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MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost
all plants and animals. They play an important role in key processes, such as proliferation, apoptosis,
and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully
understood. The first step toward unraveling the function of a particular miRNA is the identification
of its direct targets. This step has shown to be quite challenging in animals primarily because of
incomplete complementarities between miRNA and target mRNAs. In recent years, the use of
machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the
need for costly and time-consuming experiments to achieve miRNA targets experimentally.
Among the most important machine-learning algorithms are decision trees, which classify data
based on extracted rules. In the present work, we used a genetic algorithm in combination with
C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated
human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the
selection of best rules.

© 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

MicroRNAs (miRNAs) are known as single-stranded non-coding
RNAs ranging in length from 19 to 25 nucleotides (nt). MicroRNAs
regulate gene expression in almost all plants and animals. Interest-
ingly, a large number of miRNAs are evolutionarily conserved
across species boundaries [1]. In general, miRNA are uncapped,
unpolyadenylated small RNAs, which are transcribed by RNA poly-
merase Il into long primary transcripts (pri-miRNAs) [2,3]. The pri-
mary transcripts are processed to mature miRNA in sequential
steps by the RNase Il endonucleases Drosha in the nucleus [4]
and Dicer in the cytoplasm [5]. The mature miRNA is incorporated
into an RNA molecule, which induces a silencing complex (RISC)
and guides RISC to complementary mRNA targets. Subsequently,

Abbreviations: CCI, correctly classified instances; GA, genetic algorithm;
miRNAs, microRNAs; pri-miRNAs, microRNA primary transcripts; RISC,
RNA-induced silencing complex
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the RISC inhibits translation, elongation or triggers the degradation
of target mRNA [6].

Overall, miRNAs typically repress gene expression [7]. To date,
more than 1500 miRNA genes have been identified in the human
genome. Although a large number of miRNAs have been discov-
ered, only a few targets have been identified. Computational pre-
dictions of miRNA targets suggest that up to 30% of human
protein coding genes may be regulated by miRNAs [8,9]. This
makes miRNAs one of the most abundant classes of regulatory
genes in humans. Numerous reports have demonstrated the
importance of miRNA-mediated regulation in key processes, such
as proliferation, apoptosis, differentiation and development, cellu-
lar identity and pathogen-host interactions [10,11]. However, the
mechanisms by which miRNAs act are still not resolved. The first
step toward clarifying the function of a particular miRNA is the
identification of its direct targets. This is a quite challenging step
in animals primarily due to the incomplete complementarities
between miRNA and target mRNAs.

Several computational programs exist to predict miRNA targets
in animals and plants including PicTar, TargetScan and MiRanda.
These programs are based on evolutionary conservation. Despite
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Table 1
Dataset description.

Table 3
Features calculated over the Seed region of target site.

64 samples (50 attributes)

Feature Description

Classes 48 positive samples

Label 0 1

16 negative samples

of many predictions, a limited number of them have been biologi-
cally validated. The miRNA targets of plant can be identified
straightforward on a genome-wide scale by search for the targets
with a high degree of sequence complementarities. Nevertheless,
this task cannot be addressed the targets of animal miRNAs. The
animal miRNAs pair imperfectly with their targets and act to con-
trol translation. The absence of targets with perfect or near-perfect
sequence complementarities is prevailed in animal miRNAs. Target
prediction in the animal transcriptomes, therefore, needs more
complex algorithms because of the imperfect complementarities
of miRNA:mRNA pairs [12-15].

The prediction of miRNA targets in PicTar [15,16] used in Droso-
phila and other species is based on the complementarities between
miRNA and 3'UTR of mRNA sequence. The false positive rate of this
computational tool is estimated to be 30%. TargetScan [12] is
another tool for prediction of miRNAs by binding to 3’'UTRs of ver-
tebrate transcriptomes. TargetScan is able to predict more than
451 human microRNA targets. TargetScanS [8], a modified version
of TargetScan, omits multiple sites in each target and further filters
the targets and featured thermodynamic stability. Using this mod-
ified procedure, more than 5300 human genes could be predicted
as the possible targets of miRNAs. The false positive of this com-
puting tool rates from 22% to 31%. Several researchers endeavored
to improve TargetScan efficiency by modification of its algorithm
and development of new features [17,18]. For example, Friedman
et al. [17] developed a version of TargetScan that incorporates
new genomes and more completely controls for background con-
servation. MiRanda acts based on the evolutionary relationships
between miRNAs and their targets [13,19,20]. This tool focuses
on the sequence matching of miRNA:mRNA pairs, by estimating
the energy of physical interaction. MiRanda was initially developed
for predicting miRNA targets in Drosophila [19] and was later
extended to find miRNA targets in mammals (human, mouse and
rat) and zebrafish [13]. The miRanda algorithm works by scanning
for miRNA complementary pairs in the 3'UTR of a mRNA. Using this
software, a large number of targets were identified including
protein-coding genes in Homo sapiens with the false positive rate
of about 24%.

In addition to above mentioned approaches, there are many
machine learning algorithms for miRNAs target prediction. Support

Table 2
Features calculated over entire target site.

Features Description

NonWC_number
Unpaired_bases
Paired_pairs

Number of non Watson-Crick pairs (G-U pairs)
Number of unpaired bases
Number of perfect paired base pair

Stems Number of stems (stem is defined as a set of consecutive
pairs which are separated by unpaired base)
Loops Number of loops (loop is defined as a set of unpaired bases

between two stems)

Max_stem The length of maximal stem

Max_loop The length of maximal loop

A Proportion of A nucleotides in the target site
U Proportion of U nucleotides in the target site
C Proportion of C nucleotides in the target site
G Proportion of G nucleotides in the target site
Energy Binding energy of the whole target site

Adopted from Yan et al. [16].

Seed_NonWC_number Number of non Watson-Crick pairs in the Seed
region

Number of unpaired bases in the Seed region
Number of perfect paired base pair in the Seed

region

Seed_unpaired_bases
Seed_paired_pairs

Seed_stems Number of stems (stems are defined as a set of
consecutive pairs which separated by unpaired
base) in the Seed region

Seed_loops Number of loops (loops are defined as unpaired

bases between two stems) in the Seed region
The length of maximal stem in the Seed region
The length of maximal loop in the Seed region

Seed_max_stem
Seed_max_loop

Seed_A Proportion of A nucleotides in the Seed region
Seed_U Proportion of U nucleotides in the Seed region
Seed_C Proportion of C nucleotides in the Seed region
Seed_G Proportion of G nucleotides in the Seed region

Seed_Energy Binding energy of the Seed region

Adopted from Yan et al. [16].

Table 4
Features calculated over the NonSeed region of target site.

Feature

NonSeed_NonWC_number

Description

Number of non Watson-Crick pairs in the
NonSeed region

Number of unpaired bases in the NonSeed
region

Number of perfect paired base pair in the
NonSeed region

Number of stems (stems are defined as a set of
consecutive pairs which separated by unpaired
base) in the NonSeed region

Number of loops (loops are defined as unpaired
bases between two stems) in the NonSeed

NonSeed_unpaired_bases
NonSeed_paired_pairs

NonSeed_stems

NonSeed_loops

region

NonSeed_max_stem The length of maximal stem in the NonSeed
region

NonSeed_max_loop The length of maximal loop in the NonSeed
region

NonSeed_A Proportion of A nucleotides in the NonSeed
region

NonSeed_U Proportion of U nucleotides in the NonSeed
region

NonSeed_C Proportion of C nucleotides in the NonSeed
region

NonSeed_G Proportion of G nucleotides in the NonSeed
region

NonSeed_Energy Binding energy of the NonSeed region

Adopted from Yan et al. [16].

Vector Machine (SVM) [21-25], Naive Bayes [26,27], Artificial Neu-
ral Network (ANN) [28], Pattern Recognition Neural Network
(PRNN) [29], ensemble algorithm [16] and other machine learning
algorithms [30] have been used for prediction of miRNAs targets.

In the present study, we introduce an efficient genetic
algorithm-based decision tree to select the best rules among all
extracted rule sets which leads to improve the accuracy of predic-
tion. The proposed method was also compared with several
machine learning algorithms.

2. Materials and methods
2.1. Dataset description
We used the dataset of Yan et al. [16] obtained from TarBase

database (version 3.0) [31]. TarBase stores a manually curated col-
lection of experimentally verified miRNA targets. The human data
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Table 5
Features calculated from mRNA folded structure.

Feature Description

mRNA_B Number of bases which are in bulge

mRNA_P Number of bases which are in paired pairs

mRNA_M Number of bases which are in multi loop

mRNA_H Number of bases which are in hairpin

mRNA_I Number of bases which are in internal loop

mRNA_E Number of bases which are in end

mRNA_max_single Maximal number of consecutive free bases

mRNA_length Length of the 3'UTR region

mRNA_A Proportion of A nucleotides in the corresponding target
site of mRNA

mRNA_U Proportion of U nucleotides in the corresponding target
site of mRNA

mRNA_C Proportion of C nucleotides in the corresponding target
site of mRNA

mRNA_G Proportion of G nucleotides in the corresponding target
site of mRNA

Adopted from Yan et al. [16].

Table 6
Details of 6 rule sets.

Rule set Number of rules Rule set accuracy on dataset
1 6 72.82

2 9 81.25

3 5 79.12

4 4 77.75

5 6 83.3

6 4 87.9

were used for training and evaluating of the classifier. The data
used by Yan et al. [16] met the following two criteria:

(1) The binding picture of miRNA-target duplex should be
known.

(2) The target site sequence should match its corresponding ref-
erence mRNA sequence provided by NCBI Gene database.
Even one single mismatch is not permitted.

Thus, a total of 48 positive and 16 negative examples were
collected [16]. Details of the dataset are shown in Table 1. We
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designated positive samples by 0 and negative samples by 1. This
dataset was downloaded from http://www.sciencedirect.com/science/
article/pii/S0014579307002761#MMCvFirst, which was presented
as supplementary content of Yan et al. [16]. This dataset contains
64 samples and 50 features about miRNAs. Each sample includes
distinct features, leading each sample to a special class of target.
The features are divided in 4 categories as follow:

1. Features calculated over entire target site.

2. Features calculated over the Seed region of target site.

3. Features calculated over the NonSeed region of target site.
4. Features calculated from mRNA folded structure.

These features and their corresponding descriptions are shown
in Tables 2-5. In addition to above-mentioned features, there are
two other features, which are not belonged to any of 4 categories.
They are Begin_of_TargetSite and End_of_TargetSite.

2.2. The proposed method

We proposed a new method for improving the accuracy of clas-
sification. Decision trees are good tools to explore relationships
among data and are powerful methods for classification in which
classified data are extracted based on the rules. There are several
methods for extracting rules from data. The most important
method seems to be C4.5 decision tree [32]. By inserting a dataset
into a decision tree, a set of “if ... then ... ” classification rules are
extracted. These rules are different in their interestingness and
some of them are redundant and inconsistent and they may have
overlaps with each other. Therefore, the use of superior rules is
essential to improve speed and accuracy in the fetch of knowledge
from data [33]. We used C4.5 as an extractor of rules from the data-
set. In order to obtain reliable and authentic results, we used this
algorithm in the form of 10-fold cross-validation on the dataset
[34]. The dataset was then divided in ten subsets. In each run,
one subset is kept to test and the rest of subsets are used to train
the model.

The output of C4.5 algorithm results in several rule sets. Each
set of these rule sets provides a special and distinct accuracy on
the dataset, and has different number of rules owing to the differ-
ent training data for the use of 10-fold cross validation. We used
C4.5 in 6 trials and extracted 6 rule sets. In doing that, we started

A chromosome with 34 genes

[tl2]3T4sT6f1T2]3 4 sTe[7]s[oftTaf3[a]s5[1a]3[4]1[23]4]5[6[1[2]3]4]

L I\ I\
I I

I

I\ )\ L J
I I I

Fig. 1. General form of a chromosome.

each rule is mapped to a gene.

test data

measure.

1. Data preparation and insertion in C4.5 based on train data set
2. Extraction of N “if...then...” classification rules from train data
3. Selection of chromosomes according to the followings:
- Chromosomes are created based on K (a counter) and N (total number of rules), where

The program is run by virtue of K, 1 <= K <=N.
Fitness function of all chromosomes is calculated based on weighted F-measure on the

4. Selection of the best fitness function and corresponding chromosome based on weighted F-

5. Completion of the algorithm based on the number of iterations or convergence of algorithm

Fig. 2. The proposed method procedure.
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l POSITIVE | NEGATIVE
Cross validation (Train Data)

Ruleset 1 ‘ ‘ Ruleset 2

/X\/\ vl

ACTUAL CLASS

POSITIVE TP FP

NEGATIVE FN TN

Ruleset N Fig. 5. Confusion matrix.

the first gene represents the first rule; the second gene represents

‘ Rulet | Rule2 | """ RUISN ' ’ RuleN ’ TEST DATA the second rule and so on. We used a counter, K, rises from 1 to N
and represent K randomly selected rules. For example, if K= 5, in
all of 34 genes, 5 genes are randomly selected as ‘1’ and the rest

_ considered to be ‘0’. The corresponding’s rule of the genes that
Running GA Cross validation equal to 1 will be applied on the dataset and other rules will be
Population (based on N and K) ignored. Fig. 1 shows general form of a chromosome. This figure
Fitness function - weighted F-measure shows 6 rule sets, which have 6, 9, 5, 4, 6 and 4 rules, respectively.
The structure of the proposed algorithm and the pseudo code
S can be viewed in Figs. 2-4.
Mutation
Elitism = Roulette wheel 2.2.1. Steps
We were able to consider all steps of genetic algorithm. In the
Selection of best chromosome first step, the initial population was randomly generated according
to the size of K, N. For example, if K=10 and N = 34, then in ran-
(o T o R o [0 I o [o [ [0 o [ o P o o [ 0] domly initial generated population, in all chromosomes, 10 genes

have the value 1 and 24 other genes have value 0 and so on. Then,
we calculated the fitness of each chromosome. We used weighted
F-measure for fitness evaluation. In doing so, by applying the rules,
standing for chromosomes, we were able to calculate how many
records could be predicted correctly from the dataset in its corre-
sponding class.

Best chromosome

Fig. 3. The schematic representation.

using numbers from 1 until “W” reached maximal number of rule

sets. Then, we obtained the mean accuracy of all rules and selected
the maximal accuracy as a measure of branch numbers. Conse-
quently, the 6 trials was selected because it generated maximal
accuracy. Details of each rule set and their corresponding accuracy
on the dataset are shown in Table 6.

In the following, we introduce a genetic algorithm, which works

F-measure is a criterion to evaluate the accuracy of classifica-
tion. For calculation of F-measure, we used two other metrics,
which are precision and recall both derived from confusion
matrix. Fig. 5 represents confusion matrix [35,36]. (TP: True Posi-
tive; FP: False Positive; FN: False Negative; TN: True Negative).

The unique strength point of the present method is the selec-

as follows:

Upon extracting rules, N classification rules are extracted in the
form of “if ... then ...” where N is total of rules in rule sets. Here,
the length of chromosome is the number of all rules (N) which is 34
(6+9+5+4+6 +4). Every rule is mapped to a gene, which means

tion of the best measure for comparing the accuracy of classifica-
tion. The main reason to use weighted F-measure for the fitness
function is high difference between instances of each class (imbal-
ance data set). The class 0 has 48 instances whereas the class 1 has
16 instances. We could use another fitness function, which was CCI

1. Input : test data, N classification rules, GA parameters (iteration, K, N, mutation rate, crossover rate)
2. Output: best selected chromosome (best rules)
3. extract N classification rules by C4.5 % train data
4. mapping every rules to each gene of the chromosome

5. For K =1to N do

6 Create new population based on K and N % randomly selection of K rules

7 Fitness evaluation based on the test data % weighted F-Measure as fitness function
8 For J = 1 to iteration

9 Elitism % Roulette wheel

10 Crossover % KN crossover

11 Mutation % bitwise mutation

12 Fitness evaluation % weighted F-Measure (test data)

13 Selection of best chromosome % the maximum fitness

14 end

15 represent best so far chromosome %othe genes which are 1 show dominated rules

16  end

Fig. 4. Pseudo-code of the proposed method.
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MODEL1
a b
48 |0 a=0
16 |0 b=1
CCI=48
Weighted F-measure = 0.643

MODEL2
a b
41 |7 a=0
9 7 b=1
CCI=48
Weighted F-measure = 0.744

Fig. 6. Confusion matrix of two models (same CCI and different W-F-measure).

1. Selection of two parents A, B for crossover which have K genes by 1 value.
2. Create two new offspring which all genes are 0.

3.Flag=1.

4. According to these conditions the offspring genes are marked:

v If the location of the genes which is 1, is the same in two parent
chromosomes, in both offspring that location is marked by 1.
V' If the location is differ:
e If Flag = 1 then in the first offspring that location is marked
by 1 and Flag = 0.
e If Flag = 0O then in the second offspring that location is
marked by 1 and Flag = 1.
5. Two new offspring is created which have K genes by 1 value.

Fig. 7. The proposed “KN crossover”.

(correctly classified instances). Because of high difference between
the instances in each class, it was a wrong choice of evaluation of
the fitness. We show an example to realize the difference between
these two criteria (Fig. 6). There are two confusion matrixes, both
predict 48 instances correctly (CCI = 48). As depicted, both models
have the same CCI, but they have different weighted F-measure.
This example emphasizes the strength point of weighted F-
measure as a criterion to distinct between different classes in a
dataset.

The next step is crossover, which is generation of new children
by combination of two parent chromosomes possessing some par-
ent features. The main requirement of crossover operation is hav-
ing an equal K on both children chromosomes. We named this
operation as “KN crossover”, This operation is done based on the
crossover rate (Pc). Fig. 7 shows the proposed crossover and

Fig. 8 shows two chromosomes and two new children based on
the proposed crossover. In this example, K=10 and N = 30.

Mutation operator happens according to mutation rate (Pp,),
where a gene (or more) with the value 1 transformed into the value
of 0 and vice versa. The genes are randomly selected ensuring a
new chromosome is created. In this stage, the size of K is preserved
as well. After performing above steps, fitness function is calculated
for all chromosomes and top populations will be transferred to the
next generation by means of roulette wheel. In the last stage, a
chromosome with the highest amount of weighted-F-measure is
displayed as output. The algorithm can be completed based on
the number of iterations or convergence of the algorithm. In the
present work, we used the number of iterations. The output of
algorithm represents the best possible combination of rules having
minimum inconsistency and conflicts.

3. Results and discussion

In our method, we divided the dataset in four folds comprising
three folds as training dataset and one fold as the test dataset (48
train samples and 16 test samples). Then, we extracted rules using
C4.5 from the training dataset. The extracted rules were applied to
the test data and the best rules were selected according to genetic
algorithm. This way helps to avoid over fitting and using repetitive
data. Consequently, reliable rules can be extracted in this way.

Following extraction of rule sets from training data, we selected
the best rules by means of genetic algorithm as follows. First, we
explain the parameters of GA in the experiments: roulette wheel
selection, KN crossover, bitwise mutation, and elitism are used
for performing GA. Also, five parameters need to be adjusted: pop-
ulation size, crossover rate, mutation rate, number of generation,

K = 10 and N = 30

Lol e e e e e e [ [ [ [ [ [ [ [E] 2]
parent A

H HEEEE N H H HEUNEEEE HEEE
parent B

H HEEEE H § H B HENESHREEEEENE
NEWchildl

HEEHEEEE HEHEEHEE HENNEEE EHEEE
NEWchild2

Fig. 8. Two chromosomes and KN crossover.

|01|02|03’04|05‘06’07|08|09|10|11‘12‘13|l4’15|16|17‘18|l9|20|21|22‘23‘24|25‘26|27|28‘29|30|31‘32|33‘34|

[oJoJo[iJoJo[aJoJoJoJoJoJoJo[xJoJoJoJo[aJiJoJoJoJoJoJo[iJo[1JoJoJoJo]

\ )\ |\

)\ U Il J

I I

I 1 I I

Fig. 9. The best chromosome.
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45 |3 a=0

1 15 [b=1

Fig. 10. Confusion matrix of the best chromosome.

and stopping criterion. The population size, cross over rate, and
mutation rate are set to 1000, 0.8, and 0.1, respectively. The genetic
algorithm is repeated by 100 generations; the stopping criterion is
set to the maximum number of iterations. These parameters are
chosen after some trial and error executions.

As mentioned previously, 10-fold cross-validation was used in
the previous step (for extracting rules by C4.5 decision tree). In
order to avoid over fitting and to extract reliable rules, we used
the test dataset. This means that 16 unseen samples were selected
and introduced as input to the algorithm. Finally, the best chromo-
some with the highest possible accuracy was extracted which is
shown in Fig. 9. The extracted chromosome indicates that the high-
est accuracy is achieved when 7 rules are applied on the dataset. As
mentioned, the genes (rules) with value equal to 1 have been
selected and applied on the dataset and other rules ignored. As
appeared in Fig. 9, the extracted rules are 4, 6, 7, 18, 20, 24 and
30. It should be noted that this accuracy was obtained several
times during running the proposed method. The confusion matrix
of the selected chromosome is also shown in Fig. 10. These rules
are defined and presented in Table 7. In this table, correctly pre-
dicted instances represents the number of instances which are pre-
dicted correctly by each rule alone. This is also true for incorrectly
predicted instances. Once all rules applied to the test dataset, the
best chromosome was selected in a way to give maximal accuracy,
as appeared in Figs. 8 and 9. These figures show that how 93.9 was
selected in our trial.

As appeared, 60 out of 64 samples (45 in class 0 and 15 in class
1) have been selected correctly and there were only 4 incorrect
cases which leads us to 0.939 accuracy of prediction. Incorrect
cases were the samples 31, 45, 58 and 61 in the presented data
set by Yan et al. [16] which is available on http://www.sciencedi-
rect.com/science/article/pii/S0014579307002761#MMCVFirst.

We applied our algorithm to the Yan’s dataset published in
2007 [16]. However, the microRNA/target sites research was in
infancy stage by that time, as stage and as many microRNA vs. tar-
get sequences were not available. Most recently, many comprehen-
sive databases keeping wider list of validated microRNA/target are
available. Therefore, we also used Ahmadi’s dataset published in

Table 7
Extracted rules by the proposed method.

Table 8
Parameters used for miRNA target prediction (Ahmadi et al. data set).

No Parameter Parameter description

1 Total score Obtained by the sum of pair scores. Match + 5, G:U + 1,

Mismatch — 3, Gap — 1

2 Seed score Obtained by the sum of pair scores in the seed region

3 WC pairs Number of WC pairs in the duplex

4 Wobble pairs  Number of wobble pairs in the duplex

5 Mismatches Number of mismatches in duplex

6 Number- Number of bulges in the duplex
bulges

7 A proportion Proportion of “A” in the duplex

8 C proportion Proportion of “C” in the duplex

9 G proportion Proportion of “G” in the duplex

10 U proportion Proportion of “U” in the duplex

11 AU Proportion of A:U matches in the duplex
proportion

12 Minimum free Calculated using RNAfold for a duplex formed by the
energy miRNA and its target. RNAfold is the part of Vienna
RNA package

Adopted from Ahmadi et al. [29].

Table 9
Details of 7 rule sets.

Rule set Number of rules Rule set accuracy on dataset
1 5 88.1

2 7 85.7

3 6 83.33

4 8 90.5

5 6 84.6

6 5 89.2

7 8 91.5

2012 [29]. This dataset comprises 425 samples including 312 class
1 and 113 class 0 samples. Besides, it has 12 features that appeared
in Table 8. Ahmadi et al. utilized miRNA sequences from miRBase
database [37] and downloaded experimentally verified human
miRNA targets from TarBase [31] and miRecords [38] databases.
Accordingly, the number of branches was 7. The details of the 7
selected rule sets are shown in Table 9 and the selected best rules
and their accuracy are appeared in Table 10. We used 319 out of
425 samples as training samples and the rest 106 samples as test
samples. The confusion matrix shows that 2 among all class 1 sam-
ples and 11 out of 113 class 0 samples have been incorrectly pre-
dicted (Fig. 11). Selected chromosome indicates that 7 out of 41
rules have been selected as superior rules (Fig. 12) which are 3,
7, 8,10, 21, 30 and 41. Therefore, we were able to obtain the same

Number of Rule description Correctly predicted Incorrectly predicted

rule instances instances

04 if (NonSeed_Energy < —2.900) && (mRNA_P < 21) && (max_stem < 9) && 11 0
(Seed_paired_pairs > 7)
prediction = 1

07 if (NonSeed_Energy > —4.400) && (A < 0.413) 33 2
prediction =0

15 if (Seed_Energy > —7.100) 17 1
prediction =0

20 if (NonWC_number > 1) && (Seed_G < 0.286) 21 0
prediction =0

21 if (NonSeed_unpaired_bases > 15) && (Seed_G < 0.286) 7 0
prediction =0

28 if (MRNA_length > 5.954) 3 0
prediction = 1

30 if (NonSeed_C > 0.312) 6 1

prediction =0
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Fig. 12. Selected chromosome with highest weighted F-measure.

Table 10
Extracted rules by the proposed method (Ahmadi et al. dataset).

Rule number Description Correctly classified instances Incorrectly classified instances

3 if (Wobble pairs < 0.217) && (Number-bulges > 0.038) 78 7
prediction = 0;

7 if (Seed score < 0.967) && (Wobble pairs > 0.217) 293 12
prediction = 1;

8 if (Number-bulges < 0.080) && (C proportion < 0.424) 226 20
prediction=1;

10 if (Total score < 0.687) && (Seed score > 0.933) 79 21
prediction = 0;

21 if (WC pairs > 0.333) && (Number-bulges > 0.065) 42 1
prediction = 0;

30 if (Wobble pairs > 0.214) && (G proportion > 0.364) && (U proportion > 0.250) 244 1
&& (Minimum free energy > —12.900)
prediction=1;

141 if (Number-bulges < 0.077) && (C proportion > 0.519) && (I > 0.320) 4 0

prediction = 1;

Table 11
The classification accuracy of proposed method and other algorithms.

Algorithm Accuracy (weighted F-measure)
Yan et al. dataset Ahmadi et al. dataset

BayesNet 0.661 0.918
NaiveBeyes 0.72 0.878
IBK 0.75 0.866
RandomForest 0.775 0.934
RandomTree 0.7 0.915
Bagging 0.73 0.918
AttributeSelection 0.712 0.929
148 0.731 0.915
RotationForest 0.836 0.928
DecisionTable 0.619 0.924
Adaboost 0.813 0.915
K-NN 0.73 0.908
NBTree 0.861 0.877
SMO 0.658 0.918
SGD 0.737 0.907
Proposed method 0.939 0.971

a b

101 | 11 a=0

2 311 [ b=1

Fig. 11. Confusion matrix of best chromosome (Ahmadi et al. dataset).

accuracy in both datasets, which confirms high reliability of our
method.

We compared the proposed method with other methods by
WEKA software (Version 3.7.9) [39-41]. WEKA (http://www.cs.
waikato.ac.nz/ml/weka/) is an open source software, which con-
sists of a collection of state-of-the-art machine learning algorithms
and data preprocessing tools. It has been developed by the Univer-
sity of Waikato in New Zealand. Written in Java, the WEKA system
can be used for a variety of tasks. It provides an implementation of
state-of-the-art machine learning algorithms that can be applied to

our datasets for extracting information about the data or can be
applied to several algorithms in our dataset for comparing their
performance.

In this regard, the datasets introduced to WEKA as input. Subse-
quently, all of the classification algorithms in the software were
applied to the datasets. The results are shown in Table 11. This
table also depicts the accuracy of our proposed method. It is clear
that our proposed method has a much higher accuracy compared
to other available classifiers. The higher accuracy can be related
to the choice of best rules, which best interact each other.

4. Conclusion

Prediction and validation of miRNA target is costly and time
consuming procedure. Machine learning algorithms expedite
miRNA target prediction. In doing so, several rules are extracted,
which explain the relationships between miRNAs and their targets.
Extracted rules, however, have overlaps, incompatibility and inco-
herence with each other, which make confusion and result in inac-
curacy. Our new approach introduced herein increases the
classification accuracy of miRNA target prediction. The introduced
method was applied on two biologically validated datasets and the
results demonstrate the ability and high accuracy of the proposed
method.
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