 

Å−1 r1, Å
σy, 

GPa
B, 

GPa
G, 

GPa
E, 

GPa Refs.

Al89La6Ni5 2.541 2.612 1.033 25–27

Au49Ag5.5Pd2.3Cu26.9Si16.3 2.836 2.816 1.12 132.3 26.5 74.4 13,28,29

Ca65Mg15Zn20 2.174 3.5 0.364 22.6 10.1 22.4 30,31

Ca60Mg15Cu25 2.239 3.11 0.252 32,33

Cu65Zr35 2.822 2.75 2.019 34,35

Cu64Zr36 2.838 1.944 104.3 34 92 34–38

Cu61.4Zr38.6 2.801 2.76 1.87 34,35

Cu56Zr44 2.763 2.79 1.82 34,35,39

Cu50Zr50 2.719 2.94 1.772 101.2 31.3 85 34,40–42

Cu46Zr54 2.674 1.5926 128.5 30 83.5 34,43,44

Cu40Zr60 2.656 2.91 1.333 45,46

Cu33.3Zr66.7 2.564 1.17 46‡

Cu48Zr48Al4 2.71 1.65 113.7 32.4 88.7 47–49‡

Cu47.5Zr47.5Al5 2.72 1.742 113.7 33 87 47–49‡

Cu47Zr47Al6 2.72 1.834 113.8 33.8 92.4 47,48,50‡

Cu46Zr46Al8 2.73 2.94 1.926 116.4 34.3 93.7 50,51‡

Cu47Ti33Zr11Ni8Si1 2.875 2.75 2 38.3 100 52,53

Cu47Ti33Zr11Ni8Fe1 2.86 2.008 39 102 53,54

Co43Fe20Ta5.5B31.5 3.186 2.53 5.147 209 102.7 268 55–58‡

Fe76.0C7.0Si3.3B5.0P8.7 3.025 2.605 3 63.2 165 59‡

Fe75.7C7.0Si3.3B5.0P8.7Cu0.3 3.025 2.615 3.5 70.58 184.2 59‡

[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 3.156 4.21 80.46 210 60,61

Fe40Ni40P14B6 2.922 2.23 62,63

Fe66Nb4B30 3.082 4 64,65

Mg65Cu25Gd10 2.519 0.83 46.3 19.3 50.6 13,66

Mg65Cu25Tb10 2.52 0.76 44.7 19.6 51.3 13,67,68

Mg61Cu28Gd11 2.526 1.075 69,70

Ni60Nb37Sn3 2.944 2.8 58.6 198.6 71

Ni60Nb35Sn5 2.962 2.5 267 54.1 183.2 71

Ni60Sn6(Nb0.8Ta0.2)34 2.93 3.5 189 59.41 161.3 72,73

Ni60Sn6(Nb0.6Ta0.4)34 2.917 3.58 197.6 60.1 163.7 72,73

Ni60Pd20P20 2.99 2.57 2.0 74–76

Ni60Pd20P17B3 2.99 2.57 2.022 181 38 106 75,76

Pd80Si20 2.727 2.79 1.3 182.6 33.4 94.5 77,78

Pd40Ni40P20 2.886 2.65 1.65 184.9 38.6 108 79–82

Pd40Cu30Ni10P20 2.9 2.75 1.72 146 34.5 92 80–82

Ti40Zr25Ni3Cu12Be20 2.72 1.8 109.6 35.5 96.2 13‡

Zr57Ti5Cu20Ni8Al10 2.602 3.11 1.65 99.2 30.1 82 13,83

Zr55Cu35Al10 2.649 2.91 1.74 84

Zr41Ti14Cu12.5Ni10Be22.5 2.84 2.87 1.86 114.7 37.4 101.3 13,85

Zr53.7Cu28.5Ni9.4Al8.4 2.675 2.99 1.85 85 ‡

Zr52.5Ti5Cu17.9Ni14.6Al10 2.658 2.96 1.86 114.1 32.3 88.6 13,45

Zr64.13Cu15.75Ni10.12Al10 2.58 1.721 106.63 28.46 78.41 13,86

Zr62Al8Ni13Cu17 2.585 1.46 87

Zr46Cu37.6Ag8.4Al8 2.76 2.83 1.716 115.5 33.8 92.4 88‡

Zr53.8Cu31.6Ag7Al7.6 2.71 1.518 106 29.9 82 88

Zr48Cu36Al8Ag8 2.66 2.93 1.85 44 115 89‡

La62Al14(Cu5/6Ag1/6)14(Ni1/2Co1/2))10 2.2 3.66 0.65 41 13 35 13,90,91

Continued
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Alloy
q1, 

Å−1 r1, Å
σy, 

GPa
B, 

GPa
G, 

GPa
E, 

GPa Refs.

Y55Al25Co20 2.23 1.203 13,45,92

La55Al25Co20 2.32 0.989 39.34 15.42 40.9 13,45,92

Pr55Al25Co20 2.35 1.007 43.48 17.35 45.9 13,45,92

Nd55Al25Co20 2.33 0.996 13,45,92

Gd55Al25Co20 2.36 0.734 13,45,92

Tb55Al25Co20 2.35 0.834 50.19 22.85 59.53 13,45,92

Dy55Al25Co20 2.42 0.717 52.22 23.52 61.36 13,45,92

Ho55Al25Co20 2.39 0.869 58.81 25.42 66.64 13,45,92

Er55Al25Co20 2.36 1.117 60.7 27.08 70.72 13,45,92

Table 1.  Summary of the structural information and mechanical properties of BMGs, including first 
diffraction peak on the S(q) and G(r) curves, yield strength, and elastic moduli. The experimental procedure 
can be found in refs 35,59,90. ‡data from the present work.

Figure 2.  Correlation between yield strength (a), shear modulus (b), and the characteristic wavelength, λ  
for different BMGs;A universal relationship can be observed. The inset shows the corresponding log-log plot.
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G 4188 26 0 4= × λ ( )− ± .

where G is the shear modulus (in GPa). Similar to the yield strength, the shear modulus is also strongly 
dependent upon the specific length scale, i.e., the wavelength λ , with a similar power index. This obser-
vation further suggests that yield strength and shear modulus of MGs, in fact, may have the same atomic 
structural origins11–13. Combine Eqs. (1 and 2), we have the shear strain limit of MGs, 0 0266y 2G

yε = = .
σ , 

which is in excellent agreement with the value of 0.0267 obtained by Johnson and Samwer11, further 
validates the above correlations. Noted that systematic errors associated with the experimental measure-
ments of the yield strength and the diffraction patterns collected from different groups might have con-
tributed to the data scattering shown in Fig. 2.

As shown above, the elastic properties (elastic moduli and yield strength) can be directly assessed by 
the simple parameter λ , in despite of the complex chemistry. In structural materials, the forces that affect 
elastic stiffness are predominantly electrodynamic, that is, a combination of electrostatics and dynamic 
exchange forces associated with various quasi-particles, including phonons, photons, electrons, and pro-
tons93,94. For metallic materials, the force usually comes from electrostatic interactions resulted from the 
distribution of electron charge, and the elastic modulus is determined primarily by atomic spacing and 
valence electron density93,94. It is, therefore, pertinent to establish a correlation between the λ  value and 
the atomic spacing and valence charge in BMGs.

It is necessary to point out that the physical meaning of q1 or λ  (2π /q1) has been extensively studied 
in amorphous matters, for example, inorganic glasses bonded by directionally covalent bonding. In such 
materials, it was proposed that 2π /q1 could be interpreted as spatial repeat distance of structural unit15. 
For MGs, which exhibit long-range disordered packing with atoms bonded by nondirectional metallic 
bonding, the physical significance of q1 has also been discussed in recent years12,14,19. As mentioned 
before, q1 identifies the wavelength (λ  =  2π /q1) of the correlation function g(r) above the first nearest 
neighbour (i.e., the portion at the high r region of the PDF curves). In terms of atomic packing, this 
wavelength actually quantifies the distance between the two adjacent atomic neighbors and therefore 
represents the average inter-atomic distance in MGs14,95.

Based on the spherical-periodic theory, q1 (i.e., 2π
λ

) is essentially the Fermi-sphere diameter 2kF for 
MGs, and λ  is the Friedel wavelength96–98. The spherical Friedel oscillations in the effective pair potential 
due to the electronic interaction are similar to those in the structural PDF curves, namely, the electronic 
wave vector 2kF equals to the structural wave vector q1 (2k qF 1

2= = π
λ

)97–99. In other words, when the 
Fermi surfaces of the electrons coincide with the quasi-Brillouin boundaries, a pseudo gap is expected 
occur in the energy bands for MGs and a corresponding minimal of density of states at the Fermi level, 
which makes MGs in a relative stable state98,100. Therefore, q1 (or λ ) can be treated as an indicator of the 
electronic interaction in MGs. As a matter of fact, the universal binding-energy relation with interatomic 
separation has been found in a wide range of crystalline materials101,102, which was believed to be resulted 
from the scaling between electron density parameter and interatomic distances101,102. However, a univer-
sal relation between elastic modulus which is the second derivative of binding energy and interatomic 
distances was not observed due to crystallographic lattice anisotropy. In MGs, as discussed earlier, q1 (or 
λ ) can represent relative electron density, indicating the proposed universal binding-energy relation also 
holds well. Due to the atomic isotropic disordering structure of MGs, the universal correlation between 
the elastic modulus and interatomic distance can also be derived.

It should be noted that there is no distinct relationship between the yield strength and the nearest 
neighbour distance (r1), as shown in Fig. 3a. The data points are much more scattered, as compared with 
those in Fig. 2a. For example, even at the same r1 value of ~2.6 angstrom, a large scattering in the yield 
strength from 1 to 5 GPa was observed. From the atomic packing point of view, r1 represents the first 
nearest neighbour which can be more easily affected by local atomic environment. Although λ  is at the 
scale of 2-3 angstrom, nevertheless, it actually specifies the wavelength (λ = 2π /q1) of g(r) at the large r 
range (as shown in Fig. 3b)20,21 and reflects the average atomic distance of MGs. Therefore, it can be seen 
that the average packing characteristic is more determinative to the global elastic properties, rather than 
the nearest neighbour distance or the localized atomic packing features which may be more contributable 
to the plastic deformation behavior.

It has been long recognized that theoretical strength and modulus of a material depend on their bond-
ing nature, and specifically the bulk modulus is the second derivative of the binding energy with respect 
to the interatomic distance1,3,4. For instance, molecular crystals are bonded by dipole-dipole forces (sim-
ilar to that in solid inert gases) and their bulk moduli scale with inter-particle distances raised to the -3 
power94. For metallic materials whose atomic bonding is mainly from electrostatic interactions, on the 
other hand, both valence charge and atomic spacing can contribute to the strength and modulus, and the 
Keyes parameter K= e2/r4 (e-electron charge, r-atomic distance) is the key scaling parameter94. Limited 
metallic materials with the same electronic structure show the atomic spacing to be the only decisive 
parameter for elastic modulus, for example, alkali metals, some ionic crystals, and oxide crystals. In 
these crystals, the bulk modulus was observed to scale with interatomic spacing raised to the -4 power94. 
However, when the d-shell electrons become effective in atomic bonding (e.g., in transition metals) or the 
bonding is more coherent (such as in compounds containing metalloids), the scaling can be complex94. 
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In contrast to these crystals, MGs can be envisioned as materials which are randomly densely-packed 
with isotropic elastic properties, and the elastic constants can be related to each other through equa-
tions: E/G= 2(1 +  ν ) and B/G =  2(1 +  ν )/3(1-2ν ), where E, B, ν  are Young’s modulus, bulk modulus, and 
Poisson’s ratio, respectively. Consequently, elastic constants of any MG can be derived as a function of λ  
using the universal correlation (Eq. 2) combined with the isotropic relationship. In other words, λ  can 
be treated as an inherent length parameter conveniently incorporating the influence of both the average 
atomic distance and effective valence electron charge. It is like the “structure fingerprint” providing the 
information of elastic properties of MGs.

We want to particularly point out that the universal correlation in MGs (Eqs. 1 and 2) is, in fact, even 
simpler than that in the elemental metals. Figure 4 is the dependence of shear modulus and bulk mod-
ulus on the atomic radii for elemental metals [the original data were taken from refs 103,104]. In contrast 
to Fig.  2, a more scattered scaling relationship is observed even in metals with the same crystalline 
structure (for example, in FCC- Cu, Ni, Al, Ag, Au, and Pt, indicated by the asterisks). It is noted that 
the universal scaling relationship in MGs (Eqs. 1 and 2) is based on the fact that λ  actually represents 
the effect of both atomic spacing and valence electron density. In addition, the correlation between the 
electronic vector 2kF and the structural vector q1, namely, 2k qF 1

2= = π
λ

 must be valid. This latter cor-
relation is, however, not necessarily true in crystalline metals due to their lattice anisotropy at the atomic 
level. The atomic bonding directionality as well as interatomic distance in various directions leads to the 
various slip systems for deformation. A non-spherical Brillouin zone subsequently affects the yield 
strength and elastic modulus for crystalline metals. Metallic glasses, on the other hand, can be taken as 
metallic materials having isotropic electron cloud. Furthermore, their atomic structures are lack of 

Figure 3.  Dependence of the yield strength of MGs on the nearest neighbour distance [r1 on g(r)] (a); 
no distinct correlation can be observed. Schematic illustration of the meaning of r1 and λ  on a typical g(r) 
curve of Zr-based MG (b), and inset is its corresponding S(q) curve.
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long-range periodicity and virtually isotropic (i.e., a better spherical symmetry) even down to the atomic 
level, leading to the universal scaling relationship observed in Fig. 2. It should be noted that λ  is obtained 
from the statistic structural information of MGs, and there are still many uncertainties and challenges in 
decoding localized/atomic structure of MGs105,106. Prolific motifs about structure-properties relationship 
still merit in-depth investigation107. For example, atomic density fluctuation and structural heterogeneity 
frozen in during rapid quenching is expected to result in the fluctuation of inter-atomic distance and 
valence electron density around the average value108–110, also contributes to the error bar of the universal 
relationship in Eqs. 1 and 2.

In summary, there exists in metallic glasses a unique characteristic length λ  (or q1) that exhibits a uni-
versal, yet simple, correlation with the mechanical properties such as the modulus and yield strength. The 
universal relationship appears to be resulted from the fact that metallic glasses are essentially structur-
ally/chemically isotropic as compared to crystalline metals which have certain structural and electronic 
directionality. Our result demonstrates that, in nature, “more complex” amorphous alloys actually can 
have a simpler mechanical behavior.
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