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Abstract
Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the

regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high

affinity endogenous ligand has been identified. In an effort to detect a circulating endoge-

nous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3-/y and wild type

(WT) mice or between WT controls. Successful parabiosis was demonstrated by circulatory

dye exchange. The Brs3-/y-WT andWT-WT pairs lost similar weight immediately after sur-

gery. After 9 weeks on a high fat diet, the Brs3-/y-WT pairs weighed more than the WT-WT

pairs. Within the Brs3-/y-WT pairs, the Brs3-/y mice had greater adiposity than the WTmice,

but comparable lean and liver weights. Compared to WTmice in WT-WT pairs, Brs3-/y and
WTmice in Brs3-/y-WT pairs each had greater lean mass, and the Brs3-/y mice also had

greater adiposity. These results contrast to those reported for parabiotic pairs of leptin

receptor null (Leprdb/db) and WT mice, where high leptin levels in the Leprdb/dbmice cause

the WT parabiotic partners to lose weight. Our data demonstrate that a circulating endoge-

nous BRS-3 ligand, if present, is not sufficient to reduce adiposity in parabiotic partners of

Brs3-/y mice.

Introduction
Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor that is located
chiefly in certain brain regions, including those regulating food intake and metabolic rate [1–
6]. Genetic and pharmacologic studies have demonstrated a role for BRS-3 in the regulation of
energy metabolism, body temperature, insulin secretion, blood pressure, and heart rate [1,3,7].
For example, Brs3 null (Brs3-/y) mice have a reduced fasting metabolic rate, resting heart rate,
and body temperature, and increased food intake and obesity [3,7–11]. Conversely, synthetic
selective BRS-3 agonists increase fasting metabolic rate, blood pressure, and heart rate and
reduce food intake and body weight in mice [3,12]. The agonists require continuous high-level
receptor occupancy for weight loss efficacy, indicating that tachyphylaxis does not occur
[3,12].
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BRS-3 has a low affinity for bombesin and is one of hundreds of mammalian GPCRs (most
are olfactory GPCRs) that do not have an identified endogenous ligand [13]. The mammalian
GPCRs most closely related to BRS-3 bind neuromedin B and gastrin-releasing peptide with
nanomolar affinity, but these ligands bind BRS-3 with 1000-fold lower affinity [14]. CCHa-
mide-1 and CCHamide-2 are highly potent peptide agonists for two insect BRS-3 homologues
[15,16]. While it seems plausible that mammalian BRS-3 has a peptide ligand, no high-affinity
endogenous ligand for BRS-3 has been identified to date. Attempts to deorphanize mammalian
BRS-3 [13] have identified only relatively low affinity agonists, including hemorphins [17] and
peptide E [18].

Given the lack of success in deorphanizing mammalian BRS-3, we undertook a complemen-
tary approach, using parabiosis, the surgical union of two animals to produce circulatory
exchange. Parabiosis allows a factor released from one mouse to exert its effect in the partner,
thereby indicating the existence of a sufficiently stable circulating endogenous factor [19–21].
Ablation of a receptor often increases the level of its cognate ligand. Parabiotic mice were instru-
mental in the discovery of leptin, providing the entry point for most of our current understand-
ing of the physiology of obesity [22,23]. Indeed, leptin treatment of one member of a parabiotic
pair has an amplified effect on the partner, as compared to treatment of a single mouse [24]. We
have produced parabiotic mice in an attempt to detect an endogenous BRS-3 ligand.

Materials and Methods

Mice and study design
Male C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME), and
Brs3-/y mice were provided by Dr. James Battey [9] and back-crossed at least eight generations
onto a C57BL/6J background. Mice were housed at 21–22°C in a temperature- and humidity-
controlled environment with a 12:12-h light-dark cycle, with ad libitum access to food and
water. Before surgery, mice were maintained on chow (7022 NIH-07 diet, Harlan laboratories)
and after surgery, on a high fat diet (D12492, 60% kcal fat; Research Diets, New Brunswick,
NJ). All animal studies were approved by the National Institute of Diabetes and Digestive and
Kidney Diseases Institutional Animal Care and Use Committee.

Parabiosis
Weight-matched male mice at 6–10 weeks of age underwent surgery to make parabiotic pairs
[25]. Briefly, under ketamine/xylazine anesthesia and after clipping hair and prepping with
betadine, a lateral longitudinal incision was made along opposing sides of two mice. Skin was
freed and femora were exposed by blunt dissection, avoiding damage to muscle and nerves.
Periosteum was scraped off half the length of each femur and the bones were pulled together
by suturing twice around them using 2–0 silk. Muscles around the bones were joined with
three deep sutures. The scapulae were exposed, periosteum scraped, and the scapulae were
joined by suturing through the bones three times using 4–0 silk. Post operatively, mice were
given banamine (2.2 mg/kg s.c.) analgesia daily for three days. Of the 18 pairs created, one died
due to accidental anesthesia overdose and two were excluded as technical failures (due to lack
of fusion of the scapulae, ascertained by observation at 4 weeks after surgery). Pairs were
housed singly with food on the floor of the cage.

Parabiosis verification
Circulatory exchange between parabiotic pairs was measured by dye exchange 7 weeks post-
operatively [26]. Briefly, 400 μl of 0.5% Evans blue dye in Hanks’ Salt Solution was injected
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into the tail vein of one mouse and blood was collected from tail veins of both mice 30 and 60
minutes later. Exchange was calculated by numerical solution of the equation Coth rt = Ci/Cr,
where Coth is the hyperbolic cotangent, r is rate of exchange expressed as the fraction of one
animal’s plasma volume per minute, t is the time since injection, and Ci and Cr are the A620

(serum absorbance at 620 nm) of injected and recipient mice, respectively.

Body composition
Body composition was measured by X-ray absorptiometry (Lunar PIXImus with Lunar PIXI-
mus2 version 2.1 software, GE, Madison, WI). Anesthetized (ketamine/ xylazine) parabiotic
pairs were imaged twice in the prone position, with repositioning between the scans and aver-
aging the two scans. Reproducibility was similar for mice as individuals vs in a pair.

Post mortem analysis
Ad lib fed pairs were anesthetized (ketamine/xylazine) 3–4 hours into the light period and
blood was collected retroorbitally. After cervical dislocation, the mice were separated and lean
and fat mass were measured by X-ray absorptiometry. The gastrointestinal tract was weighed,
emptied, and reweighed as an index of food intake [25].

Statistics. Results are shown as mean ± SEM. Two-way ANOVA with or without repeated
measures followed by Holm-Šídák’s posttest. Student’s t-test was used when two groups were
compared. Statistical analyses used two-tailed tests using P< 0.05 as statistically significance.

Results
A wild type (WT) mouse was surgically joined with either another WT mouse creating
WT-WT parabiotic pairs or with a Brs3-/y mouse creating Brs3-/y-WT pairs. At the time of sur-
gery, mice were 6–10 weeks old, with similar body weight, lean mass, and fat mass (Fig 1). By
the day after surgery, mice were active and, although joined with another mouse, showed loco-
motive behavior that appeared comparable to that of single mice. All pairs lost weight in the
week after surgery, after which WT-WT pairs stabilized while the Brs3-/y-WT pairs gained
some weight (Fig 2A).

Circulatory exchange between parabiotic mice was 1.32 ± 0.10% of plasma volume/min
(range 0.77–2.15%) and was comparable in WT-WT and Brs3-/y-WT pairs (Fig 2B). This
exchange rate is similar to previous reports [21], demonstrating that parabiosis was achieved
successfully.

Body composition was measured using X-ray absorptiometry, allowing evaluation of indi-
vidual mice in parabiotic pairs. Lean mass of WT mice of WT-WT pairs was lower than before
surgery (-2.5 ± 0.5 g at 4 weeks and -1.8 ± 0.4 g at 8 weeks). There was less reduction in lean
mass in WT mice in Brs3-/y-WT pairs (-0.8 ± 0.8g at 4 weeks and +0.3 ± 1.0g at 8 weeks, both
P<0.05 vs WT inWT-WT) (Fig 2C and 2D). Fat mass was not significantly different between
any of the groups at either time point (Fig 2E and 2F).

The parabiotic pairs were euthanized at 9 weeks after surgery. Both the carcass weight and
lean mass of WT mice in WT-WT pairs were less than in either WT or Brs3-/y mice in Brs3-/y-
WT pairs (Fig 3A and 3B). Fat, measured as total, epididymal, or inguinal, was significantly
greater in Brs3-/y mice in Brs3-/y-WT pairs than in WTmice in either WT-WT or Brs3-/y-WT
pairs (Fig 3C–3E). There was no difference in brown adipose tissue weight, liver weight, or gut
content weight between any of the groups (Fig 3F–3H).

Parabiosis between Brs3-/y Null andWild Type Mice

PLOS ONE | DOI:10.1371/journal.pone.0142637 November 12, 2015 3 / 8



Fig 1. Initial body weight and composition of WT and Brs3-/y mice. Body weight (A), lean mass (B), and fat mass (C) of the indicated mice at the time of
parabiosis surgery. Data are mean ± SEM; N = 7-14/group. There are no significant differences between the groups.

doi:10.1371/journal.pone.0142637.g001
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Discussion
We tested for the presence of an endogenous BRS-3 ligand using parabiotic pairs of mice.
Exogenous treatment with synthetic BRS-3 agonists causes a reduced food intake and body
weight [3,12]. We hypothesized that Brs3-/y mice might have increased circulating ligand con-
centration similarly to mice with ablation of other receptors, and that WT mice, when joined
to a Brs3-/y mouse, might eat less and have lower adiposity and body weight due to endogenous
BRS-3 ligand circulating from the Brs3-/y mouse. However, the WT partner in the Brs3-/y-WT
pairs did not lose weight, and actually had a higher lean weight and similar (but not lower) adi-
posity compared to control WT mice in WT-WT pairs. The higher lean mass of WT mice in
Brs3-/y-WT, compared to WT-WT, pairs, may be attributable to better nutrient status of the

Fig 2. Body weight and composition in parabiotic pairs. (A) Pair weights after parabiosis. (B) Circulatory exchange between parabiotic mice at 7 weeks
after surgery, determined by Evans blue transfer. Change after parabiosis in (C, D) lean mass and (E, F) fat mass at 4 or 8 weeks after surgery. Data are
mean ± SEM; N = 7–8 pairs/group. * P<0.05.

doi:10.1371/journal.pone.0142637.g002
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Brs3-/y mouse being passed to its WT partner (although this is not a major effect in the WT
mice in Leprdb/db-WT or Lepob/ob-WT parabiotic pairs [20,21]). It is also possible that longer or
more frequent visits to food by the Brs3-/y member could encourage eating in its parabiotic
partner. In summary, circulating endogenous BRS-3 ligand, if present, is not sufficient to
reduce adiposity in parabiotic partners of Brs3-/y mice.

The failure to detect an existing endogenous BRS-3 ligand in the parabiotic mice could be
due to limited cross-circulation and a ligand’s short half-life. With successful parabiosis the
inter-mouse circulatory exchange is only 1 to 2% per minute [21], which is ~0.2% of cardiac
output [27]. Tachyphylaxis to continuous ligand could be another explanation, but seems

Fig 3. Effects of parabiosis at 9 weeks. (A) Body weight, (B) lean mass, (C) fat mass, (D) epididymal white adipose tissue (eWAT) weight, (E) inguinal
white adipose tissue (iWAT) weight, (F) brown adipose tissue (BAT) weight, (G) liver weight, and (H) gut content. Data are mean ± SEM; N = 8–14 mice/
group. * P<0.05.

doi:10.1371/journal.pone.0142637.g003
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unlikely due to the body weight efficacy of continuous agonist dosing experiments [3,12]. Also
plausible is that endogenous ligand may not reach the circulation, but rather function as a para-
crine factor or neurotransmitter. Most of the BRS-3 in the brain is located in regions behind
the blood-brain barrier, consistent with a neurotransmitter paradigm [1–6], however BRS-3 is
also located outside the brain [7,14], including pancreatic islets [28]. Alternatively, an endoge-
nous ligand may not exist, with BRS-3 constitutive activity [29] functioning to increase signal-
ing tone. While our data do not provide evidence for an endogenous ligand, the evolutionary
conservation of BRS-3 ligand binding activity and specificity for synthetic ligands strongly
indicate that there is an endogenous mammalian ligand, somewhere, waiting to be found.
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