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Abstract

Salmonella enterica serovar Typhimurium is arguably the world’s best-understood bacterial
pathogen. However, crucial details about the genetic programs used by the bacterium to
survive and replicate in macrophages have remained obscure because of the challenge of
studying gene expression of intracellular pathogens during infection. Here, we report the
use of deep sequencing (RNA-seq) to reveal the transcriptional architecture and gene activ-
ity of Salmonella during infection of murine macrophages, providing new insights into the
strategies used by the pathogen to survive in a bactericidal immune cell. We characterized
35883 transcriptional start sites that are active within macrophages, and highlight 11 of these
as candidates for the delivery of heterologous antigens from Salmonella vaccine strains. A
majority (88%) of the 280 S. Typhimurium sRNAs were expressed inside macrophages,
and SPI13 and SPI2 were the most highly expressed pathogenicity islands. We identified
31 S. Typhimurium genes that were strongly up-regulated inside macrophages but
expressed at very low levels during in vitro growth. The SalComMac online resource allows
the visualisation of every transcript expressed during bacterial replication within mammalian
cells. This primary transcriptome of intra-macrophage S.-Typhimurium describes the tran-
scriptional start sites and the transcripts responsible for virulence traits, and catalogues the
sRNAs that may play a role in the regulation of gene expression during infection.

Author Summary

The burden of Salmonellosis remains unacceptably high throughout the world and control
measures have had limited success. Because Salmonella bacteria can be transmitted from
the wider environment to animals and humans, the bacteria encounter diverse environ-
ments that include food, water, plant surfaces and the extracellular and intracellular phases
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of infection of eukaryotic hosts. An intricate transcriptional network has evolved to
respond to a variety of environmental signals and control the “right time/ right place”
expression of virulence genes. To understand how transcription is rewired during intracel-
lular infection, we determined the primary transcriptome of Salmonella enterica serovar
Typhimurjum within murine macrophages. We report the coding genes, sSRNAs and tran-
scriptional start sites that are expressed within macrophages at 8 hours after infection, and
use these to infer gene function. We identified gene promoters that are specifically
expressed within macrophages and could drive the intracellular delivery of antigens by S.
Typhimurium vaccine strains. These data contribute to our understanding of the mecha-
nisms used by Salmonella to regulate virulence gene expression whilst replicating inside
mammalian cells.

Introduction

Salmonella enterica (S. enterica) is a food and water-borne pathogen responsible for widespread
disease in humans and other animals. The serovars responsible for typhoid fever kill more than
250,000 people per year, while an estimated 94 million cases of Salmonella-mediated gastroen-
teritis cause 155,000 deaths each year [1,2]. Recently, it has been discovered that non-typhoidal
serovars are causing an epidemic of invasive disease that is killing 680,000 people each year [3].

Decades of intense research have revealed intricate details of Salmonella pathogenicity [4].
S. enterica initiates infection in the small intestine by penetrating the mucus layer that protects
the gut epithelium. During the infection process, S. enterica endures a series of hostile environ-
ments within the host, including the acidity of the stomach, antimicrobial peptides and bile in
the intestine, and the toxicity of intracellular vacuoles [5]. These challenges are met by physio-
logical and metabolic adaptations that allow the bacterium to resist the innate host defences.
Salmonella pathogenicity island (SPI) 1 and SPI4-encoded proteins, and other virulence deter-
minants, mediate the entry into epithelial cells [4,6]. The bacteria subsequently exit from epi-
thelial cells and are taken up by the phagocytic cells of the innate immune system such as
macrophages [7,8].

S. enterica responds to the phagosomal environment within macrophages by secreting effec-
tor proteins that generate a specialized intracellular compartment, the Salmonella-containing-
vacuole (SCV). The SCV allows S. enterica to evade macrophage killing, and infected macro-
phages become a vehicle for systemic bacterial spread [9,10]. Physiological, metabolic and
effector protein-mediated adaptation strategies allow the bacteria to replicate within the SCV,
and to form persister cells [10,11]; many of these adaptive processes are regulated at the tran-
scriptional level [12].

Bacterial gene regulation is mediated by a combination of transcription factors, nucleoid-
associated proteins and regulatory small non-coding RNAs (sRNAs). Following the publication
of the first S. enterica genome, microarray-based transcriptomic approaches were used to
define regulons and stimulons of the model pathogen S. enterica serovar Typhimurium (S.
Typhimurium) [13]. Because the microarray-derived data only provided a limited view of Sal-
monella gene expression inside macrophages [14-16], an RNA-seq-based approach was
required to gain the information for understanding mechanisms of gene regulation. RNA-seq
analysis generates high-resolution transcriptomic data and accurate information on gene
expression levels, and provides extensive information concerning the location of Transcrip-
tional Start Sites (TSS), the 5" and 3’ un-translated regions of genes, antisense transcription,
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and sRNAs. We recently used this approach to reveal the complete transcriptional network of
S. Typhimurium during growth in 22 laboratory conditions [17].

Here, we present the primary transcriptome of intra-macrophage S. Typhimurium strain 4/
74. All intra-macrophage gene expression and transcriptional organisation data are presented
in our online resource, SalComMac [http://tinyurl.com/SalComMac].

Results and Discussion
The primary transcriptome of intra-macrophage S. Typhimurium

The intra-macrophage transcriptome of S. enterica was determined with S. Typhimurium
strain 4/74 (Dataset 1 in S1 Table) within cultured murine RAW 264.7 macrophage-like cells
that do not express the Nramp1 (Slc11al) host resistance cation-efflux pump [18]. Because ear-
lier transcriptomic analyses showed that more than 90% of S. Typhimurium genes were
expressed at similar levels during early, middle and late stages of macrophage infection [14],
we focused on a single time point. We used eight hours post-infection to coincide with the
nitrosative burst in Salmonella-infected murine macrophages [14]. Total bacterial RNA was
isolated and analysed by RNA-seq [17] (Materials and Methods) (Fig 1). Overall, 136 million
sequence reads were generated from seven cDNA libraries. These represent two biological rep-
licates of intra-macrophage Salmonella RNA-seq, two biological replicates of intra-macrophage
Salmonella differential RNA-seq (ARNA-seq) and RNA-seq of the AssrA mutant and two bio-
logical replicates of wild-type 4/74 grown under in vitro SPI2-inducing conditions. Between 5
and 10 million uniquely-mapped reads were obtained from each library (Dataset 2 in S1
Table), providing sufficient coverage for robust transcriptomic analysis [19]. Gene expression
values were calculated by the Transcripts Per Million (TPM) approach [20]. A threshold TPM
value of 10 was used as a cut-off to define gene expression (Materials and Methods) [17]. The
intra-macrophage transcriptome was compared to our published RNA-seq-based transcrip-
tome for early stationary phase (ESP), an infection-relevant in vitro growth condition that is
associated with high expression of S. Typhimurium SPI1 genes [17,21].

The precise nucleotide position of individual TSS was identified on a genome-wide scale by
dRNA-seq [22]. In total, 3583 TSS were expressed by S. Typhimurium during infection of mac-
rophages (Dataset 3 in S1 Table). This included 3538 TSS expressed in the ESP condition [17]
and 45 TSS which were newly identified in this study. To assign a relative strength to each TSS
we determined the expression levels of the first 10 bases of each transcript, designated the pro-
moter usage value (PUV) [17,23]. Because >99% of S. Typhimurium protein coding genes
have a 5 untranslated region (UTR) and 15% of protein-coding genes possess multiple TSS,
the PUV allows promoter strength to be quantified independently of gene expression [17]. We
used the relative PUV to compare the expression of S. Typhimurium TSS between the intra-
macrophage and the ESP in vitro condition, and categorised the TSS as either ‘Macrophage up-
regulated’, ‘Macrophage down-regulated’ or ‘Macrophage-independent’ (Materials and Meth-
ods). Of the 3583 TSS expressed in macrophages, 883 were macrophage up-regulated and 834
were macrophage down-regulated, compared with ESP (Fig 2A; Dataset 3 in S1 Table). The
TSS of the Igl-ripABC (STM3117-3120) SPI13 operon [24,25] was the most highly up-regu-
lated, with a relative PUV of >500 -fold. Other highly up-regulated TSS controlled the expres-
sion of genes such as trpE and sse]. We found that 72% of the promoters reported to be highly
expressed in the murine spleen [26] were up-regulated in RAW macrophages.

Forty five new TSS were identified in this study, including the TSS of STM0854 that controls
intra-macrophage expression of the major polycistronic transcript of SPI14 (Fig 2B). Other
novel TSS controlled the expression of genes involved in several core cellular processes
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Fig 1. RNA-seq-based strategy to identify promoters, transcribed regions, and small RNAs of S. Typhimurium active during macrophage
infection. S. Typhimurium strain 4/74 was grown within macrophages for 8 hours using the gentamicin protection assay, and bacterial RNA was isolated
using TRIzol (Materials and Methods). The cDNA generated from total RNA was sequenced either directly for gene/sRNA expression analysis (RNA-seq) or
after enrichment of primary transcripts (0RNA-seq), and compared with data from 4/74 grown to ESP [17]. The graphs show representations of sequence
reads mapped uniquely against the 4/74 genome in different conditions. Transcript per Million (TPM) analysis was used to calculate gene expression values
from the number of sequence reads mapped against the 4/74 genome. The promoter usage value (PUV) indicates the TPM value of the first 10 nucleotides
from the transcription start sites (TSS) in the direction of transcription, and represents promoter strength. Each curved arrow indicates location of TSS
upstream of the respective gene; the width and height of each curved arrow is proportional to TSS expression, based on relative PUV, macrophage versus
ESP.

doi:10.1371/journal.ppat.1005262.9001

including bglA, entB, fliN and nrdE, and a TSS that initiated a transcript antisense to the stfD
coding gene.
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Fig 2. The primary transcriptome of intra-macrophage Salmonella. (A) Classification of 3583 Salmonella
TSS during intra-macrophage proliferation (Dataset 3 in S1 Table). The TSS were categorized based on their
relative-PUV, macrophage versus ESP (Materials and Methods). The red and blue circles represent the TSS
that are up/down-regulated in the AssrA versus InSPI2 experiment, respectively (B) The STM0854 TSS
(indicated by the dotted vertical line) is a representative of a TSS highly up-regulated in macrophages. Each
horizontal arrow represents the gene in scale with the whole island. Each coloured track above the island
represents RNA-seq/dRNA-seq reads mapped against the genome in the corresponding conditions,
visualized in the IGB browser. Each curved arrow indicates the location of a TSS; the width and height of
each curved arrow is proportional to the TSS expression, based on relative PUV, macrophage versus ESP

(Dataset 3in S1 Table) (Materials and Methods).

doi:10.1371/journal.ppat.1005262.9g002
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Of the 834 macrophage down-regulated TSS, the biggest reduction in promoter expression
between macrophages and the ESP condition was more than 200-fold and associated with SPI1
genes and the flagellin-encoding fliC gene (Dataset 3 in S1 Table).

The transcriptional organisation of SPI2 during infection of macrophages

Salmonella pathogenicity island 2 (SPI2) is required for Salmonella replication within eukary-
otic cells and for systemic infection of mammalian hosts. SPI2 encodes the type III secretion
system (T3SS) that delivers many effector proteins responsible for the function of the SCV
within macrophages [4,27]. The transcriptional organization of SPI2 is shown in Fig 3. We
recently used dRNA-seq to discover a TSS upstream of ssaR [17], which we now confirm by 5’
RACE (S1 Fig). SP12 is therefore transcribed as six operons inside macrophages (Fig 3).

All SPI2 genes were up-regulated within macrophages, reflecting the phosphate/magnesium
starvation and the acidity of the SCV [28,29]. The RNA-seq data were used to calculate pro-
moter usage values for the different SPI2 promoters, identifying PssaM as the most up-regu-
lated SPI2 promoter, followed by PssaR and PssaB (Dataset 3 in S1 Table). We note that each
of the six SPI2 promoters was also transcribed in the “InSPI2” growth condition, confirming
that expression of all SPI2 operons occurs in vitro when stimulated by growth in an acidic low-
phosphate environment [30].

The SPI2 island and genes that encode SPI2-translocated effectors are activated by the
SsrAB two component system [31]. The SsrA sensor kinase phosphorylates the SsrB response
regulator to activate gene expression [32-34]. To investigate the role of SsrA in the regulation
of macrophage up-regulated TSS, we used RNA-seq to analyse the transcriptome of a AssrA
mutant and wild-type 4/74 grown in InSPI2 medium. Of the 883 macrophage up-regulated
TSS, 221 showed reduced (>2-fold) expression in the absence of SsrA and we infer that these
are SsrA-activated (Fig 2A; Dataset 3 in S1 Table). All the genes that encode SPI2-translocated
effector proteins were controlled by SsrA-activated promoters. There are 662 macrophage up-
regulated TSS that appear to have SsrA-independent regulatory mechanisms, and these merit
further study.

Intra-macrophage expression of S. Typhimurium pathogenicity islands
and effector-coding genes

S. Typhimurium carries 12 pathogenicity islands on the chromosome of strain 4/74 [17,35,36].
Expression profiles of S. Typhimurium pathogenicity islands (Fig 4; Datasets 4 and 5 in S1
Table) reveal that SPI2 and SPI13 were the most highly up-regulated during infection of mac-
rophages, by an average of 44 and 82-fold, respectively (Dataset 5 in S1 Table). The SPI3, SPI5,
SPI11, SPI12 and SPI14 islands showed moderate intra-macrophage up-regulation. SPI6 and
SPI9 show macrophage-independent expression, and both SPI1 and SPI4 were significantly
down-regulated inside macrophages.

Effector proteins of S. Typhimurium are secreted via the SPI1 T3SS, the SPI2 T3SS or
through both translocation systems. We reported that the genes encoding SPI1-translocated
effectors showed a SPI1-like expression pattern, and genes encoding SPI2-translocated effec-
tors showed a SPI2-like expression pattern [17]. Our data show that the genes encoding all
SPI2-translocated effectors were highly macrophage up-regulated (Dataset 4 in S1 Table) (up
to 70-fold), and the genes that encode the 7 effectors that are secreted by both the SPI1 and
SPI2 T3SS were all expressed inside macrophages; the TPM values range from 50 to 230 (Fig
5). In contrast, genes encoding the 9 SPI1-translocated effectors were all macrophage down-
regulated, by up to 160-fold, and were not significantly expressed within macrophages. Clearly,
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Fig 3. The transcriptional organization of SPI2 in intra-macrophage Salmonella. Horizontal arrows represent individual SPI2 genes in scale with the
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doi:10.1371/journal.ppat.1005262.9003

the actual intra-macrophage expression level of genes that encode candidate effector proteins
has biological relevance.

The transcriptomic data identified two specific SPI13 and SPI14-encoded operons that were
highly up-regulated in macrophages (Datasets 4 and 5 in S1 Table) but were not significantly
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Fig 5. The intra-macrophage expression of Salmonella effector genes. (A) A comparison of absolute expression levels of different S. Typhimurium
effector genes within macrophages (Dataset 4 in S1 Table) and in 20 in vitro infection-related conditions [17]. The heatmap colours represent the absolute
expression levels (logio TPM values) based on the colour bar, ranging from TPM values of 49 to 706. (B) The relative expression levels (macrophage versus
ESP) of each gene are defined in the colour bar to the right. The genes prgH and ssaG are included to show the SPI1-like and SPI2-like patterns of
expression, respectively. The T3SS-independent genes were described by Kidwai et al. (2013) [108].

doi:10.1371/journal.ppat.1005262.9005

expressed in 20 in vitro conditions [17]. First, the SPI13-associated Igl-ripABC
(STM3117-STM3120) operon was >250 fold up-regulated within macrophage. The Igl-ripABC
operon is required for Salmonella infection [37,38], encoding enzymes that catabolise itaco-
nate, an anti-microbial metabolite that is synthesised by infected macrophages [25,39]. Second,
the SPI14-located STM0854-0857 operon is also required for Salmonella virulence [38],
showed moderate (3 to 20-fold) intra-macrophage up-regulation, and was not expressed in in
vitro growth conditions [17]. The TSS of the STM0854 and STMO0859 transcripts were only
expressed in macrophages, and not in any in vitro conditions. Taken together, these data sug-
gest that the STM0854-0857 and Igl-ripABC operons respond to an intra-cellular signal that
remains to be identified in macrophages. For ripABC, this signal may be itaconate [25].

For SPI3, the PhoP-activated mgtCBR operon [40] was up-regulated >15 fold within mac-
rophages, while other SPI3 genes (sIsA, marT and rhuM) were moderately up-regulated. The
role of mgtCBR in virulence involves the long leader of the mgtC transcript that encodes MgtP.
The mgtC leader is responsive to ATP levels [41] and inhibits F1Fo ATP synthase to maintain
ATP homeostasis in the acidic intra-macrophage environment [42].

SPI5 encodes effectors translocated by both SPI1 and SPI2 T3SS [43,44]. The sopB gene
encodes a SPI1-translocated effector and is macrophage down-regulated by 50-fold. In con-
trast, the gene encoding the SPI2 effector pipB is up-regulated. PipB localizes to the SCV mem-
brane and brings about the formation of tubular extensions, the Salmonella induced filaments
(SIFs) [45,46].

The SPI6-encoded Type 6 secretion system [47], is important for the colonization and sys-
temic infections of chickens and mice [48,49]. None of the SPI6 genes were expressed in mac-
rophages or in various in vitro conditions [17]. This is consistent with the reported repression
of SPI6 genes by H-NS [50].

During infection of the gastrointestinal tract, the SPI1-encoded T3SS of S. Typhimurium is
responsible for inflammatory diarrhoea and the invasion of non-phagocytic epithelial cells
[51-53]. Thirty-three SPI1 genes were down-regulated within macrophages (Dataset 4 in S1
Table), and were highly expressed at ESP, confirming earlier reports [17,54]. HilA, the tran-
scriptional activator of SPI1, is controlled by the co-ordinated action of HilC/HilD/RtsA, and
consequently up-regulates the SPI1 island & SPI1-translocated genes [55-57]. The transcrip-
tion of hilA is regulated by HilD, an important activator that controls cross-talk between SPI1
and SPI2 expression [55,58]. The hilA, hilC, hilD and rtsA regulatory genes are down-regulated
more than 100-fold within macrophages, consistent with the down-regulation of the SPI1
island.

The siiABCDEF operon of SPI4 encodes a Type 1 secretion system, and was down-regulated
within macrophages. SiiE is a non-fimbrial adhesin responsible for the adhesion of Salmonella
to epithelial cells and is expressed during the extra-cellular phase of infection [59,60]. Cross
talk between SPI1 and 4 can promote tight binding of the bacterium to the epithelial mem-
brane, and facilitate efficient SPI1 translocation [61].

Relating intra-macrophage gene expression to gene function

Intracellular expression of individual bacterial genes or entire regulons can be used to investi-
gate the microenvironment inside the host cell vacuole [62]. Direct comparison between this
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RNA-seq-based dataset (Dataset 4 in S1 Table) and previous microarray-based transcriptomic
results confirm and extend key findings from Eriksson et al. (2003) and Hautefort et al. (2008)
[14,15]. The datasets all show that the most highly macrophage up-regulated Salmonella gene
is asr (STM1485), required for the intra-cellular replication of Salmonella [63]. The 890-fold
up-regulation of asr reflects the acidic conditions within the SCV [64] (Dataset 4 in S1 Table).

To investigate the gene expression network of intra-macrophage Salmonella, we focused on
157 transcriptional regulators (Dataset 6 in S1 Table). The levels of 34 transcription factors
were >3-fold macrophage up-regulated, and 7 transcription factors were >3-fold macrophage
down-regulated. To determine whether the differential expression of individual regulators was
reflected by up- or down-regulation of the associated regulons, we compared the expression of
several genes controlled by each transcription factor in ESP and macrophages. We observed
that the up-regulation of SPI2 regulators ssrB, ompR and phoP and down-regulation of SPI1
regulators hilD, hilA, hilC, invF and sprB correlates with the expression of their respective regu-
lons (Fig 6A and 6B). The macrophage up-regulation of regulons that detoxify peroxide, detox-
ify nitric oxide and relieve envelope stress and protein misfolding (soxS, oxyR, marA, mars,
rpoE, rpoH and nsrR regulons and genes hmpA, msrA, ycfR, sbp, sodC, katG), reflects the bacte-
rial response to the oxidative and nitrosative bursts that occurred during the infection process.

Bacterial genes were assigned to functional groups to investigate the metabolic resources of
macrophages. The most up-regulated functional categories of S. Typhimurium genes within
macrophages are involved in carbohydrate and amino acid metabolism (S2 Fig). The “nutri-
tional immunity” hypothesis posits that the innate immune response of the host reduces the
availability of important nutrients for intracellular bacteria [65], which may explain why S.
Typhimurium has evolved the ability to utilise a diverse range of host nutrients, including
some sugars and amino acids that accumulate in murine macrophages during intracellular
infection [66]. It is known that the major carbon sources utilised by S. Typhimurium in macro-
phages of the mouse spleen are deoxyribonucleotides, fatty acids, glucose, gluconate, glycerol,
lactate and N-acetyl-glucosamine [67]. In our study, we observe the concerted up-regulation of
multiple metabolic regulons in RAW macrophages that are consistent with the simultaneous
degradation of deoxyribonucleotides, fatty acids, galactose, glucose, gluconate, glycerol, lactate,
N-acetyl-glucosamine and sialic acid, while regulons controlling gluconate, maltose, myo-ino-
sitol and xylose metabolism showed significant macrophage down-regulation (Fig 6). Our cur-
rent understanding of the intracellular metabolism of Salmonella in cultured macrophages
coupled with the comprehensive data available for S. Typhimurium during infection of the
murine spleen [66] suggest that cultured macrophages represent a good model for the study of
the intracellular metabolism of Salmonella.

Mammalian macrophages reduce intracellular levels of metals such as iron as part of their
strategy to limit bacterial replication [68], and S. Typhimurium responds by switching on the
expression of metal-uptake systems. These include the intra-macrophage up-regulation of the
sitABCD operon, responsible for manganese and iron transport [69] and of genes responsible
for iron transport and biogenesis of iron-sulfur cluster containing proteins (ent, fep, fhu, iro,
sfb, sit and suf genes, as well as the yhfP (iscR), and rstA regulons), magnesium (mgtCBR) trans-
port and zinc (zur) uptake. We suggest that these expression patterns reflect the relatively low
levels of magnesium, manganese, iron and zinc metals within the SCV [70]. Genes encoding
the flagella and chemotaxis systems were significantly down-regulated in macrophages
(between 50 to 100-fold), consistent with previous reports for both the Typhimurium and
Typhi serovars [14,15,71] (Dataset 4 in S1 Table; S2 Fig). Specifically fih, flg, fli, flj, mot, che and
aer genes were down-regulated. The fThDC-mediated regulation of flagellar transcription is
complex [72], and cross-talk between SPI1 and flagellar genes was recently reported [73]. The
flagellar regulator FliZ is a post-transcriptional activator of fInDC that positively regulates SPI1
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Fig 6. Relative intra-macrophage expression of Salmonella transcription factors and selected target genes. The expression of individual genes is
shown as fold change, intra-macrophage versus ESP. Transcription factors are shown in bold. Target genes controlled by individual transcription factors are
shown in the same row (A and C). Expression of transcription factors that regulate SPI2-related genes (A). The regulation of SPI1 genes is controlled by a
hierarchy, and the transcription factors are depicted as co-regulators, with their combined target genes (B). Relative expression of 13 metabolic systems (C).
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dedicated transcription factor for glucose metabolism was assigned.

doi:10.1371/journal.ppat.1005262.9006
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by activating the hilD-rtsAB cascade [74]. In turn, RtsB represses the flhDC promoter [57].
These regulatory mechanisms probably account for the down-regulation of flagellar genes
within macrophages, consistent with the shut-down of flagellar synthesis associated with the
non-motile bacteria found in the SCV [75]. This contrasts with the reported up-regulation of
SPI1 and flagella that occurs when S. Typhimurium encounters the cytosol of epithelial cells
[75].

Thirty one Salmonella genes are specifically up-regulated within
macrophages

To find genes that were up-regulated in the intra-macrophage environment but not in standard
laboratory conditions, we used a comparative transcriptomic approach to identify genes that
showed significantly higher expression in macrophages than in any of 20 in vitro conditions
[17] (Materials and Methods). Our analysis identified 31 genes that were specifically up-regu-
lated within macrophages (Dataset 7 in S1 Table; Fig 7A and 7B). These represent an interest-
ing class of bacterial genes that are up-regulated in macrophages due to a factor encountered
within macrophages and not in the in vitro growth conditions. The STM3117-STM3120 (Igl-
ripABC) genes are a good example, of highly macrophage-induced genes (Fig 7C) that are
involved in the detoxification of two SCV-specific metabolites, methylglyoxal and itaconate
[24,25]. We propose that comparative transcriptomics will be a useful approach for identifying
genes that respond to specific components of the SCV environment. The majority of the genes
in Fig 7A have a STM or a yxx prefix and are designated as “FUN” genes, for “function
unknown” [76]. Overall, 18 of the 31 genes that were specifically up-regulated within macro-
phages have previously been shown to be required for virulence (Dataset 7 in S1 Table). We
speculate that these FUN genes respond to a specific component of the intra-vacuolar environ-
ment of the macrophage and could play important roles in the process of infection.

Salmonella promoters with potential therapeutic applications

The identification of a discrete set of promoters that are up-regulated in macrophages could
have therapeutic applications. Attenuated strains of S. Typhimurium have been used exten-
sively as vaccines [77], and for expressing anti-cancer proteins within tumours [78]. These
technologies require specific Salmonella gene promoters to drive the production of foreign
antigens [79]. For example, the ssaG promoter of SPI12 has been used to express E. coli heat
labile toxin in S. Typhimurium [80]. However, the ssaG promoter is active in the gut [81,82],
and so may not be the ideal antigen delivery system. We sought to identify candidate promot-
ers with the characteristics required to deliver antigens from attenuated live vaccine strains of
S. Typhimurium during intracellular infection.

We screened our intra-macrophage promoter expression data to identify primary TSS that
were highly expressed within macrophages, and driving a downstream gene that was highly
macrophage up-regulated. Eleven promoters were identified as suitable for antigen delivery
during infection (Dataset 8 in S1 Table), controlling the ast, bioB, iroB, sseJ, STM0854 (SP114)
and ripC (SPI13) genes. Of these, sse] is highly expressed within mouse organs [83]. The ripC
promoter may be ideal for antigen delivery as it is highly and specifically induced inside macro-
phages (Dataset 3 in S1 Table; Fig 7C). However, high-level expression of heterologous anti-
gens does not always generate the optimal stimulation of immune responses [79], and over-
expression of certain proteins could compromise bacterial fitness. For this reason, we catego-
rized the macrophage-up-regulated genes from Fig 7A, based on their levels of intra-macro-
phage expression and identified the promoter of STM0854 as a promising candidate for
moderate but specific induction of gene expression within macrophages (Fig 7B). The 11
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Fig 7. Salmonella genes that are specifically up-regulated inside macrophages. (A) Heatmap showing
expression of 31 S. Typhimurium genes that are specifically up-regulated during infection of macrophages,
compared to 20 in vitro conditions [17] (Dataset 7 in S1 Table) (Materials and Methods). The heatmap colours
represent the absolute expression levels (logyo TPM values) based on the colour bar below. (B) The relative
expression level of each gene is the fold-change of macrophage versus [expression in the in vitro condition
where the gene in maximally expressed], based on the colour bar to the right. (C) The SPI13 operon (lg/ [37]
and ripABC [25], or STM3117 and STM3118-STM3120, respectively) is highly induced within macrophages.

doi:10.1371/journal.ppat.1005262.g007
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promoter candidates have the potential to deliver different levels of heterologous antigens and
could be used to improve Salmonella-based intracellular vaccine delivery systems.

The sRNA transcriptome of intra-macrophage Salmonella

Bacterial gene expression is controlled by transcription factors, nucleoid-associated proteins
and sRNAs. Bacterial SRNAs are roughly 50-300 nucleotides in length, and play regulatory
roles in key physiological activities like iron homeostasis, carbon metabolism, anaerobic adap-
tation, envelope stress and pathogenesis [84-88]. To date, 280 sSRNAs have been identified in S.
Typhimurium 4/74 [17], but little is known about their role in virulence [5,85]. The fact that
246 of 280 sRNAs were expressed within macrophages (TPM value >10; Dataset 9 in S1 Table)
suggests that many could potentially play a regulatory role during infection. In terms of relative
expression, we found that 34 sSRNAs were macrophage up-regulated and 119 sSRNAs were mac-
rophage down-regulated, compared to ESP (Dataset 9 in S1 Table; Fig 8A). The Hfq chaperone
protein mediates SRNA-mRNA interactions and binds to at least 115 S. Typhimurium sRNAs
[17,89], of which 19 were up-regulated within macrophages (including RyhB-1/2, OxyS, MicF
and RybB) and 56 were down-regulated (including ArcZ, DsrA and DapZ), compared to ESP
(Dataset 9 in S1 Table; Fig 8B).

The expression patterns of well-characterised sSRNAs provide insight into the conditions expe-
rienced by S. Typhimurium bacteria in the SCV. For instance, up-regulation of the RpoE-depen-
dent sSRNAs MicA and RybB inside macrophages likely reflects envelope stress of S.
Typhimurium during intracellular proliferation [90,91]. Another sSRNA that is RpoE-dependent
in E. coli, MicL (RyeF) [92] is up-regulated 30-fold within macrophages, but it is not yet known
whether this sSRNA is controlled by RpoE in Salmonella. The iron-regulated homologs RyhB-1
and RyhB-2 were the most highly up-regulated sSRNAs within macrophages compared to ESP
(Dataset 9 in S1 Table, Fig 8C), reflecting the iron-limited intra-macrophage environment
[14,17,93,94]. RyhB-1 and RyhB-2 (named RfrA and RfrB in S. Typhi) are also known to be
important for replication of S. Typhi within macrophages [95]. Our data confirm that the IsrH,
RyhB-1 and RyhB-2 (IstE) sSRNAs are up-regulated, as originally reported within J774 macro-
phages [93]. We analysed the expression of six SRNAs that were up-regulated within fibroblasts,
a cell type that does not support the replication of Salmonella [96]. Two of these SRNAs, RyhB-1
and RyhB-2, were also up-regulated in macrophages (Dataset 9 in S1 Table). We identified sev-
eral uncharacterized Hfq-associated sSRNAs that were up-regulated within macrophages, includ-
ing STnc440, STnc470 and STnc3750 which have an expression pattern consistent with a role in
virulence. The function of these sSRNAs is currently under investigation.

To determine whether macrophage-regulated sSRNAs were phylogenetically conserved
between fourteen serovars that represent much of the diversity of the Salmonella genus, we
analysed 29 enterobacterial genomes (Dataset 10 in S1 Table). We found that 176 sSRNAs were
conserved (>90% sequence identity) within the Salmonella genus, but not in other members of
the Enterobacteriaceae (<70% sequence identity), and were designated Salmonella-specific.
About 10% (17) of the Salmonella-specific SRNAs were up-regulated within macrophages
(including STnc440 and IsrH) while 74 were down-regulated in macrophages (including DapZ
and InvR), compared to ESP (Fig 8C, Dataset 10 in S1 Table). We propose that some of these
91 macrophage-regulated sSRNAs could play important roles in the regulation of gene expres-
sion during the intracellular phase of Salmonella infection.

Perspective

Salmonella bacteria are exposed to multiple stressors within the vacuolar compartment of mac-
rophages, including acid pH, reactive oxygen and reactive nitrogen species. Adaptation to this
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doi:10.1371/journal.ppat.1005262.9008
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hostile environment has a profound impact upon the transcriptome of S. Typhimurium, and
we have now defined the TSS and sRNAs that react to the intra-vacuolar environment during
the intracellular phase of the Salmonella infection cycle. Our data provide an overall view of
sRNA expression within macrophages, and represent a resource for the investigation of post-
transcriptional regulation during the intracellular life of Salmonella.

This study offers new insights into the interaction of Salmonella with mammalian cells, and
brings us a step closer to understanding the gene regulatory mechanisms that facilitate the suc-
cess of this dangerous pathogen. The SalComMac online resource [http://tinyurl.com/
SalComMac] is intended to simplify the comparison of the transcriptome of intra-macrophage
and in vitro grown S. Typhimurium.

Materials and Methods
Bacterial strains, macrophage cells and growth conditions

Salmonella enterica subspecies enterica serovar Typhimurium strain 4/74 was used for all
experiments; 4/74 is the prototrophic parent of strain SL1344; the two strains differ by just
eight single nucleotide polymorphisms [21,35,97]. For in vitro RNA isolation, bacterial cells
were grown overnight in 5 mL Lennox (L-) Broth (Dataset 1 in S1 Table), diluted 1:1000 into
25 mL L-broth, grown at 220 rpm and 37°C in a 250 mL flask until early stationary phase (ESP,
ODygqp 2.0) [17]. InSPI2 minimal media was used to induce expression of SPI2 in vitro [30]. For
all intracellular studies, RAW 264.7 (ATCC) murine macrophage cells were maintained in Dul-
becco’s Minimal Essential Medium (DMEM) supplemented with 5% fetal bovine serum & L-
glutamine (2 mM final concentration) and MEM non-essential amino acids without antibiot-
ics, incubated at 37°C in 5% CO,. All tissue culture reagents were supplied by Lonza.

RNA isolation from intracellular Salmonella

Approximately 10° RAW 264.7 macrophage cells were seeded in 175 cm? tissue culture flasks
and infected with complement-opsonized 4/74 cells at a multiplicity of infection (MOI) of
100:1 (bacteria:macrophages) [14]. Mouse serum (Charles River Laboratories) was used for
opsonisation, and was stored at —80°C prior to use. After 30 minutes of infection, extracellular
bacteria were killed by media containing 100 pg mL™" gentamicin and incubated for a further
1h. The medium was then changed to ‘maintenance media’ containing 10 ug mL ™" gentamicin
for the rest of the experiment. At 8 hours post infection, the infected macrophages were lysed
in ice cold ‘RNA stabilisation solution’ [0.2% SDS, 19% ethanol, 1% acidic phenol in water]
and incubated on ice for 30 minutes [14] to prevent RNA degradation [98,99]. The lysates con-
taining intracellular Salmonella were collected, centrifuged and RNA was isolated from the bac-
terial pellets by a TRIzol-based method that yields both mRNA and sRNA. Briefly, the
supernatant was discarded, the pellet was washed three times in 19% ethanol, 1% acidic phenol,
re-suspended in the remaining liquid, transferred to a clean 1.5 mL Eppendorf tube and centri-
fuged at 20,000 x g at 4°C. The cell pellet was dissolved in 1 mL TRIzol (Invitrogen) on ice and
transferred into a 2 mL heavy phase lock tube (5 Prime) into which 400 pL of chloroform was
added and immediately mixed for 10 seconds. After incubation at room temperature for 2 min-
utes, the mixture was centrifuged at 20,000 x g for 15 minutes. The RNA present in the upper
phase was transferred to a fresh tube, and precipitated by adding 450 uL of isopropanol and
incubated at room temperature for 30 minutes. The precipitated RNA was then pelleted by
centrifugation at 20,000 x g for 30 minutes. The pellet was washed in 350 pL ethanol (70%)
and centrifuged at 20,000 x g for 10 minutes. The washed pellet was air-dried, re-suspended in
RNase-free water by shaking (900 rpm) for 5 min in a heating block (65°C) (Peqlab Thriller)
and stored at —80°C until cDNA library construction.
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The integrity of RNA was verified using an Agilent Bioanalyzer 2100 and RNA concentra-
tions were measured using the nanodrop spectrophotometer (Thermo Scientific) and the
Qubit fluorometer (Invitrogen). Control RNA was isolated from bacterial cells grown in L-
broth in vitro until ESP (see above). The infection process, RNA preparation, sequencing and
analysis were conducted in duplicate to provide independent data from biological replicates.

Library preparation and deep sequencing

The ¢cDNA library preparation and Illumina sequencing was done by Vertis Biotechnologie
AG (Freising, Germany). The total RNA obtained from the biological replicates of intra-mac-
rophage was digested for 45 minutes with DNase I (Thermo Scientific) according to the manu-
facturer’s instructions. Ribosomal RNA was not depleted. RNA samples were fragmented with
ultrasound (4 pulses of 30 sec at 4°C). The 3’ ends of RNA were then subjected to poly (A)-tail-
ing using poly (A) polymerase. The RNA was then treated with TAP (Tobacco acid pyropho-
sphatase) to remove the pyrophosphate group from the 5" end, prior to ligation with an RNA
adapter. First strand cDNA synthesis was done with an oligo (dT) adapter and M-MLV-RNa-
seH-reverse transcriptase (Invitrogen), following PCR amplification of cDNA using high-fidel-
ity DNA polymerase to a final concentration of approximately 20-30 ng uL™". The cDNAs
were purified using the Agencourt AMPure XP kit (Beckman Coulter Genomics), and analysed
by capillary electrophoresis. The cDNA libraries were sequenced on an Illumina HiSeq 2000
system. For dRNA-seq, prior to cDNA preparation, an aliquot of the RNA samples were
enriched for primary transcripts by treating with Terminator 5’-monophosphate dependent
exonuclease (Epicentre; TEX) [22].

Mapping of RNA-seq libraries and differential gene expression analysis

The sequence reads obtained from the different cDNA libraries were mapped against the 4/74 ref-
erence genome using the Segemehl software, with accuracy set to 100% [35,100]. The mapping cov-
erage was increased by an iterative process that involved the sequential removal of any mismatched
nucleotides from the 3’ end, and mapping the read against the 4/74 genome. This process was
repeated until the individual sequence reads were accurately mapped to a single location on the
chromosome, or until the length dropped below a minimum value of 20 nucleotides [17]. These
uniquely-mapped reads were visualised with the Integrated Genome Browser (IGB) [101] and
Jbrowse [102]. In total, 6 cDNA libraries (including the biological replicates of RNA-seq, dRNA-
seq and RNA-seq of InSPI2 grown AssrA & wild type S. Typhimurium 4/74) were generated.

The expression values of each gene were calculated from the uniquely-mapped reads using
the Transcript per Million (TPM) approach [20,103]. TPM considers the transcripts to repre-
sent a mixture of two distributions of expressed and non-expressed genes, and so is ideal for
the analysis of bacterial transcriptomic data. As this approach involves normalization to gene
size and the total amount of genome-wide transcription, TPM values can be compared between
genes and between growth conditions [20,103,104].

The threshold for expression of a gene was TPM value 10 [17]. Genes with TPM value <10
were considered to be “not expressed”. The differential expression of each gene or sSRNA within
macrophages was calculated against the ESP comparator as a fold change (macrophage versus
ESP).

Identification of Salmonella genes specifically up-regulated within
macrophage

The average and standard deviation of RNA-seq data (TPM values) was calculated for each
gene from the 20 in vitro growth conditions reported earlier [17]. For each gene, the standard
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deviation was multiplied by five-fold to define a broad expression range that captured all but
the most extreme expression levels across the 20 conditions. To identify genes that were specifi-
cally up-regulated in macrophage, we selected a strict cut-off of 3-fold more highly expressed
than five standard deviations above the mean expression value from the 20 conditions. In other
words, macrophage specific gene = TPM > 3 x (average TPM in 20 conditions + 50). The
genes that passed this cut-off are ‘not significantly expressed’ in any of the 20 in vitro condi-
tions, are up-regulated within macrophages, and are listed in Fig 7A.

The identification of transcriptional start sites (TSS)

A strict criterion was used to identify TSS, after visualization with the IGB browser [17]. Novel
TSS were defined when a peak was enriched in the dRNA-seq data compared with the RNA-
seq data in two biological replicates, and was located at the beginning of an expressed
transcript.

The Promoter Usage Value (PUV) for each TSS was quantified by calculating the TPM for
the first 10 nucleotides from the TSS towards the direction of transcription (from +1 to +10).
The PUV values were classified as follows: (a) ‘Macrophage independent’ TSS have similar
PUV in macrophages and at ESP (less than 2-fold up- or down-regulated); (b) ‘Macrophage
up-regulated’” TSS are expressed at least 2-fold higher in macrophages relative to ESP; and (c)
‘Macrophage down-regulated’ TSS are expressed at least 2-fold less in macrophages relative to
ESP.

Confirmation of TSS by 5’ RACE

The 5" RACE (rapid amplification of cDNA ends) was carried out with or without treatment by
TAP using DNase I-digested total RNA isolated from the InSPI2 condition [105]. Gene specific
amplification was done with the linker-specific primer JVO-0367 and gene specific reverse
primers (Dataset 1 in S1 Table). TAP-enriched fragments were excised from an agarose gel,
subcloned into a pTOPO vector (Invitrogen) and at least three clones were sequenced to vali-
date individual TSS.

Analysis of conservation of sSRNAs between bacterial genomes

The sRNA nucleotide sequences from 4/74 were aligned against a set of bacterial genomes
belonging to Enterobacteriaceae using GLSEARCH [106], and identical hits were extracted.

Accession numbers

The RNA-seq data generated from this study are deposited at the NCBI GEO under the acces-
sion numbers GSM 1462575 to GSM1462579, GSM1914919 and can be accessed at http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59945.

Supporting Information

S1 Fig. 5’RACE data for four SPI2-located TSS. Agarose gels showing RT-PCR products gen-
erated from RNA treated with tobacco acid pyrophosphate (TAP; T+), a mock reaction (with-
out TAP; T-) and of a control PCR reaction with 4/74 genomic DNA as template (ctrl.). The
RNA was isolated from the InSPI2 growth condition (ODgqg 0.3) [17]. Arrowheads mark the
enriched band in TAP-treated samples (ssaR (A), ssaM (B), ssaB (C) and ssaG (D), indicating
the cDNA of the respective primary RNA species. A DNA size marker is shown on the left [M,
sizes in base pairs (bp)].

(PDF)
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S2 Fig. The intra-macrophage expression of functional categories of Salmonella genes. The
Red and Blue bars indicate the percentage of genes of each functional category up-regulated or
down-regulated inside macrophages versus ESP (Dataset 4 in S1 Table). The list of genes
included in each functional category was obtained from the Kyoto Encyclopedia of Genes and
Genomes, KEGG (http://www.genome.jp/kegg/).

(PDF)

S1 Table. Dataset 1: Strains, growth conditions and PCR primers used in this study. Dataset
2: RNA-seq statistics. Dataset 3: List of all 3583 Salmonella TSS expressed during intra-macro-
phage survival. The expression level of TSS is shown as the Promoter Usage Value (PUV), cal-
culated by determining the TPM of the first 10 nucleotides from the TSS, towards the direction
of transcription (Materials and Methods). Dataset 4: The intra-macrophage expression levels
of Salmonella Typhimurium 4/74 genes, shown as TPM values. The lowest TPM value is
adjusted to 10, to allow statistical comparison. Dataset 5: Pathogenicity Island Expression Lev-
els: The expression Levels for each PAI was calculated by averaging the fold change TPM (Mac-
rophage versus ESP) of all the genes located within individual islands. Dataset 6: The intra-
macrophage expression of Salmonella Typhimurium 4/74 regulatory genes. Data obtained
from Dataset 4. Dataset 7: List of genes strongly induced within macrophages; represented as a
comparison of expression in macrophages against the 20 in vitro conditions in KrOger et al.,
2013 [17]. This Dataset was used to generate Fig 7. Dataset 8: Candidate promoters for a Sal-
monella-based vaccine delivery system. Dataset 9: Intra-macrophage expression levels of 280
sRNAs of Salmonella Typhimurium 4/74. The lowest TPM value is adjusted to 10. This dataset
was used to generate Fig 8. Dataset 10: Analysis of the conservation of 280 Salmonella sSRNAs.
The level of sequence identity of individual SRNAs was determined in 29 enterobacterial
genomes with GLSEARCH. 1.00 indicates 100% identity. Salmonella specific SRNAs (Results
and Discussion) are highlighted in green.

(XLSX)
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