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cell proliferation (P > 0.05). Interestingly, ENKL-MDSCs 
inhibited the secretion of IFNγ but promoted IL-10, IL-17 
and TGFβ secretion as well as Foxp3 expression in T cells. 
The administration of inhibitors of iNOS, Arg-1 and ROS 
significantly reversed the suppression of anti-CD3-induced 
T cell proliferation by MDSCs (P  <  0.05). Importantly, 
based on multivariate Cox regression analysis, the HLA-
DR−CD33+CD11b+ cells and CD14+ Mo-MDSCs were 
independent predictors for disease-free survival (DFS, 
P = 0.013 and 0.016) and overall survival (OS, P = 0.017 
and 0.027). Overall, our results identified for the first time 
that ENKL-MDSCs (mainly Mo-MDSCs) have a prognos-
tic value for patients and a suppressive function on T cell 
proliferation.
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Abstract  The expansion of myeloid-derived suppressor 
cells (MDSCs) and its correlation with advanced disease 
stage have been shown in solid cancers. Here, we inves-
tigated the functional features and clinical significance of 
MDSCs in extranodal NK/T cell lymphoma (ENKL). A 
higher percentage of circulating HLA-DR−CD33+CD11b+ 
MDSCs was observed in ENKL patients than in healthy 
controls (P  <  0.05, n =  32) by flow cytometry analysis. 
These MDSCs from ENKL patients (ENKL-MDSCs) 
consisted of CD14+ monocytic (Mo-MDSCs, >60 %) and 
CD15+ granulocytic (PMN-MDSCs, <20  %) MDSCs. 
Furthermore, these ENKL-MDSCs expressed higher lev-
els of Arg-1, iNOS and IL-17 compared to the levels of 
MDSCs from healthy donors, and they expressed moder-
ate levels of TGFβ and IL-10 but lower levels of CD66b. 
The ENKL-MDSCs strongly suppressed the anti-CD3-
induced allogeneic and autologous CD4 T cell prolifera-
tion (P  <  0.05), but they only slightly suppressed CD8 T 
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EBNA1	� EBV nuclear antigen 1
EBV	� Epstein–Barr virus
ENKL	� Extranodal natural killer (NK)/T cell 

lymphoma
HD	� Healthy donor
IFNγ	� Interferon gamma
iNOS	� Inducible nitric oxide synthase
IPI	� International Prognostic Index
KPI	� Korean Prognostic Index
LDH	� Lactate dehydrogenase
LMP1	� Latent membrane protein-1
LMP2	� Latent membrane protein-2
l-NMMA	� NG-methyl l-arginine
LPS	� Lipopolysaccharide
MDSCs	� Myeloid-derived suppressor cells
MHC	� Major histocompatibility complex
Mo-MDSCs	� Monocytic MDSCs
NAC	� N-acetylcysteine
NO	� Nitric oxide
NOHA	� N-hydroxy-nor-l-arginine
NPC	� Nasopharyngeal carcinoma
OS	� Overall survival
PBMCs	� Peripheral blood mononuclear cells
PMN-MDSCs	� Polymorphonuclear MDSCs
ROS	� Reactive oxygen species
SEM	� Standard error of mean
TGFβ	� Transforming growth factor beta
UNKTL	� Upper aerodigestive tract NK/T cell 

lymphoma

Introduction

Extranodal natural killer (NK)/T cell lymphoma (ENKL) 
has distinct epidemiological, clinical, histological and etio-
logical features. Clinically, ENKL predominantly occurs in 
the nasal–paranasal area, skin, gastrointestinal tract or other 
extranodal sites, and it has a poor prognosis caused by 
rapid lesion progression [1]. Among the Epstein–Barr virus 
(EBV)-related lymphomas including Hodgkin lymphoma 
and Burkitt lymphoma, ENKL is the one most closely asso-
ciated with EBV infection. EBV latent type II antigens, 
including latent membrane protein-1 and protein-2 (LMP1 
and LMP2) and EBV nuclear antigen 1 (EBNA1), are pre-
sent in ENKL tumor cells. Immune imbalance has been 
shown to be an important feature of ENKL patients [2, 3]. 
However, the role of immune cells during ENKL progres-
sion remains largely unclear.

Myeloid-derived suppressor cells (MDSCs) are a het-
erogeneous population of bone marrow-derived myeloid 
progenitors including macrophages, granulocytes, dendritic 
cells and immature myeloid cells [4, 5]. Studies in recent 

years have revealed that MDSCs expand dramatically 
during tumor growth and are a cause of immune evasion 
of many types of tumors, including multiple myeloma [6, 
7]. MDSCs enhance tumor growth by inhibiting immune 
responses and T cell proliferation as well as facilitating 
tumor metastasis and angiogenesis [8–12]. MDSCs can 
inhibit anti-tumor immunity by suppressing T cell and 
NK cell functions by increasing the production of argi-
nine, reactive oxygen species (ROS) and nitric oxide (NO) 
as well as by inducing Treg cells and TGF-β secretion to 
mediate T cell suppression [13–15]. To our knowledge, 
the role of MDSCs, a novel immune-suppressive cell sub-
set, during ENKL tumor progression has not previously 
been reported. In this study, we detected the frequency of 
MDSCs in the peripheral blood of ENKL patients to char-
acterize the phenotypic and functional features of MDSCs 
in ENKL, and we further assessed its clinical significance 
and prognostic value.

Materials and methods

Patients

Peripheral blood mononuclear cells (PBMCs) were col-
lected from 32 age-matched healthy donors and 32 patients 
with ENKL at the first time of diagnosis at Sun Yat-Sen 
University Cancer Center (Guangzhou, China) from July 
2010 to December 2012. The clinical details of the patients 
are shown in Supplementary Table  1. All patients were 
diagnosed with ENKL, and the lymphoma involved nasal 
and paranasal lesions in 25 cases (upper aerodigestive 
tract NK/T cell lymphoma, UNKTL; 84.4 %). The median 
age was 40.5 years old, and the age range was from 17 to 
70  years. There were 19 patients in stage I, 3 patients in 
stage II, 3 patients in stage III and 7 patients in stage IV. 
Nine patients had elevated serum lactate dehydrogenase 
(LDH) levels, and 20 patients had B symptoms. The Inter-
national Prognostic Index (IPI) was high-intermediate/high 
(2–5) in eight patients. For the Korean Prognostic Index 
(KPI) model, 17 patients (53.1 %) had none or one adverse 
factor, and 15 patients (46.9  %) had two to four adverse 
factors. In the Peripheral T cell lymphoma Prognostic 
Index (PIT) model, the majority of the patients (20 cases, 
62.5 %) had none or one adverse factor, and the other 12 
cases (37.5 %) had at least two adverse factors. Nine of the 
32 patients were deceased, and the 5-year overall survival 
was 71.9 % with a median follow-up of 52 months.

All patients and healthy donors provided informed con-
sent prior to the blood sampling. The study was approved 
by the Research Ethics Committee of the Sun Yat-Sen Uni-
versity Cancer Center.
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Flow cytometry analysis

Human monoclonal antibodies against HLA-DR, CD33, 
CD11b, CD14, CD15, CD66b, iNOS, Arg-1, IL-10, IL-17 
and TGFβ conjugated to different fluorescent dyes were 
obtained from BD Pharmingen (San Jose, CA, USA) or 
eBioscience (San Diego, CA, USA), and they were used 
to measure the frequency and phenotype of the MDSCs 
via surface staining or intracellular staining (Supplemen-
tary Table  2). PBMCs were isolated via Ficoll-Hypaque 
gradient centrifugation to measure the proportion and 
phenotype of MDSCs. For surface staining, the cells 
were washed twice and stained for 1 h on ice with mix-
tures of fluorescence-conjugated surface mAbs or isotype-
matched controls. The cells were then washed twice and 
resuspended in PBS buffer for flow cytometry analysis. 
The intracellular staining of IL-17 and the other cytokines 
was performed on PBMCs stimulated with lipopolysac-
charide (LPS, 1 μg/ml) for 4  h in RPMI 1640 medium, 
and the cytokine secretion was blocked by the addition of 
brefeldin A (10  µg/ml, eBioscience). After washing, the 
cells were stained with anti-CD33, anti-CD11b and anti-
HLA-DR. The cells were then fixed, permeabilized with 
Perm/Fix solution (eBiosciences) and stained intracellu-
larly with anti-IL-17 or fluorescence-conjugated antibod-
ies for other cytokines. The samples were evaluated on a 
FC500 flow cytometer (Beckman Coulter) and analyzed 
with CXP Software (Beckman Coulter, Inc., Fullerton, 
CA, USA).

T cell suppression assay

CD33+ cells were isolated from the PBMCs from the 
healthy donors or ENKL patients using human CD33 
MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) according to the manufacturer’s instructions. The 
PBMCs from healthy donors were labeled with 5  μM 
carboxyfluorescein succinimidyl ester (CFSE; Molecu-
lar Probes, Eugene, Oregon, USA) in 1  ml of PBS for 
15  min at 37  °C. The labeling was halted by adding an 
excess of FCS, and the samples were washed twice with 
RPMI 1640 (Gibco, Life Technologies, China) sup-
plemented with 10  % fetal bovine serum (FBS; ExCell 
Biology, South America). The CSFE-labeled cells were 
cultured in an anti-CD3 antibody (OKT3)-coated 96-well 
plate with or without sorting the CD33+ cells from the 
ENKL patients or healthy donors at different ratios for 
3  days, and N-hydroxy-nor-l-arginine (NOHA; 1  mM), 
l-NG-monomethylarginine (l-NMMA, 100  μM) or 
N-acetylcysteine (NAC 1, mM) was added to a portion of 
the samples. The CFSE fluorescence intensity was ana-
lyzed by flow cytometry after 7  days of co-culture and 
proliferation.

Statistical analyses

The numerical data are shown as the mean ± standard error 
(SEM). The statistical analysis was performed with the 
SPSS 13.0 software (SPSS, Chicago, IL, USA) or Graph-
Pad Prism analysis tools (La Jolla, CA, USA). Two group 
comparisons were tested using Student’s t test, and the 
association of the density of the MDSCs with the clinical 
pathological features was examined using Pearson’s chi-
square test. The overall survival (OS) was measured from 
the date of the diagnosis to the date of death from any 
cause or to the date of the last follow-up visit. The disease-
free survival (DFS) was defined as the time from the diag-
nosis to the first occurrence of progression, relapse after a 
response, death from any cause, or to the date of the last 
follow-up of the surviving patients. The survival curves 
were determined by the Kaplan–Meier method and the log-
rank test. A Cox proportional hazards regression analysis 
was performed to identify the independent prognostic fac-
tors for the OS or DFS. The cutoff value was the median 
of all variants. The statistical tests were based on a level of 
significance at P < 0.05.

Results

The expansion and clinical implication of circulating 
MDSCs in ENKL

We investigated the frequency of MDSCs in the peripheral 
blood mononuclear cells (PBMCs) of 32 ENKL patients. 
Flow cytometry analysis showed that the percentage of 
HLA-DR−CD33+CD11b+ and HLA-DR−CD33−CD11b+ 
cells was increased in the PBMCs from ENKL patients 
compared with those from healthy controls (P =  0.0014 
and P = 0.0001, respectively) as shown in Fig. 1. No cor-
relation between the frequency of MDSC populations and 
clinicopathological factors, including age, gender, Ann 
Arbor Stage, subtypes, LDH level, B symptoms, KPI, 
PIT and IPI scores, was observed (P > 0.05) as shown in 
Supplementary Table 3. Further, no correlation was found 
between the frequency of the circulating CD14+ monocytic 
(Mo-MDSCs) or CD15+ granulocytic (PMN-MDSCs) sub-
sets and clinicopathological parameters (P > 0.05, Supple-
mentary Table 4).

The phenotypic properties and cytokine profile 
of MDSCs in ENKL

Based on a previous study [12], we described the HLA-
DR−CD33+CD11b+ cells as MDSCs in subsequent 
experiments. To evaluate the phenotypic properties of 
this population in the PBMCs from patients with ENKL 
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(ENKL-MDSCs), we screened the specific markers and 
cytokines of ENKL-MDSCs using FACS analysis and a 
multiple gate strategy. First, based on previous reports, we 
determined that the ENKL-MDSCs predominantly con-
sisted of CD14+ Mo-MDSCs (>60  %), and the CD15+ 
PMN-MDSC subset represented approximately 20  % of 
the MDSC population of ENKL patients. The propor-
tion of Mo-MDSCs and PMN-MDSCs in the peripheral 
blood of ENKL patients was significantly different to that 
of healthy donors (P < 0.05, Fig. 2a, b). Furthermore, the 
ENKL-MDSCs displayed a significantly higher level of 
Arg-1 and iNOS compared to healthy donors (P  <  0.05), 
and the MDSCs from both ENKL patients and healthy 
donors displayed a moderate level of CD66b as shown in 
Fig. 2c, d. In addition, we found that the MDSCs secreted 

a moderate level of IL-17, IL-10 and TGFβ. Interestingly, 
the ENKL-MDSCs secreted a significantly higher level of 
IL-17 (P < 0.05) and a slightly higher level of IL-10 and 
TGFβ compared to the levels of the MDSCs from healthy 
donors (Fig. 2e).

ENKL‑MDSC‑mediated suppression of T cell 
proliferation is dependent on NO and ROS production

To further understand the role of MDSCs in ENKL pro-
gression, we investigated the immunosuppressive function 
of MDSCs isolated from the PBMCs of ENKL patients. 
The CD33+ cells isolated from the ENKL patients showed 
noticeable inhibition of the proliferation of allogeneic and 
autologous OKT3-stimulated CD4 T cells (P < 0.05), but 

Fig. 1   Expansion of MDSCs in patients with extranodal NK/T 
cell lymphoma. a Gating routine for MDSC subsets. b–c The dot 
plots represent the CD33+CD11b+ cell subset, the CD33+CD11b− 
cell subset and the CD33−CD11b+ cell subset gating on the HLA-
DR− fraction among the PBMCs from healthy donors (b) or ENKL 

patients (c). d–f The statistical analysis of the percentage of the 
MDSC subsets among the PBMCs from the ENKL patients (n = 32) 
and healthy donors (n = 32). The error bar represents the SEM. Stu-
dent’s t test is used. HD healthy donor, ENKL extranodal NK/T cell 
lymphoma
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only a slight suppression of allogeneic and autologous 
OKT3-stimulated CD8 T cell proliferation was observed 
(P > 0.05) as shown in Fig. 3. Our observations indicated 
that the ENKL-MDSCs displayed a suppressive function 
dependent on MHC limitation and non-specific suppres-
sion, especially for CD4 T cell proliferation.

Subsequently, we further explored the potential sup-
pressive mechanism of MDSCs in ENKL. Firstly, in the 
ENKL-MDSC population, iNOS and Arg-1 were highly 
expressed (Fig.  2c, d). iNOS and Arg-1 are key enzymes 
responsible for arginine metabolism and the production of 
NO, respectively. These enzymes share the same substrate, 
l-arginine, and are associated with MDSC-mediated sup-
pression [16, 17]. We further investigated the underlying 

mechanisms controlling MDSC-mediated T cell suppres-
sion in ENKL by blocking the activity of iNOS, Arg-1 and 
ROS production in MDSCs. Suppression of T cells medi-
ated by CD33+ cells isolated from the ENKL patients 
was almost completely recovered after administration of 
the arginase inhibitor (NOHA), the nitric oxide synthase 
inhibitor (l-NMMA) or the ROS inhibitor (NAC) (Fig. 4a, 
b). When OKT3-stimulated CD4 or CD8 T cells were co-
cultured with MDSCs from ENKL patients for 3 days, we 
found that the secretion of IL-10, TGFβ and IL-17 as well 
as Foxp3 expression were significantly increased, while the 
secretion of IFNγ was significantly decreased (Fig.  4c). 
These data suggested that when T cells are co-cultured 
with ENKL-MDSCs, the altered cytokine secretion from 

Fig. 2   Phenotypes and cytokine profiles of HLA-
DR−CD33+CD11b+ MDSCs in extranodal NK/T cell lymphoma 
patients. The HLA-DR−CD33+CD11b+ cells are gated as MDSCs 
from 22 NK/T cell lymphoma patients. The properties of the MDSCs 
are analyzed via flow cytometry using multiple antihuman mAbs 
against CD14, CD15, CD66b, iNOS, Arg-1, IL-17, IL-10 and TGFβ. 
a Representative FACS plots of the CD14+ or CD15+ MDSCs from 
the same ENKL patients. b Graph of the CD14+ Mo-MDSCs and 
CD15+ PNM-MDSCs among the PBMCs from 22 ENKL patients 

and 22 healthy controls. c Representative FACS histogram for 
CD66b, iNOS and Arg-1 expression in ENKL-MDSCs and MDSCs 
from healthy control. d The data shown are the MFI of CD66b, iNOS 
and Arg-1 in ENKL-MDSCs from 22 ENKL patients and MDSCs 
from healthy controls determined by cytofluorimetric analysis and 
are corrected for background staining. e The percentage of cytokine-
producing ENKL-MDSCs from 22 ENKL patients and MDSCs from 
healthy controls, including IL-17, IL-10 and TGFβ. MFI, mean fluo-
rescence intensity; **P < 0.01; *P < 0.05
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T cells, including increased IL-10 and TGFβ secretion, as 
well as induction of Foxp3+ Treg cells, suppresses T cell 
proliferation.

The correlation of MDSC populations and ENKL 
patient prognosis

Nine patients (28.1  %) had died by the time of analysis 
(Supplementary Table 1), and the patients with a higher fre-
quency of circulating HLA-DR−CD33+CD11b+ MDSCs 
and CD14+ Mo-MDSCs, which are the main composi-
tion of MDSC populations, had shorter DFS (P =  0.007 
and 0.011) and OS (P = 0.014 and 0.028) (Fig. 5). How-
ever, no association was found between patient survival 
and the frequency of CD15+ PMN-MDSCs or HLA-
DR−CD33−CD11b+ cells in ENKL patients (P  >  0.05, 
Supplementary Figure  1). In addition to the frequency 
of HLA-DR−CD33+CD11b+ MDSCs and CD14+ 

Mo-MDSCs, the Ann Arbor Stage, LDH level, KPI and IPI 
scores were significant prognostic indicators for survival 
(P  <  0.05). After adjusting for the key clinical prognos-
tic factors and using a multivariate Cox regression analy-
sis (Table  1), the HLA-DR−CD33+CD11b+ MDSCs and 
CD14+ Mo-MDSCs remained significant and independent 
predictors of DFS (P = 0.013, HR 21.633, 95 % CI 1.892–
247.378; P =  0.016, HR 7.873, 95  % CI 1.467–42.238) 
and OS (P = 0.017, HR 19.593, 95 % CI 1.694–226.646; 
P =  0.027, HR 6.867, 95  % CI 1.243–37.948) in ENKL 
patients.

Discussion

It has been suggested that tumor pathogenesis is linked 
to immune imbalance and immune cell dysfunction. In 
this regard, tumors are found to affect myelopoiesis and 

Fig. 3   ENKL-MDSCs suppress allogeneic and autologous T cell 
proliferation. T cell proliferation is examined by CSFE labeling 
in  vitro. The CD33+ cells are sorted from the PBMCs from five 
patients with ENKL, and CD33+ cells from healthy donors are 
included as a control. The CSFE-labeled PBMCs are co-cultured 
with the CD33+ cells at a ratio of 2:1 in OKT3-coated 96-well plates. 

After 3 days, the cells are collected and quantified using flow cytom-
etry. a, c Allogeneic and autologous OKT3-stimulated PBMCs. Rep-
resentative FACS density plots from one of the five experiments. b, 
d The graph of the statistical analyses is presented. The error bars 
represent the SEM. n = 5; *P < 0.05; HD healthy donors
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Fig. 4   Multiplex mechanisms are involved in the ENKL-MDSC-
mediated suppression of T cell proliferation. l-NMMA, NOHA or 
NAC is added to a portion of the samples in the co-culture system 
of CSFE-labeled PBMCs and ENKL-MDSCs at ratio 2:1 in OKT3-
coated 96-well plates. After 3 days, the cells are collected and quan-
tified using flow cytometry. a, b Allogeneic and autologous OKT3-

stimulated PBMCs. c Cytokine secretion (IFNγ, IL-17, IL-10 and 
TGFβ) and Foxp3 expression in CD4 or CD8 T cells in the presence 
of allogeneic ENKL-MDSCs, autologous ENKL-MDSCs or only in 
medium. l-NMMA, NG-methyl-l-arginine; NOHA, N-hydroxy-nor-
l-arginine; NAC, N-acetylcysteine; Student’s t test is used
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induce the expansion of myeloid cells with immunosup-
pressive activity in tumor-bearing hosts, including ani-
mal models and human patients [18–22]. In this study, 
we found an expansion of HLA-DR−CD33+CD11b+ 
and HLA-DR−CD33−CD11b+ cells in the peripheral 
blood of ENKL patients. However, only the density of 
HLA-DR−CD33+CD11b+ MDSCs and not that of HLA-
DR−CD33−CD11b+ cells was a significant and independ-
ent predictor for ENKL patient survival. This result was in 
line with our study on nasopharyngeal carcinoma (NPC) 
(unpublished data) and indicated that CD33 expression 

is an important marker for the MDSC population in can-
cer patients. Although the HLA-DR−CD33−CD11b+ 
cell population was expanded in ENKL patients, no clini-
cal relevance and prognostic value was found in this cell 
population, and this cell population lacked the phenotypic 
features of MDSCs (Supplementary Figure 1). Our obser-
vations indicated that the immune-suppressive cell subset 
of HLA-DR−CD33+CD11b+ MDSCs has a prognostic 
value similar to that of Treg cells and other clinical param-
eters, including TNM stage, IPI score, and LDH level, in 
ENKL [23, 24].

Fig. 5   Correlation of circulating MDSCs or Mo-MDSCs with 
survival in extranodal NK/T cell lymphoma cases. a The over-
all survival (OS) curve of 32 ENKL patients. b, c The DFS and OS 
rates are significantly different between the high and low HLA-
DR−CD33+CD11b+ cell counts (P = 0.007 and 0.014, respectively, 

log-rank test). d, e The DFS and OS rates are significantly different 
between the high and low CD14+ Mo-MDSC counts (P = 0.011 and 
0.028, respectively, log-rank test). The cutoff value is the median of 
the HLA-DR−CD33+CD11b+ cell or CD14+ Mo-MDSC density
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Table 1   Univariate and multivariate Cox regression analysis for DFS and OS of 32 patients with ENKL

DFS disease-free survival, OS overall survival, HR hazard ratio, CI confidence interval, LDH lactate dehydrogenase, IPI International Prognostic 
Index, KPI Korean Prognostic Index, PIT Peripheral T cell lymphoma Prognostic Index

* Significant difference
a  MDSC (high/low) is based on the median value of the MDSC density

Variables Univariate analysis Multivariate analysis

HR (95 % CI) P value HR (95 % CI) P value

In MDSC population

 Disease-free survival

  Age (<40/≥40) 1.259 (0.355–4.470) 0.722

  Gender (female/male) 1.930 (0.544–6.852) 0.309

  Ann Arbor stage (I/II–IV) 3.434 (0.959–12.293) 0.045* 1.748 (0.368–8.295) 0.482

  Subtypes (UNKTL/EUNKTL) 1.306 (0.277–6.164) 0.736

  B symptoms (no/yes) 55.563 (0.323–9550.869) 0.126

  LDH level (normal/elevated) 3.834 (1.091–13.474) 0.036* 0.875 (0.070–10.912) 0.918

  KPI score (0–1/2–4) 3.417 (0.881–13.250) 0.076

  PIT score (0–1/2–4) 3.031 (0.852–10.785) 0.084

  IPI score (0–1/2–5) 3.718 (1.074–12.874) 0.038* 5.327 (0.324–87.663) 0.242

  MDSC frequency (low/high)a 10.216 (1.285–81.244) 0.028* 21.633 (1.892–247.378) 0.013*

 Overall survival

  Age (<40/≥40) 1.370 (0.342–5.491) 0.656

  Gender (female/male) 1.798 (0.449–7.198) 0.407

  Ann Arbor stage (I/II–IV) 3.894 (0.969–15.650) 0.046* 2.090 (0.374–11.678) 0.401

  Subtypes (UNKTL/EUNKTL) 1.515 (0.315–7.320) 0.603

  B symptoms (no/yes) 53.653 (0.233–12,381.115) 0.151

  LDH level (normal/elevated) 5.011 (1.318–19.059) 0.018* 1.155 (0.085–15.622) 0.914

  KPI score (0–1/2–4) 2.723 (0.680–10.908) 0.157

  PIT score (0–1/2–4) 4.063 (1.014–16.290) 0.048* 1.284 (0.095–17.339) 0.851

  IPI score (0–1/2–5) 4.814 (1.289–17.977) 0.019* 6.153 (0.361–104.775) 0.209

  MDSC frequency (low/high) 8.644 (1.073–69.636) 0.043* 19.593 (1.694–226.646) 0.017*

In Mo-MDSC population

 Disease-free survival

  Age (<40/≥40) 1.259 (0.355–4.470) 0.722

  Gender (female/male) 1.930 (0.544–6.852) 0.309

  Ann Arbor stage (I/II–IV) 3.434 (0.959–12.293) 0.045* 1.549 (0.402–5.970) 0.525

  Subtypes (UNKTL/EUNKTL) 1.306 (0.277–6.164) 0.736

  B symptoms (no/yes) 55.563 (0.323–9550.869) 0.126

  LDH level (normal/elevated) 3.834 (1.091–13.474) 0.036* 1.843 (0.211–16.130) 0.581

  KPI score (0–1/2–4) 3.417 (0.881–13.250) 0.076

  PIT score (0–1/2–4) 3.031 (0.852–10.785) 0.084

  IPI score (0–1/2–5) 3.718 (1.074–12.874) 0.038* 3.181 (0.358–28.269) 0.299

  Mo-MDSC frequency (low/high)a 5.956 (1.249–28.411) 0.025* 7.873 (1.467–42.238) 0.016*

 Overall survival

  Age (<40/≥40) 1.370 (0.342–5.491) 0.656

  Gender (female/male) 1.798 (0.449–7.198) 0.407

  Ann Arbor stage (I/II–IV) 3.894 (0.969–15.650) 0.046* 2.275 (0.436–11.878) 0.330

  Subtypes (UNKTL/EUNKTL) 1.515 (0.315–7.320) 0.603

  B symptoms (no/yes) 53.653 (0.233–12,381.115) 0.151

  LDH level (normal/elevated) 5.011 (1.318–19.059) 0.018* 2.684 (0.240–30.257) 0.423

  KPI score (0–1/2–4) 2.723 (0.680–10.908) 0.157

  PIT score (0–1/2–4) 4.063 (1.014–16.290) 0.048* 0.544 (0.039–7.604) 0.651

  IPI score (0–1/2–5) 4.814 (1.289–17.977) 0.019* 4.432 (0.342–57.364) 0.254

  Mo-MDSC frequency (low/high) 4.890 (1.004–23.809) 0.049* 6.867 (1.243–37.948) 0.027*
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Human MDSCs constitute a heterogeneous group. 
The definitive identification of human MDSCs is compli-
cated by a lack of a specific marker and by the absence 
of a human homolog of mouse Gr-1 [12, 25, 26]. Human 
MDSCs include the Mo-MDSC and the PMN-MDSC 
subsets and, according to recent data, the myeloid subset, 
which has suppressive activity. The MDSC phenotypes 
are commonly evaluated using a single multicolor stain-
ing protocol for MDSC1–MDSC6 as follows: MDSC1 
(CD14+IL-4Rα+); MDSC2 (CD15+ IL-4Rα+); MDSC3 
(Lineage− HLA-DR− CD33+); MDSC4 (CD14+HLA-
DRlow/−); MDSC5 (CD11b+CD14−CD15+); and MDSC6 
(CD15+ FSClow SSChigh) [27]. The MDSC phenotype 
varies by differentiation status and function in response 
to the environmental conditions of different cancers, 
and the MDSC phenotype has been defined as the HLA-
DR−CD33+CD11b+ cell population, including PMN- 
and Mo-MDSCs, in many human cancers, including mul-
tiple myeloma [12, 27]. Based on our observations and 
those of others, ENKL-MDSCs were immunophenotyped 
as an HLA-DR−CD33+CD11b+ cell population in this 
study.

The ENKL-MDSC population consisted predominantly 
of CD14+ Mo-MDSCs with a minority of CD15+ PMN-
MDSCs. Compared to healthy controls, however, the pro-
portion of Mo-MDSCs in ENKL-MDSCs was decreased, 
and the proportion of PMN-MDSCs in ENKL-MDSCs was 
increased. The ENKL-MDSC population highly expressed 
immune mediator molecules, including Arg-1 and iNOS, 
and it expressed a low level of CD66b. Furthermore, these 
ENKL-MDSCs secreted moderate levels of suppressive 
cytokines, including IL-17, IL-10 and TGFβ, and they 
did not secrete the IFNγ inflammatory cytokine (data not 
shown). Compared with MDSCs from healthy donors, 
the ENKL-MDSCs expressed significant higher level of 
Arg-1 and iNOS, and they secreted higher levels of IL-17 
(P < 0.05).

MDSCs can suppress T cell activation and prolifera-
tion in tumor-bearing hosts [28]. Our previous study and 
other studies have identified that human MDSCs from 
solid tumors or multiple myeloma can suppress anti-
CD3-induced autologous or allogeneic T cell prolifera-
tion, including CD4+ and CD8+ T cells. There have been 
reports indicating that MDSC suppression requires antigen 
presentation through major histocompatibility complex 
(MHC) class I molecules [25, 29–33]. However, some 
studies have suggested that the MDSC suppression is 
dependent on innate immune sensing and that the MDSC-
mediated T cell inhibition is a result of the activation of 
iNOS, leading to increased production of NO and ROS. 
Thus, the activated antigen-specific CD4+ T cells inter-
act with MDSCs loaded with specific antigens, converting 
these cells to non-specific suppressors in cancers [16, 34]. 

In this study, we observed that ENKL-MDSCs strongly 
suppressed the OKT3-stimulated allogeneic or autolo-
gous CD4 T cell proliferation but that they only slightly 
suppressed the OKT3-stimulated allogeneic and autolo-
gous CD8 T cell proliferation. These results indicated that 
the suppression of T cell proliferation by ENKL-MDSCs 
is both antigen specific and non-antigen specific, espe-
cially for CD4 T cell proliferation. Furthermore, our data 
were in line with the suggestion that MDSCs from tumor-
bearing hosts, as characterized by a high level of iNOS/
NOS2 and Arg-1, are potent inhibitors of Ag-specific T 
cell functions that are able to suppress T cells in an Ag-
independent manner [5, 13, 20, 35–40]. Furthermore, our 
results showed that blockage of iNOS, Arg-1 and ROS 
recovered the MDSC-mediated inhibition of anti-CD3-
induced allogeneic and autologous PBMC proliferation. 
Interestingly, our observations suggested that the inhibi-
tion of T cell proliferation by ENKL-MDSCs also corre-
lated with suppressed cytokine secretion, including IL-10 
and TGFβ, as well as induction of Treg cells, which was in 
line with other reports in solid cancers [41, 42]. Our obser-
vations suggested that multiplex mechanisms that include 
NO production, ROS production, cytokine induction (IL-
10 and TGFβ), and Treg cell induction are involved in 
ENKL-MDSC-mediated suppression.

The percentage or the frequency of MDSC population 
is always correlated with poor survivals of cancer patients 
[43, 44]. Here, our study demonstrated that the HLA-
DR−CD33+CD11b+ MDSC population was an independ-
ent poor prognostic indicator for DFS and OS of ENKL 
patients. Our data further showed that the Mo-MDSC 
population, but not the PMN-MDSC population, is an 
independent predictor for DSF and OS in ENKL patients. 
These observations may explain why the Mo-MDSCs were 
the main component of the MDSC population in ENKL 
patients. Our results are in line with reports by others. 
Some studies have indicated that the CD14+ MDSC popu-
lation is associated with disease progression in cancers [29, 
45, 46].

In addition, the number of circulating IL-17-producing 
MDSCs correlated with patient DFS and OS. IL-17 is an 
inflammatory cytokine typically secreted by CD4 Th17 
and CD8 Tc17 cells [47]. Recent findings have indicated 
that the role of IL-17 in tumor development is controver-
sial, and IL-17 could promote the induction of MDSCs 
at a tumor site and enhance the suppressive function of 
MDSCs on T cell proliferation [48–52]. Our observations 
for the first time indicate that ENKL-MDSCs can secrete 
higher levels of IL-17 compared to healthy donors and that 
the number of IL-17-producing MDSCs is correlated with 
ENKL patient prognosis (Supplementary Figure 2). A func-
tional investigation of IL-17-producing MDSCs should be 
performed in future studies.
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Conclusions

This study analyzed for the first time the phenotypic and 
functional properties as well as the clinical significance 
of the MDSC population in ENKL patients. Our results 
revealed an expansion of circulating MDSCs in ENKL 
patients; these ENKL-MDSCs mainly consist of CD14+ 
Mo-MDSCs and express high levels of iNOS, Arg-1 and 
suppressive cytokines including IL-10, TGFβ and IL-17. 
The ENKL-MDSC-mediated suppression of OKT3-stim-
ulated allogeneic and autologous T cell proliferation is 
dependent on iNOS, Arg-1 and ROS activities and is corre-
lated with cytokine changes and Treg cell induction. More-
over, increases in circulating MDSCs and Mo-MDSCs 
correlate with poor DFS and OS in patients, and they are 
independent predictors in ENKL. Collectively, these find-
ings demonstrate a novel role and mechanism of MDSCs 
in the tumor pathogenesis of ENKL, thus unveiling a new 
avenue for ENKL immunotherapy.

Acknowledgments  This work was supported by grants from 
the General Program (Grant Nos. 81372442 and 81172164, Li J.; 
81272341, Zhang X.S.) of the National Natural Science Foundation 
of China.

Compliance with ethical standards 

Conflict of interest  The authors declare no conflicts of interests.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

	 1.	 Suzuki R (2014) Pathogenesis and treatment of extranodal 
natural killer/T-cell lymphoma. Semin Hematol 51(1):42–51. 
doi:10.1053/j.seminhematol.2013.11.007

	 2.	 Carbone A, Gloghini A, Dotti G (2008) EBV-associated lym-
phoproliferative disorders: classification and treatment. Oncolo-
gist 13(5):577–585. doi:10.1634/theoncologist.2008-0036

	 3.	 Jaccard A, Hermine O (2011) Extranodal natural killer/T-cell 
lymphoma: advances in the management. Curr Opin Oncol 
23(5):429–435. doi:10.1097/CCO.0b013e328349aba6

	 4.	 Monu NR, Frey AB (2012) Myeloid-derived suppressor cells 
and anti-tumor T cells: a complex relationship. Immunol Invest 
41(6–7):595–613. doi:10.3109/08820139.2012.673191

	 5.	 Haile LA, Greten TF, Korangy F (2012) Immune suppression: 
the hallmark of myeloid derived suppressor cells. Immunol 
Invest 41(6–7):581–594. doi:10.3109/08820139.2012.680635

	 6.	 Romano A, Vetro C, Adriani M (2011) Advances in understand-
ing regulatory myeloid cells. Cancer Biol Ther 11(11):923–926

	 7.	 Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang 
AO, Johnsen HE, Svane IM (2010) Increased level of both 
CD4+FOXP3+ regulatory T cells and CD14+HLA-DR(−)/

low myeloid-derived suppressor cells and decreased level of den-
dritic cells in patients with multiple myeloma. Scand J Immunol 
72(6):540–547. doi:10.1111/j.1365-3083.2010.02463.x

	 8.	 Gantt S, Gervassi A, Jaspan H, Horton H (2014) The role of 
myeloid-derived suppressor cells in immune ontogeny. Front 
Immunol 5:387. doi:10.3389/fimmu.2014.00387

	 9.	 Chandra D, Gravekamp C (2013) Myeloid-derived suppres-
sor cells: cellular missiles to target tumors. Oncoimmunology 
2(11):e26967. doi:10.4161/onci.26967

	10.	 Brandau S, Moses K, Lang S (2013) The kinship of neutrophils 
and granulocytic myeloid-derived suppressor cells in cancer: 
cousins, siblings or twins? Semin Cancer Biol 23(3):171–182. 
doi:10.1016/j.semcancer.2013.02.007

	11.	 Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) 
Cross-talk between myeloid-derived suppressor cells (MDSC), 
macrophages, and dendritic cells enhances tumor-induced 
immune suppression. Semin Cancer Biol 22(4):275–281. 
doi:10.1016/j.semcancer.2012.01.011

	12.	 Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function 
and clinical implications of myeloid-derived suppressor cells in 
cancer patients. Cancer Immunol Immunother 61(2):255–263. 
doi:10.1007/s00262-011-1161-9

	13.	 Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis 
E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) 
Tumor-infiltrating myeloid cells induce tumor cell resistance 
to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029. 
doi:10.1172/JCI45862

	14.	 Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: 
more mechanisms for inhibiting antitumor immunity. Can-
cer Immunol Immunother 59(10):1593–1600. doi:10.1007/
s00262-010-0855-8

	15.	 Centuori SM, Trad M, LaCasse CJ, Alizadeh D, Larmonier CB, 
Hanke NT, Kartchner J, Janikashvili N, Bonnotte B, Larmonier 
N, Katsanis E (2012) Myeloid-derived suppressor cells from 
tumor-bearing mice impair TGF-beta-induced differentiation 
of CD4+CD25+FoxP3+Tregs from CD4+CD25−FoxP3− T 
cells. J Leukoc Biol 92(5):987–997. doi:10.1189/jlb.0911465

	16.	 Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen 
KM, Guenova E, Demircioglu D, Kempf WE, Volz T, Rammen-
see HG, Schaller M, Rocken M, Gotz F, Biedermann T (2014) 
Cutaneous innate immune sensing of Toll-like receptor 2-6 
ligands suppresses T cell immunity by inducing myeloid-derived 
suppressor cells. Immunity 41(5):762–775. doi:10.1016/j.
immuni.2014.10.009

	17.	 Hammami I, Chen J, Bronte V, DeCrescenzo G, Jolicoeur M 
(2012) L-glutamine is a key parameter in the immunosuppres-
sion phenomenon. Biochem Biophys Res Commun 425(4):724–
729. doi:10.1016/j.bbrc.2012.07.139

	18.	 Pronier E, Almire C, Mokrani H, Vasanthakumar A, Simon A, 
da Costa Reis Monte Mor B, Masse A, Le Couedic JP, Pendino 
F, Carbonne B, Larghero J, Ravanat JL, Casadevall N, Bernard 
OA, Droin N, Solary E, Godley LA, Vainchenker W, Plo I, Del-
hommeau F (2011) Inhibition of TET2-mediated conversion of 
5-methylcytosine to 5-hydroxymethylcytosine disturbs eryth-
roid and granulomonocytic differentiation of human hemat-
opoietic progenitors. Blood 118(9):2551–2555. doi:10.1182/
blood-2010-12-324707

	19.	 Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Trava-
glini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grig-
nani F, Nervi C (2007) Epigenetic silencing of the myelopoiesis 
regulator microRNA-223 by the AML1/ETO oncoprotein. Can-
cer Cell 12(5):457–466. doi:10.1016/j.ccr.2007.09.020

	20.	 Green KA, Cook WJ, Green WR (2013) Myeloid-derived sup-
pressor cells in murine retrovirus-induced AIDS inhibit T- and 
B-cell responses in vitro that are used to define the immunodefi-
ciency. J Virol 87(4):2058–2071. doi:10.1128/jvi.01547-12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1053/j.seminhematol.2013.11.007
http://dx.doi.org/10.1634/theoncologist.2008-0036
http://dx.doi.org/10.1097/CCO.0b013e328349aba6
http://dx.doi.org/10.3109/08820139.2012.673191
http://dx.doi.org/10.3109/08820139.2012.680635
http://dx.doi.org/10.1111/j.1365-3083.2010.02463.x
http://dx.doi.org/10.3389/fimmu.2014.00387
http://dx.doi.org/10.4161/onci.26967
http://dx.doi.org/10.1016/j.semcancer.2013.02.007
http://dx.doi.org/10.1016/j.semcancer.2012.01.011
http://dx.doi.org/10.1007/s00262-011-1161-9
http://dx.doi.org/10.1172/JCI45862
http://dx.doi.org/10.1007/s00262-010-0855-8
http://dx.doi.org/10.1007/s00262-010-0855-8
http://dx.doi.org/10.1189/jlb.0911465
http://dx.doi.org/10.1016/j.immuni.2014.10.009
http://dx.doi.org/10.1016/j.immuni.2014.10.009
http://dx.doi.org/10.1016/j.bbrc.2012.07.139
http://dx.doi.org/10.1182/blood-2010-12-324707
http://dx.doi.org/10.1182/blood-2010-12-324707
http://dx.doi.org/10.1016/j.ccr.2007.09.020
http://dx.doi.org/10.1128/jvi.01547-12


1598	 Cancer Immunol Immunother (2015) 64:1587–1599

1 3

	21.	 Yi H, Guo C, Yu X, Zuo D, Wang XY (2012) Mouse 
CD11b+Gr-1+ myeloid cells can promote Th17 cell differentia-
tion and experimental autoimmune encephalomyelitis. J Immu-
nol 189(9):4295–4304. doi:10.4049/jimmunol.1200086

	22.	 Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor asso-
ciated regulatory dendritic cells. Semin Cancer Biol 22(4):298–
306. doi:10.1016/j.semcancer.2012.02.010

	23.	 Peng RJ, Huang ZF, Zhang YL, Yuan ZY, Xia Y, Jiang WQ, Zeng 
YX, Li J (2011) Circulating and tumor-infiltrating Foxp3(+) reg-
ulatory T cell subset in Chinese patients with extranodal NK/T 
cell lymphoma. Int J Biol Sci 7(7):1027–1036

	24.	 Kim WY, Jeon YK, Kim TM, Kim JE, Kim YA, Lee SH, Kim 
DW, Heo DS, Kim CW (2009) Increased quantity of tumor-
infiltrating FOXP3-positive regulatory T cells is an independent 
predictor for improved clinical outcome in extranodal NK/T-cell 
lymphoma. Ann Oncol 20(10):1688–1696. doi:10.1093/annonc/
mdp056

	25.	 Solito S, Pinton L, Damuzzo V, Mandruzzato S (2012) High-
lights on molecular mechanisms of MDSC-mediated immune 
suppression: paving the way for new working hypotheses. 
Immunol Invest 41(6–7):722–737. doi:10.3109/08820139.2012.
678023

	26.	 Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandru-
zzato S, Bronte V (2010) Myeloid-derived suppressor cell het-
erogeneity and subset definition. Curr Opin Immunol 22(2):238–
244. doi:10.1016/j.coi.2010.01.021

	27.	 Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, 
Bronte V (2014) Myeloid-derived suppressor cell heterogeneity 
in human cancers. Ann NY Acad Sci 1319:47–65. doi:10.1111/
nyas.12469

	28.	 Beury DW, Parker KH, Nyandjo M, Sinha P, Carter KA, 
Ostrand-Rosenberg S (2014) Cross-talk among myeloid-derived 
suppressor cells, macrophages, and tumor cells impacts the 
inflammatory milieu of solid tumors. J Leukoc Biol 96(6):1109–
1118. doi:10.1189/jlb.3A0414-210R

	29.	 Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist 
A (2014) Inhibition of tumor-derived prostaglandin-e2 blocks 
the induction of myeloid-derived suppressor cells and recovers 
natural killer cell activity. Clin Cancer Res 20(15):4096–4106. 
doi:10.1158/1078-0432.ccr-14-0635

	30.	 Schouppe E, Mommer C, Movahedi K, Laoui D, Morias Y, 
Gysemans C, Luyckx A, De Baetselier P, Van Ginderachter JA 
(2013) Tumor-induced myeloid-derived suppressor cell subsets 
exert either inhibitory or stimulatory effects on distinct CD8+ 
T-cell activation events. Eur J Immunol 43(11):2930–2942. 
doi:10.1002/eji.201343349

	31.	 Mao Y, Poschke I, Wennerberg E, Pico de Coana Y, Egy-
hazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A, 
Kiessling R (2013) Melanoma-educated CD14+ cells acquire 
a myeloid-derived suppressor cell phenotype through COX-
2-dependent mechanisms. Cancer Res 73(13):3877–3887. 
doi:10.1158/0008-5472.CAN-12-4115

	32.	 Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich 
DI (2012) Antigen-specific CD4(+) T cells regulate function of 
myeloid-derived suppressor cells in cancer via retrograde MHC 
class II signaling. Cancer Res 72(4):928–938. doi:10.1158/0008-
5472.can-11-2863

	33.	 Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Magu-
ire C, Laubach J, Raje N, Munshi NC, Richardson PG, 
Anderson KC (2013) Tumor-promoting immune-suppressive 
myeloid-derived suppressor cells in the multiple myeloma 
microenvironment in humans. Blood 121(15):2975–2987. 
doi:10.1182/blood-2012-08-448548

	34.	 Nagaraj S, Gabrilovich DI (2012) Regulation of suppres-
sive function of myeloid-derived suppressor cells by CD4+ 

T cells. Semin Cancer Biol 22(4):282–288. doi:10.1016/j.
semcancer.2012.01.010

	35.	 Solito S, Bronte V, Mandruzzato S (2011) Antigen specificity of 
immune suppression by myeloid-derived suppressor cells. J Leu-
koc Biol 90(1):31–36. doi:10.1189/jlb.0111021

	36.	 Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh 
R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter 
JA (2008) Identification of discrete tumor-induced myeloid-
derived suppressor cell subpopulations with distinct T cell-
suppressive activity. Blood 111(8):4233–4244. doi:10.1182/
blood-2007-07-099226

	37.	 Virtuoso LP, Harden JL, Sotomayor P, Sigurdson WJ, Yoshimura 
F, Egilmez NK, Minev B, Kilinc MO (2012) Characterization 
of iNOS(+) Neutrophil-like ring cell in tumor-bearing mice. J 
Transl Med 10:152. doi:10.1186/1479-5876-10-152

	38.	 Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark 
A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, 
Chen SH, Umansky VY, Sikora AG (2012) Tumor-expressed 
inducible nitric oxide synthase controls induction of functional 
myeloid-derived suppressor cells through modulation of vascu-
lar endothelial growth factor release. J Immunol 188(11):5365–
5376. doi:10.4049/jimmunol.1103553

	39.	 Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL (2011) 
In vivo suppressive function of myeloid-derived suppressor cells 
is limited to the inflammatory site. Eur J Immunol 41(3):749–
759. doi:10.1002/eji.201041069

	40.	 Huang JR, Tsai YC, Chang YJ, Wu JC, Hung JT, Lin KH, Wong 
CH, Yu AL (2014) alpha-Galactosylceramide but not phenyl-gly-
colipids induced NKT cell anergy and IL-33-mediated myeloid-
derived suppressor cell accumulation via upregulation of egr2/3. 
J Immunol 192(4):1972–1981. doi:10.4049/jimmunol.1302623

	41.	 Poschke I, Mao Y, Adamson L, Salazar-Onfray F, Masucci G, 
Kiessling R (2012) Myeloid-derived suppressor cells impair the 
quality of dendritic cell vaccines. Cancer Immunol Immunother 
61(6):827–838. doi:10.1007/s00262-011-1143-y

	42.	 Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, 
Keller G, Chen SH, Pan PY (2010) Development and function of 
myeloid-derived suppressor cells generated from mouse embry-
onic and hematopoietic stem cells. Stem Cells 28(3):620–632. 
doi:10.1002/stem.301

	43.	 Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, 
Szeliga W, Mao Y, Thomas DG, Kotarski J, Tarkowski R, Wicha 
M, Cho K, Giordano T, Liu R, Zou W (2013) Myeloid-derived 
suppressor cells enhance stemness of cancer cells by inducing 
microRNA101 and suppressing the corepressor CtBP2. Immu-
nity 39(3):611–621. doi:10.1016/j.immuni.2013.08.025

	44.	 Cunha LL, Morari EC, Guihen AC, Razolli D, Gerhard R, Non-
ogaki S, Soares FA, Vassallo J, Ward LS (2012) Infiltration of 
a mixture of immune cells may be related to good prognosis in 
patients with differentiated thyroid carcinoma. Clin Endocrinol 
(Oxf) 77(6):918–925. doi:10.1111/j.1365-2265.2012.04482.x

	45.	 Resheq YJ, Li KK, Ward ST, Wilhelm A, Garg A, Curbishley 
SM, Blahova M, Zimmermann HW, Jitschin R, Mougiakakos D, 
Mackensen A, Weston CJ, Adams DH (2015) Contact-dependent 
depletion of hydrogen peroxide by catalase is a novel mecha-
nism of myeloid-derived suppressor cell induction operating 
in human hepatic stellate cells. J Immunol 194(6):2578–2586. 
doi:10.4049/jimmunol.1401046

	46.	 Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski 
P, Kirkwood JM (2012) Differing patterns of circulating regu-
latory T cells and myeloid-derived suppressor cells in meta-
static melanoma patients receiving anti-CTLA4 antibody and 
interferon-alpha or TLR-9 agonist and GM-CSF with pep-
tide vaccination. J Immunother 35(9):702–710. doi:10.1097/
CJI.0b013e318272569b

http://dx.doi.org/10.4049/jimmunol.1200086
http://dx.doi.org/10.1016/j.semcancer.2012.02.010
http://dx.doi.org/10.1093/annonc/mdp056
http://dx.doi.org/10.1093/annonc/mdp056
http://dx.doi.org/10.3109/08820139.2012.678023
http://dx.doi.org/10.3109/08820139.2012.678023
http://dx.doi.org/10.1016/j.coi.2010.01.021
http://dx.doi.org/10.1111/nyas.12469
http://dx.doi.org/10.1111/nyas.12469
http://dx.doi.org/10.1189/jlb.3A0414-210R
http://dx.doi.org/10.1158/1078-0432.ccr-14-0635
http://dx.doi.org/10.1002/eji.201343349
http://dx.doi.org/10.1158/0008-5472.CAN-12-4115
http://dx.doi.org/10.1158/0008-5472.can-11-2863
http://dx.doi.org/10.1158/0008-5472.can-11-2863
http://dx.doi.org/10.1182/blood-2012-08-448548
http://dx.doi.org/10.1016/j.semcancer.2012.01.010
http://dx.doi.org/10.1016/j.semcancer.2012.01.010
http://dx.doi.org/10.1189/jlb.0111021
http://dx.doi.org/10.1182/blood-2007-07-099226
http://dx.doi.org/10.1182/blood-2007-07-099226
http://dx.doi.org/10.1186/1479-5876-10-152
http://dx.doi.org/10.4049/jimmunol.1103553
http://dx.doi.org/10.1002/eji.201041069
http://dx.doi.org/10.4049/jimmunol.1302623
http://dx.doi.org/10.1007/s00262-011-1143-y
http://dx.doi.org/10.1002/stem.301
http://dx.doi.org/10.1016/j.immuni.2013.08.025
http://dx.doi.org/10.1111/j.1365-2265.2012.04482.x
http://dx.doi.org/10.4049/jimmunol.1401046
http://dx.doi.org/10.1097/CJI.0b013e318272569b
http://dx.doi.org/10.1097/CJI.0b013e318272569b


1599Cancer Immunol Immunother (2015) 64:1587–1599	

1 3

	47.	 Martin SF (2012) Allergic contact dermatitis: xenoinflammation 
of the skin. Curr Opin Immunol 24(6):720–729. doi:10.1016/j.
coi.2012.08.003

	48.	 Bruchard M, Ghiringhelli F (2014) Impact of chemotherapies on 
immunosuppression and discovery of new therapeutic targets. 
Bull Cancer 101(6):605–607. doi:10.1684/bdc.2014.1936

	49.	 Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang 
Z, Xia W, Chen Z, Wang K, Zhang T, Xu J, Han Y, Wu X, Wang 
J, Gong W, Zheng S, Qiu F, Yan J, Huang J (2014) gammadel-
taT17 cells promote the accumulation and expansion of myeloid-
derived suppressor cells in human colorectal cancer. Immunity 
40(5):785–800. doi:10.1016/j.immuni.2014.03.013

	50.	 Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, 
Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanel-
lopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) 

Chemotherapy-triggered cathepsin B release in myeloid-derived 
suppressor cells activates the Nlrp3 inflammasome and promotes 
tumor growth. Nat Med 19(1):57–64. doi:10.1038/nm.2999

	51.	 Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, 
Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Bad-
oual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogen-
esis and immunity: a bidirectional link potentially relevant for 
the monitoring of antiangiogenic therapy and the development 
of novel therapeutic combination with immunotherapy. Cancer 
Metastasis Rev 30(1):83–95. doi:10.1007/s10555-011-9281-4

	52.	 Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, 
Aakre M, Wu H, Shyr Y, Moses HL (2011) TGF-beta recep-
tor II loss promotes mammary carcinoma progression by 
Th17 dependent mechanisms. Cancer Discov 1(5):430–441. 
doi:10.1158/2159-8290.CD-11-0100

http://dx.doi.org/10.1016/j.coi.2012.08.003
http://dx.doi.org/10.1016/j.coi.2012.08.003
http://dx.doi.org/10.1684/bdc.2014.1936
http://dx.doi.org/10.1016/j.immuni.2014.03.013
http://dx.doi.org/10.1038/nm.2999
http://dx.doi.org/10.1007/s10555-011-9281-4
http://dx.doi.org/10.1158/2159-8290.CD-11-0100

	Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NKT cell lymphoma: a novel prognostic indicator
	Abstract 
	Introduction
	Materials and methods
	Patients
	Flow cytometry analysis
	T cell suppression assay
	Statistical analyses

	Results
	The expansion and clinical implication of circulating MDSCs in ENKL
	The phenotypic properties and cytokine profile of MDSCs in ENKL
	ENKL-MDSC-mediated suppression of T cell proliferation is dependent on NO and ROS production
	The correlation of MDSC populations and ENKL patient prognosis

	Discussion
	Conclusions
	Acknowledgments 
	References




