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Abstract
In clinical settings, rapid and accurate characterization of pathogens is essential for effec-

tive treatment of patients; however, subtle genetic changes in pathogens which elude tradi-

tional phenotypic typing may confer dangerous pathogenic properties such as toxicity,

antibiotic resistance, or virulence. Existing options for molecular typing techniques charac-

terize the critical genomic changes that distinguish harmful and benign strains, yet the well-

established approaches, in particular those that rely on electrophoretic separation of nucleic

acid fragments on a gel, have room for only incremental future improvements in speed,

cost, and complexity. Solid-state nanopores are an emerging class of single-molecule sen-

sors that can electrophoretically characterize charged biopolymers, and which offer signifi-

cant advantages in terms of sample and reagent requirements, readout speed,

parallelization, and automation. We present here the first application of nanopores for sin-

gle-molecule molecular typing using length based “fingerprints” of critical sites in bacterial

genomes. This technique is highly adaptable for detection of different types of genetic varia-

tion; as we illustrate using prototypical examples includingMycobacterium tuberculosis
and methicillin-resistant Streptococcus aureus, the solid-state nanopore diagnostic plat-

form may be used to detect large insertions or deletions, small insertions or deletions, and

even single-nucleotide variations in bacterial DNA. We further show that Bayesian classifi-

cation of test samples can provide highly confident pathogen typing results based on only a

few tens of independent single-molecule events, making this method extremely sensitive

and statistically robust.

Introduction
Subtle genetic changes in bacteria can produce large variations in factors affecting pathogenic-
ity, such as toxicity, antibiotic resistance, and virulence. These genetic variations are not only
used to trace the epidemic and phylogenetic relationships among strains of bacteria, but are
also critically important in clinical settings for proper patient diagnosis and treatment. Most
existing approaches require sample incubation and growth over the course of multiple days
prior to testing, and nearly all require expert handling of samples and interpretation of results.
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Traditional phenotypic typing techniques such as serotypes, biotypes, phage-types, and anti-
biograms lack the necessary sensitivity to distinguish between closely related pathogen strains,
and therefore fail to adequately capture these critical variations for clinical applications. Gel-
based techniques such as restriction fragment length polymorphism (RFLP) or cleaved ampli-
fied polymorphic sequences (CAPS) require a large amount of time and results are not easily
compared or transferred among labs. Next-generation sequencing is an increasingly popular
method of fully characterizing bacterial strains [1] and may be used for typing strains accord-
ing to the sequences of a panel of housekeeping genes, as in multi-locus sequence typing
(MLST) [2], but this approach is more commonly used to trace post hoc epidemic and phyloge-
netic relationships among clinical isolates. Furthermore, the complexity and quantity of
sequencing data far exceeds the minimum information required to efficiently and accurately
diagnose a patient. For example, bioinformatics studies suggest that a panel of just 30–50 single
nucleotide variations (SNVs) could be used to uniquely identify thousands of strains of Myco-
bacterium tuberculosis [3, 4]. Yet SNVs are not the only source of variation among pathogens;
polymorphisms from SNVs and short indels up to genetic changes as large as whole plasmids
or sets of genes may be responsible for critical changes to pathogenicity. Thus there exists a
clear clinical need for a novel approach to molecular typing that can quickly and simply screen
patient samples for a panel of widely varying known genetic polymorphisms of dangerous
pathogens.

Solid-state nanopores may be used to discriminate the lengths of unlabeled individual bio-
polymers such as DNAmolecules across a wide range of lengths [5, 6]. Biopolymers are electro-
phoretically attracted and threaded through a voltage-biased nanoscale pore drilled in an
ultrathin freestanding SiNx membrane [7, 8]. When a DNA molecule is threaded through a
nanopore, it partially blocks the flow of ions moving through the pore, allowing real-time
detection of the analyte by monitoring changes in the ion current. Nanopore sensing is bio-
chemically simple, as it does not require labeling of the analyte with radioactive or fluorescent
probes, yet it can be used to detect minute quantities of nucleic acid molecules, surpassing the
sensitivity of bulk methods [8]. Moreover, nanopore sensing involves relatively simple instru-
mentation (primarily a current amplifier) and may be used to analyze thousands of molecules
in just a few minutes, making this technique an ideal candidate for applications such as nucleic
acid based diagnostics.

Here we describe and practice a novel detection scheme (Fig 1) for molecular typing of path-
ogens using solid-state nanopores, and demonstrate its ability to discriminate a wide range of
critical genetic polymorphisms in closely related organisms with starkly different pathogenici-
ties. In the first sensing mode of our approach (Mode I), large insertions or deletions are
detected by directly classifying the length of DNA in the nanopore. In the second sensing mode
(Mode II), small indels down to SNVs may be detected by sequence-specific digestion at the
site of the polymorphism to produce either one or two DNA fragments, which are then
detected in the nanopore. We first characterize the practical range of our nanopore system for
detecting variation in DNA length, and show that fragment length differences are more readily
apparent for shorter DNA lengths and for asymmetric cut sites. We then demonstrate that sta-
tistical analysis tools such as Bayesian classifiers, commonly used for automated classification,
are highly effective for rapid and statistically robust discrimination among different lengths
and combinations of DNA fragments translocating through a nanopore, even in cases where
significant portions of these distributions overlap. We apply these techniques to demonstrate
polymorphism discrimination down to the single nucleotide level in prototypical strains of
Mycobacterium tuberculosis (virulent vs. avirulent) and Streptococcus aureus (methicillin-resis-
tant vs. multi-drug resistant). This highly versatile combination of rapid length and digest dis-
crimination, spanning several orders of magnitude of possible genomic variation size, in a
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single, parallelizable device, could be extended to probe a large panel of critical sites within a
genome for point-of-care determination of critical pathogenic properties and sequence typing.

Results and Discussion

Detection of DNA Sequence Polymorphisms in Solid-State Nanopores
The simplest form of nanopore translocation analysis involves the measurement of the depth
of each current blockade (ΔIB) and the dwell time of each molecule within the pore (tD). Both

Fig 1. Two Principal Modes for Nanopore Discrimination of Pathogen Genomic Variation.Mode I:
Direct length detection according to analyte translocation dwell time and depth enables discrimination of
longer vs. shorter fragments; i.e: whether or not an insertion or deletion is present (left). Mode II: Prior to
translocation, samples are exposed to a restriction enzyme that cuts at the site of a SNV or short indel or
mutation. Detection of cleaved vs. uncleaved DNA fragments in the nanopore reveals whether or not the
critical genomic variation is present.

doi:10.1371/journal.pone.0142944.g001
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parameters have been shown to grow nonlinearly with DNA length, forming the basis for frag-
ment length separation in the nanopore system. The statistical distributions of these indepen-
dently measured quantities may be used to distinguish between analytes of different lengths,
such as DNAs [5, 6, 9], or proteins having identical molecular weight but slightly different
charge or 3D structure [10–13]. Variation in the translocation dwell-time (tD) in solid-state
nanopores measured for different DNA lengths (l), are empirically described by a power law:
tD * lα where α = 1.38±0.02, which has been reproduced by multiple experimental approaches
[5, 9, 14]. Using a log-scale distribution of translocation times to estimate the distribution of
tD, note that the difference in log(tD) for two sequences (lengths l0 and l0 + Δl) is more apparent
for shorter length l0 as compared with the insertions and deletions Δl (i.e. when Δl/l0 * 1)
according to Eq 1:

D logðtDÞ � a logð1þ Dl
l0
Þ ð1Þ

If the presence of two fragment lengths must be identified from within a single sample, it is
desirable that their distributions of ΔIB or tD should be as well-separated as possible. Further-
more, if the presence of a cut sample must be distinguished from an uncut sample, then by Eq
1 the peak produced by the shorter part of a cut sample will appear farther away from the
uncut peak than the longer part of a cut sample. To statistically distinguish the samples, it is
desirable for the peak of the shorter part to be as dissimilar as possible from the uncut peak.
Therefore, asymmetrically cut DNA pieces from a restriction digest are more readily distin-
guished from the original uncut length than those produced by symmetrically positioned
restriction sites, provided that the shorter piece is of sufficient length to be detected by the
nanopore. In cases where separation between two similar length biopolymers (Δl/l0 * 1) is
required, the measured histograms of either ΔIB or tD may overlap significantly, making dis-
crimination between these molecules difficult. Combinations of multiple fragment lengths
within a sample pose additional challenges, as their more complicated distributions may over-
lap or otherwise preclude simple contour cluster separation.

In the context of sequence typing, identification of fragments by sizing will indicate the
presence of specific insertions and deletions that may enhance or reduce pathogenicity or oth-
erwise uniquely identify a pathogenic strain. Upper bounds on Δl are set by: 1) sample prepara-
tion parameters and limitations; for example, robust and fast PCR amplification is most easily
achieved for fragment lengths of ~102–103 bp [15] and 2) nanopore stability considerations;
for example, nanopores are more frequently clogged by very long DNA (>20 kbp). Lower
bounds on l0 are set by nanopore sensitivity; while several groups have demonstrated detection
of small DNA fragments (<50 bp) [16] we find that a minimum l0 on the order of ~100 bp is
more reliable since it is readily detectable in small nanopores with no additional modifications
[5], producing an extremely small fraction of missed events due to the finite system bandwidth.
Thus a reasonable design range for sequence typing fragments is ~100 bp minimum length for
l0, ranging up to a few thousand base pairs maximum length for l0 + Δl. Many types of common
genetic variations used for strain typing fall within this size range. For example, one complete
IS6110 (insertion-like sequence element) insertion inM. tuberculosis is 1358 bp [17]. At the
other end of this range, multi-drug resistant strains of methicillin-resistant S. aureus (MRSA)
have many insertions and deletions in the range 47 bp—643 bp that affect their pathogenicity
[18]. To detect the smallest indels, which fall below the minimum detectable Δl, we turn to the
exquisite sequence specificity of digestion by restriction enzymes, which can identify sequence
polymorphisms down to a single nucleotide variation.
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Using these design principles, we present here two alternative modes of detection that illus-
trate the wide range of genomic variations that may be detected using a single sensor. For large
insertions or deletions (Fig 1: Mode I, left panel), a nanopore may be used to discriminate the
raw change in DNA length caused by the presence or absence of this sequence according to the
duration of translocation events. For short indels, mutations, or single nucleotide variations
(SNVs) (Fig 1: Mode II, right panel), which are more difficult to identify solely by length as dis-
cussed above, we utilize a restriction enzyme. The sample is only cut in the presence (or
absence) of the critical sequence, and subsequent detection in a nanopore reveals either one or
two fragments in the nanopore according to the observed durations and blockage levels of
translocation events.

Event Diagram Discrimination of Sample Length and Composition
We first experimentally illustrate the practical length resolution of the nanopore platform for
identifying sample length and composition. We analyzed samples containing mixtures of DNA
fragments composed of one or two well-defined lengths. The resulting event diagrams create
unique fingerprints that can be used to distinguish different lengths of DNA (Mode I) or
whether or not a fragment of DNA has been cut (Mode II). Fig 2A–2E show event diagrams for
100 bp, 200 bp, 900 bp, 1000 bp, and 100+900 bp DNA in a single nanopore (diameter 4.8 nm,
effective height 7 nm) at +300 mV bias (for additional examples, see Figs B-E in S1 File). Here,
each translocation event is represented by its corresponding ion current event amplitude (ΔIB)
and dwell time (tD). From comparison of Fig 2A and 2D, it is evident that insertions and dele-
tions Δl several times larger than the base length (here: Δl:l0 = 9:1) are indeed easily distinguish-
able (Fig C in S1 File). Comparison of Fig 2A and 2B illustrates that Δl = 100 bp results in
reasonably distinct event diagrams for l0 = 100 bp, which may be distinguished to>95% confi-
dence with just a few events each, taking both dwell time and current amplitude into consider-
ation (Fig D in S1 File). However, at l0 = 900 bp a minimum of several hundred events are
required to confidently (>95%) differentiate l0 (Fig 2C) from l0 + Δl (1000 bp, Fig 2D), since
their event diagrams overlap significantly (Fig E in S1 File). Returning to Eq 1, for Δl = 100 bp,
we expect Δlog(tD) = 0.415 for l0 = 100 bp, and Δlog(tD) = 0.063 for l0 = 900 bp. For the data
shown in Fig 2F, Δlog(tD) = 0.1 for l0 = 100 bp, and Δlog(tD) = 0.03 for l0 = 900 bp. The inability
to easily and quickly discriminate the 900 bp DNA from the 1000 bp DNA demonstrates the
practical limits set on Mode I sample identification according to the size of the insertion or
deletion that must be detected.

Fig 2E illustrates howMode II may overcome these limitations by digesting DNA into frag-
ments: here, a highly asymmetric ratio of lengths in a mixed sample (100+900 bp) clearly facili-
tates sample identification as compared to the full length 1000 bp DNA (Fig 2D). However,
Mode II also presents a more challenging case for quantitative discrimination between an
uncut and a cut sample. Whereas single-length samples can be identified using either their tD
or IB distribution (as shown in Fig 2F), the longer fragment in a cut sample may share signifi-
cant overlap with the uncut sample. This is particularly true in the case of a highly asymmetric
cut site.

Bayesian Statistical Treatment of Nanopore Data
We seek to develop a statistically robust and data processing procedure for nanopore-based
discrimination among DNA fragment lengths. We note that in diagnostic tests, biochemical
assays are ideally designed to classify samples among just a few known possible cases, rather
than to produce a continuously-valued scalar associated with a physical quantity of the system
(i.e. mean translocation dwell-time, or event amplitude). To quantitatively identify unknown
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samples, which must fall into one of two (or a few) known possible genetic variation classifica-
tions at each relevant locus, we have developed a classification framework for nanopore sensing
based upon Bayesian classification [19]. This approach enables surprisingly rapid identification
of unknown samples, and more importantly, provides an estimate of the statistical confidence
associated with these classifications.

Fig 2. Translocation Event Diagrams Uniquely Identify DNA Fragment Lengths in a Single Nanopore.
(a) 100 bp at 1 nM. (b) 200 bp at 1 nM. (c) 900 bp at 1 nM. (d) 1000 bp at 1 nM. (e) 1:1 combination of 100 bp
and 900 bp, total concentration 2 nM. (f) Semilog(x) distributions of translocation dwell times for all samples
(a)-(e). Translocations for all samples were collected in a single nanopore (4.8 nm diameter, effective
thickness ~7 nm) with a +300 mV bias relative to trans (open pore current: 13 nA). To facilitate visualization of
population density, a random white noise offset below the acquisition rate of this data (-2 μs < Δt < +2 μs,
acquisition rate 250 kHz) has been added to each tD.

doi:10.1371/journal.pone.0142944.g002
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The event diagrams shown in Fig 2 may be modeled as probability density functions Zi
describing the likelihood of observing a translocation with depth IB and dwell time tD. Here, we
find the maximum likelihood fit of a Gaussian Mixture Model (GMM) to the event diagram to
describe each distribution as a sum of one or more two-dimensional covariant Gaussian proba-
bility density functions (Eq 2).

pðθmodeljZÞ ¼
X
k

wk � gðθmodeljmk;SkÞ

where : gðθmodeljmk;SkÞ ¼
1

2pðjSkj1=2Þ
exp

�ðθmodel � mkÞ0Sk
�1ðθmodel � mkÞ

2

� � ð2Þ

Here, p(θmodel|Z) is the GMM for case Z for the model data set θmodel (here: variables IB and tD)
summed over all k components, wk is the relative weighting of each component such thatX
k

wk ¼ 1, μk is the mean of each component, and Sk is the covariance matrix of each compo-

nent. We then calculate the posterior likelihood, p(Zi|θ), that an unknown sample translocation
data set, θ, belongs to the a priori distribution Zi according to Bayes’ rule (Eq 3):

pðZijθÞ ¼
pðθjZiÞ � PðZiÞX
j

pðθjZjÞ � PðZjÞ
ð3Þ

The “unknown” sample is then assigned to whichever Zi yields the higher posterior likeli-
hood. The posterior likelihood also represents the expected accuracy of the resulting decision.
Here, the prior probabilities are taken to be equal, P(Zi) = 0.5. In a clinical application, the
prior probabilities may be adjusted to account for the known incidence of each possible case in
the clinical population under consideration, and additional weighting factors may be included
to bias the classifier and thereby avoid costly diagnostic errors.

Fig 3 illustrates the utility of this approach for discrimination between probability density
functions with significant overlap, as would be the case for sensing Mode II (Fig 1). Fig 3A and
3B show the maximum-likelihood Gaussian Mixture Model fits to the event diagrams for enzy-
matically “uncut”DNA and for “cut”DNA. The color temperature indicates the relative proba-
bility density of the model at each location. Fig 3A shows the GMM for 1000 bp DNA (Case
A), which represents a whole fragment that does not contain the critical sequence for digestion
by a particular restriction enzyme. This produces a single population on the Gaussian mixture
model fit. In Fig 3B, a 100+900 bp DNA equimolar mixture represents a restriction-digested
sample that was originally 1000 bp long, with the critical digestion site located at 100 bp from
one end of the DNA (Case B). This mixture shows two clear populations in the GMM, one
matching the 100 bp event diagram fingerprint (Fig 2A), and one matching the 900 bp event
diagram fingerprint (Fig 2C), which has significant overlap with the 1000 bp GMM in Fig 3A.
Notably, the GMM fit for this two-component sample is readily distinguishable from the full-
length 1000 bp sample due to the clear peak at short timescales caused by the 100 bp fragment.

The confidence with which an unknown sample may be classified increases with the number
of translocations collected, N. Fig 3C and 3D depict the posterior probabilities p(A|Θ) or p(B|
Θ) for correctly assigning an unknown sample to either case A (uncut, 1000 bp) or case B (cut,
100+900 bp) for N translocations of the unknown sample. Each light gray curve represents a
single simulation run of the posterior probabilities calculated after N translocations of the
unknown sample, using a randomly selected training set of 1500 translocations for the GMM
fit, and a randomly selected and ordered test data set from the remaining translocations (for
clarity, only the first 50 simulation runs are shown here). The red and blue curves represent the
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average posterior probabilities for correctly identifying an A sample and a B sample, respec-
tively, averaged over all 1000 simulation runs. These clearly highlight a general trend emerging
from our data: a rapid increase in the probability for N of just a few tens of events from the
unknown test sample, followed by a slow increase for larger values of N.

Fig 3. Gaussian Mixture Models for Mode II Classification of 1000 bp vs. 900+100 bp DNA Fragments.
(a) 2-D GMM for 1000 bp DNA fragment translocations. (b) 2-D GMM for 900+100 bp DNA fragment
translocations. (c) Bayesian posterior estimates p(A|Θ) of correctly identifying a data setΘ as Case A,
calculated for each increment of N points inΘ, repeated 1000 times (first 50 shown in gray) and averaged
(blue), each usingM = 1500 points in the model data set. (d) Bayesian posterior estimates p(B|Θ) of correctly
identifying a data setΘ as Case B, calculated for each increment of N points inΘ, repeated 1000 times (first
50 shown in gray) and averaged (red), all usingM = 1500 points in the model data set. (e) Bayesian posterior
estimates p(A|Θ) for test data sets ofN points given a model based on data set sizeM. Each point represents
the average of 1000 separate bootstrap simulations. (f) Bayesian posterior estimates p(A|Θ) for test data sets
of N points given a model based on data set sizeM. Each point represents the average of 1000 separate
bootstrap simulations. Insets: range of N for which p(A|Θ) reaches 0.95. See Methods and S1 File for
complete numerical simulation details.

doi:10.1371/journal.pone.0142944.g003
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The rate of convergence and maximum confidence of the posterior probability curves
shown in Fig 3C and 3D are also dependent upon the numberM of translocations used for fit-
ting the GMM. Fig 3E and 3F show posterior probability curves for A and B for a range of
model data set sizes,M. It is clear that larger training sets are necessary to achieve high levels of
confidence; in this case, if fewer than M = 700 samples make up the training sets, the confi-
dence level of correctly identifying the cut fragments does not rise above 95%, even for rela-
tively large N = 500 translocations. However, the number of pointsM required in the model set
varies widely depending upon the similarity of the distributions to be discriminated: for exam-
ple, for the distributions shown in Fig 4, only aboutM = 100 data points are necessary to exceed
95% confidence with only N = 50 test points (Fig G in S1 File). Insets show the number of
translocation events required for each posterior probability to reach a 95% confidence thresh-
old (N = 45 events and N = 115 events for identifying an A sample or a B sample, respectively).
These curves allow quantitative determination of how many translocations from an unknown
sample should be collected in order to verify the sample identity with any desired level of confi-
dence for any pair or set of possible cases under consideration. Surprisingly, we find here that
only a few tens of events are necessary to confidently classify an unknown cut or uncut sample.
At typical nanopore collection rates (~1 event/second for ~1 nM DNA) less than a minute
would be sufficient to obtain a confident result. Additionally, the curves shown in Fig 3C–3F
illustrate that the limiting case (for this example) is actually the uncut sample; that is, more
translocations from an unknown sample are required to confidently identify a sample as A
(1000 bp) rather than B (900+100 bp).

Pathogen Discrimination Sensitivity Down to Single-Nucleotide
Variations
We demonstrate here the highest sensitivity of our proposed analysis by discrimination of criti-
cal single nucleotide variations in actual pathogen genomes, selected at sites that are known to
alter pathogenicity. We selected two model pathogens with very different characteristic pheno-
typic effects caused by a lone SNV: S. aureus, in which a SNV confers antibiotic resistance via
the parC gene, andM. tuberculosis, in which a SNV affects virulence via themazG gene. The
emergence of methicillin-resistant S. aureus (MRSA) strains in recent years has increased the
incidence of severe nosocomial and community-acquired infections. The wide variation in
antibiotic resistance across this set of pathogens necessitates either immediate treatment with
broad-spectrum antibiotics that can perpetuate the evolution of resistant strains, or accurate
but expensive and time-consuming pathogen characterization prior to treatment, or (often)
both. MRSA exhibits a relatively high degree of genetic variation due in large part to frequent
horizontal gene transfer [20]. Antibiotic resistance in strains of MRSA is often conferred by
mobile genetic elements (MGEs), which are large insertions or deletions that can contain one
or more whole genes from related bacteria or phages [21]. MRSA also exhibits frequent small
mutations and indels [18]. In contrast,M. tuberculosis, the bacterium responsible for tubercu-
losis (TB), exhibits relatively little genetic diversity among its various strains [22] but has rap-
idly increasing incidence of antibiotic-resistant and hypervirulent strains.

For each of these two prototypical pathogens we have selected two well-studied and closely
related strains to illustrate the sensitivity of our technique by sensing single critical SNVs that
differentiate the pathogens. For methicillin-resistant S. aureus, we selected two closely related
isolates of the well-characterized USA300 strain, USA300-FPR3757 and USA300-HOU-MR.
Both of these isolates are methicillin-resistant, but otherwise possess very different spectra of
antibiotic resistance [18, 23] due to variations in plasmids, MGEs, and many other smaller
indels and SNVs. ForM. tuberculosis, we selected closely related virulent (H37Rv) and
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avirulent (H37Ra) strains, which differ only in several key SNVs and indels [18]. This pair has
been widely used as reference strains for studying virulence and pathogenesis ofM. tuberculo-
sis, and H37Ra is even used to boost immunogenicity during TB immunization.

Fig 4A shows the main steps of sample preparation required to amplify and digest each
locus of interest from a pathogen sample. For each pathogen, we focused on specific genes
where single nucleotide variations are significantly correlated with the pathogenicity of the

Fig 4. Gaussian Mixture Models of DNA Fragments for Actual Mode II Pathogen Typing at the SNV Level. (a) Diagram of the main steps in sample
preparation, detection, and classification: PCR fragments from isolated pathogens are subjected to a restriction digest, which recognizes and cuts only one
genomic variant. Nanopore translocations are used to classify the pathogen according to the combination of fragment lengths detected. (b) ThemazG gene
of the avirulentM. tuberculosis strain H37Ra is not cut by NaeI (942 bp), while the same gene in the closely related virulent strain H37Rv, which differs by
only a single A-to-C mutation, is cut by NaeI (621bp + 321 bp). (c) Gaussian mixture model (one component) fit to translocations ofmazG fragments from
H37Ra. (d) Gaussian mixture model (two components) fit to translocations ofmazG fragments from H37Rv. (e) Posterior probabilities for correctly identifying
the H37Ra and H37Rv strains as a function of number of translocation events collected from an unknown sample, simulated using bootstrap sampling from
nanopore translocation data. (f) The parC gene of the multi-drug-resistant MRSA strain FPR3757 is not cut by BseRI (886 bp) due to a single C-to-A
mutation, while the closely related and less resistant strain HOU-MR is cut by BseRI (640bp + 245 bp). (g) Gaussian mixture model (one component) fit to
translocations of parC fragments from FPR3757. (h) Gaussian mixture model (two components) fit to translocations of parC fragments from HOU-MR. (i)
Posterior probabilities for correctly identifying the FPR3757 and HOU-MR strains as a function of number of translocation events collected from an unknown
sample, simulated using bootstrap sampling from nanopore translocation data.

doi:10.1371/journal.pone.0142944.g004
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strains: ThemazG gene inM. tuberculosis encodes an NTP pyrophosphohydrolase, which pro-
motes cell viability under oxidative stress [24]. A single nucleotide variation of C to A inmazG
at location 239 bp in H37Ra is believed to be critical to the original emergence of this less viru-
lent strain (as compared to the original H37Rv from which it derives) by conferring a competi-
tive advantage during aging-mediated cell lysis [25]. We designed primers and obtained an
amplicon of 942 bp for this gene. As shown in Fig 4B, digestion was performed with NaeI
(NEB) to produce fragments of 321 bp and 621 bp for H37Rv. The amplicon from H37Ra was
subjected to the same digestion protocol, but did not contain a cut site and therefore remained
full-length (942 bp). We confirmed the amplification of themazG gene and its subsequent
digestion by running native PAGE gels, as shown in S1 File. Fig 4C–4D show the GMM fit for
the amplified fragment from H37Ra and its counterpart from H37Rv. The GMM fit for the cut
H37Rv sample is clearly distinguishable from that of the uncut H37Ra. Based on the bootstrap
simulations shown in Fig 4E and 4F for Bayesian classification posterior estimates as a function
of test data set sizeM, theseM. tuberculosis strains can be distinguished with>99.5% confi-
dence in N = 50 translocations or fewer, using a model data set size of only ~100 points (see Fig
G in S1 File for additional numerical simulation data).

For the MRSA strains, we chose the parC gene (2.4 Kb) and amplified a subregion that
includes a critical SNV site. While both strains are methicillin resistant, the FPR3757 shows a
much larger spectrum of antibiotic resistance [26]. Specifically, the SNV in the FPR3757 parC
gene (C to A) is believed to confer fluoroquinolone resistance. Amplicons (885 bp) from these
strains were digested with BseRI, as shown in Fig 4F. The amplicon from the HOU-MR strain
will produce two fragments upon digestion: 245 bp and 640 bp. The amplicon from FPR3757
does not have the cut site for BseRI, so it remains uncut (885 bp) (see Fig A in S1 File). Fig 4G
and 4H show the GMM fits for the digested samples from FPR3757 and HOU-MR, respec-
tively. Based on the bootstrap simulation shown in Fig 4I for Bayesian classification posterior
estimates as a function of test data set size, this SNV can be used to discriminate between
FRP3757 and HOU-MR with>99.5% confidence in N = 80 translocations or fewer, based on a
model data set size of only ~100 points (see Fig H in S1 File for additional numerical simulation
data).

A critical aspect of the approach outlined here is careful sample design to allow efficient
sample identification at each site under consideration. Both Mode I and Mode II sensing
depend upon differences in translocation time and blockage level caused by differences in sam-
ple length. In addition to PCR design of sample length, these variables are controlled by a mul-
titude of factors, including pore geometry, material, and functionalization, electrical bias, and
buffer conditions. Mode II sensing is additionally dependent upon the location of the restric-
tion site within a fragment; asymmetric sites may produce a more obvious change in transloca-
tion dwell time or in blockage level, but very short fragments may produce dwell times below
the sensing resolution of the nanopore, leading to “missed” events. These factors can be bal-
anced for any given nanopore system to enable both Mode I and Mode II sensing and minimize
the possibility for missed events. Note that for Mode I type sensing, the restriction digest is
eliminated, conserving both time and resources. However, Mode II type sensing is more suit-
able to discriminate critical single nucleotide variations, which alter pathogenicity, and also
proves the high sensitivity of our method.

Conclusion
Solid-state nanopore based biosensing is a rapidly growing field due to its practical and concep-
tual simplicity, portability and versatility. To date, few reports have demonstrated the utility of
the method towards clinical diagnostic applications. Yet as we have shown here, nanopores are
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well-suited to make statistically robust diagnostic classifications among different DNA lengths
with real single-molecule data, even in cases where the distributions significantly overlap. Uti-
lizing a Bayesian statistical model, we have demonstrated that nanopore sensing can be used to
discriminate among pathogens based on well-known genomic variations. Both large indels
(Mode I) or short indels and single nucleotide variations (Mode II) can be targeted using
proper sequence-specific digestion with off-the-shelf restriction enzymes. Furthermore, the
Bayesian classifiers indicate the statistical confidence of each classification as a function of the
number of nanopore events obtained in each measurement. Even at this preliminary stage of
development we find that only a few tens of events (obtained in just a few minutes using a sin-
gle pore) are sufficient to produce a statistically reliable result with well-defined and small
error margins.

Our method is general and can be adapted to address many different “multiple-choice” clin-
ical questions using a nanopore biosensor or other single molecule approaches. Future exten-
sions of this work may seek to design and implement large panels of critical sites that represent
the minimum sets necessary to characterize genomic variation for various applications in
healthcare and research, and to develop additional sensing modalities. Although the primary
design challenge currently remains linked to the location and availability of restriction diges-
tion sites, we expect that the ongoing development of designer restriction enzymes, for example
systems based on modular zinc fingers [27], TALENs [28], or CRISPR-like proteins will pro-
vide additional design flexibility for this technique.

The nanopore fingerprinting approach presented here addresses clear needs in clinical molec-
ular diagnostics for a rapid and simple sensor that can identify a wide range of genomic variation
in pathogens to inform treatment options. We have shown here discrimination of both large and
small scale genomic variations between pathogen strains, down to single SNVs. The large, flexible
sample design space for lengths, cut sites, and enzyme selection at each critical locus ensures that
the technique is highly customizable for different genomic variation panels that could profile
pathogenicity, antibiotic resistance, or even sequence type. The inherent scalability, minimal
sample requirements, speed, and simple readout of the nanopore platform would all facilitate on-
site and perhaps even automated use: As successive events are recorded, an increasingly clear fin-
gerprint of translocation times and blockage levels will permit online software to “call” the sam-
ple as soon as enough events have been accumulated. Our technique is highly portable and
customizable, and the binary data would be readily transferrable among different labs.

Materials and Methods

Chip and Nanopore Fabrication
Nanopore chips were fabricated on a 4” silicon wafer coated with SiO2 (500 nm) and low-stress
amorphous silicon nitride (SiNx, 60 nm). The SiNx was locally thinned to<10 nm (1.5–2 μm
circular wells) using a controlled RIE etch. Freestanding membranes of SiNx (60x60 μm) were
created by through-etching the wafer with KOH, with the locally etched wells aligned to the
etched freestanding SiNx membranes. Nanopores were fabricated in the thinned SiNx regions
using a high resolution TEM (Jeol 2010F), as previously reported [29]. Pore formation pro-
ceeded with visual feedback by iterating through a uniformly expanded beam for imaging the
nanopore diameter during formation and converging the beam to locally sputter and melt the
membrane. Pores of 4 ± 0.2 nm could be consistently formed.

Sample Preparation
100 bp, 900 bp and 1 kbp, dsDNA was purchased from Fisher Scientific (NoLimits™DNA) and
used without further purification.M. tuberculosis strains H37Ra (ATCC125177) and H37Rv
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(ATCC125618) were freshly obtained from American Type Culture Collection (ATCC). In
order to obtain themazG gene from bothM. tuberculosis strains, we designed primers for PCR
amplification (35 cycles, denaturation 98°C / 10s, annealing 65°C / 30s, extension 72°C / 30 s;
final extension, 72°C / 5 min) using New England Biolabs Phusion polymerase. The same pro-
tocol was used for both strains using the same primers. We chose a restriction enzyme specific
to the single nucleotide variation: for themazG gene in H37Rv, NaeI (New England Biolabs)
will cut the amplicon into two pieces of 321 and 621 bp, whereas themazG gene from H37Ra
will not be digested with this enzyme (942 bp). Two different strains of methicillin-resistant S.
aureus (USA300-HOU-MR; ATCC1BAA-1718 and USA300-FPR3757; ATCC1BAA-1556)
were used in order to distinguish a single nucleotide variation in the parC gene. The amplicon
for the MRSA parC gene was digested with the restriction enzyme BseRI (New England Bio-
labs), which cut the HOU-MR fragment into two pieces (245 bp and 640 bp), while the
FPR3757 fragment remained full-length (885 bp). PCR for the MRSA strains was performed
under similar conditions as for theM. tuberculosis gene amplification. Sequences and further
details for these specific genes and corresponding PCR primers are provided in S1 File.

Data Acquisition and Analysis
Electrical NP measurements were performed in a dark, double-insulated Faraday cage using
our custom cell (described elsewhere) [30]. The ion current was measured using an Axopatch
200B (Molecular Devices) at 100 KHz bandwidth, sampled at 250 kHz using a National Instru-
ment card. Data was acquired and analyzed using custom LabView codes. Numerical simula-
tions and data analysis were all performed using Matlab (MathWorks) and Igor Pro
(Wavemetrics).

Numerical Simulations
Posterior probabilities were estimated using bootstrap resampling without replacement on
nanopore translocation data (>2000 events per data set). Reported posterior probabilities are
the average of many (typically>1000) iterations of this method. For each iteration, randomly
selected disjoint subsets were selected from the original data sets dataA and dataB to represent
a model set (modelA andmodelB, sizeM) a test set (ΘA andΘB, size N). 2-D Gaussian mixture
models (Afit and Bfit) with either one (uncut fragment) or two components (cut fragments)
were fit to each model set by expectation maximization, yielding fit parameters μ (component
means), S (component covariance matrices), and w (mixture weights for each component).
Posterior probabilities p(Afit|ΘA) (correct ID ofΘA as type A data), p(Bfit|ΘB) (correct ID of
ΘB as type B data), p(Bfit|ΘA) (incorrect ID ofΘA as type B data), and p(Afit|ΘB) (incorrect ID
ofΘB as type A data were calculated using these fits according to Eq 3, then averaged across all
iterations. All simulations assumed equal prior probabilities for A and B (0.5). Additional anal-
ysis and numerical simulations are included in S1 File.

Supporting Information
S1 File. Supporting Information and Figures. Gene and primer sequences for tuberculosis
and MRSA strains. Additional details for PCR and restriction digest (Fig A). Bayesian classifi-
cation for Mode I: Additional data and numerical simulations (Figs B-E). Bayesian classifica-
tion for Mode II: Additional data and numerical simulations (Fig F).M. tuberculosis and
methicillin-resistant S. aureus SNV detection: Additional data and numerical simulations (Figs
G and H). Fig A in S1 File. PCR and Restriction Digest Products. Native PAGE showing suc-
cessful PCR amplification of themazG gene (M. tuberculosis) and parC gene (S. aureus). Diges-
tion reactions yield either cut or uncut amplicons depending upon the parent strain. Lane 1:

Pathogen Typing Using Nanopores

PLOS ONE | DOI:10.1371/journal.pone.0142944 November 12, 2015 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142944.s001


loading dye. Lane 2: 100 bp NEB ladder. Lane 3:mazG gene amplified from H37Ra (942 bp).
Lane 4:mazG gene amplified from H37Rv (942 bp). Lane 5:mazG from H37Ra after digestion
with NaeI enzyme, not cut. Lane 6:mazG from H37Rv after digestion with NaeI, cut into two
fragments of 321 and 621 bp. Lane 7: parC gene fragment amplified from HOU-MR strain
(885 bp). Lane 8: parC gene fragment amplified from FPR3757 strain (885 bp). Lane 9: parC
from HOU-MR after digestion reaction with BseRI, cut into two fragments of 245 and 640 bp.
Lane 10: parC from FPR3757 after digestion reaction with BseRI, not cut. Digestion reactions
were performed at 37°C for 1hr in NEB Cutsmart buffer. 10 units of enzyme were used for each
digestion reaction. Fig B in S1 File. Gaussian Mixture Model Fits for DNA Translocation.
Gaussian mixture model fits to translocations of single-length DNA samples through a 4.8 nm
diameter nanopore (1M KCl, +300 mV bias). (a) 100 bp NoLimits DNA. (b) 200 bp NoLimits
DNA. (c) 900 bp NoLimits DNA. (d) 1000 bp NoLimits DNA. Raw tD and ΔI data are shown
in Fig 2 (main text). Fig C in S1 File. Bayesian Posterior Estimates for Nanopore Sample
Identification. Bayesian posterior estimates p(100bp|Θ) and p(1000bp|Θ) for test data sets of
N points given a model based onM points. Data is bootstrapped from translocations of (a) 100
bp NoLimits DNA and (b) 1000 bp NoLimits DNA (main text: Fig 2A and 2D) corresponding
to the Gaussian Mixture Models shown in Figs Ba and Bd. Each point represents the average of
1000 simulated posterior estimates, each of which uses a randomly selected model setM and
test set N. Fig D in S1 File. Mode I: Identification of 100 bp vs. 200 bp DNA. Bayesian poste-
rior estimates p(100bp|Θ) and p(200bp|Θ) for test data sets of N points given a model based on
M points. Data is bootstrapped from translocations of (a) 100 bp NoLimits DNA and (b) 200
bp NoLimits DNA (main text: Fig 2A and 2B) corresponding to the Gaussian mixture models
shown in Figs Ba and Bb. Each point represents the average of 1000 simulated posterior esti-
mates, each of which uses randomly selected (disjoint) model setM and test set N. Fig E in S1
File. Mode I: Identification of 900 bp vs. 1000 bp DNA. Bayesian posterior estimates p
(900bp|Θ) and p(1000bp|Θ) for test data sets of N points given a model based onM points.
Data is bootstrapped from translocations of (a) 900 bp NoLimits DNA and (b) 1000 bp NoLi-
mits DNA (main text: Fig 2C and 2D) corresponding to the Gaussian mixture models shown
in Figs Bc and Bd. Each point represents the average of 1000 simulated posterior estimates,
each of which uses randomly selected (disjoint) model setM and test set N. Fig F in S1 File.
Mode II: Identification of 1000 bp vs 800+200 bp DNA. (a) 1000 bp at 1 nM. (b) 1:1 ratio of
800 bp + 200 bp, total concentration 2 nM. (c) Gaussian mixture model fit, 1000 bp. (d) Gauss-
ian mixture model fit, 800 bp + 200 bp. (e) Bayesian posterior estimate p(1000bp|Θ) for test
data sets of N points given a model based onM points. (f) Bayesian posterior estimate p(800+-
200bp|Θ) for test data sets of N points given a model based onM points. Translocations for all
samples were collected in a single nanopore (4.8 nm diameter, effective thickness ~7 nm) with
a +300 mV bias relative to trans (open pore current: 13 nA). To facilitate visualization of popu-
lation density, a random white noise offset below the acquisition rate of this data (-2 μs< Δt<
+2 μs, acquisition rate 250 kHz) has been added to each tD in panels (a) and (b). Numerical
simulations for panels (e) and (f) were bootstrapped from the data in panels (a) and (b), respec-
tively. Each point represents the average of 1000 simulated posterior estimates, each of which
uses randomly selected (disjoint) model setM and test set N. Fig G in S1 File. Identification
ofM. tuberculosisH37Ra vs. H37RvmazG Samples. Bayesian posterior estimates p(H37Ra|
Θ) and p(H37Rv|Θ) for test data sets of N points given a model based onM points. Data is
bootstrapped from translocations of (a) Tuberculosis H37Ra and (b) H37RvmazG restriction
digested fragments as described in S1 File Sections 1 and 2. Each point represents the average
of 1000 simulated posterior estimates, each of which uses randomly selected (disjoint) model
setM and test set N. Fig H in S1 File. Identification of S. aureus FPR3757 vs. HOU-MR
parC Samples. Bayesian posterior estimates p(FPR3757|Θ) and p(HOU-MR|Θ) for test data
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sets of N points given a model based onM points. Data is bootstrapped from translocations of
(a) MRSA FPR3757 and (b) HOU-MR parC restriction digested fragments as described in S1
File Sections 1 and 2. Each point represents the average of 1000 simulated posterior estimates,
each of which uses randomly selected (disjoint) model setM and test set N.
(PDF)
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