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ABSTRACT Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent
violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence sug-
gests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin
polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at
nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which
govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular elec-
trostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the
cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is
controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding
that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamen-
tally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial
unfolding of the protein chain may play a significant role.
INTRODUCTION
Protein solutions exhibit at least three distinct classes of
compact aggregates that are often referred to as ‘‘clusters’’.
Small clusters containing 2–10 molecules have been
observed in solutions of lysozyme, insulin, and a mono-
clonal human antibody (1-4) and are likely present in solu-
tions of other proteins under conditions conducive of mild
intermolecular repulsion. These aggregates hold a signifi-
cant fraction of the total soluble protein, and their average
size strongly increases with the protein concentration
(2-4). Importantly, these clusters do not represent permanent
structures (5) and are often viewed as dynamic formations
with intermediate-range order and a lifetime of ~25 ns (2,6).

Clusters of the second class contain ~1000 protein mole-
cules (7-9). They only exist at conditions at which short-
range attraction and long-range repulsion are delicately
balanced: near the isoelectric point of the respective proteins
and in the presence of a finely tuned concentration of a
crowding agent (7), or in the vicinity of charge inversion
induced by bound multivalent cations (8,9). Similarly to
the small clusters, they hold a significant fraction of the total
soluble protein and the cluster sizes increase with the pro-
tein concentration (6,10). Interestingly, while the small clus-
ters strongly increase the solution viscosity (4,11), the
formation of the larger clusters reduces viscosity (7). In
view of their effects on the solution’s rheology, clusters of
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these two classes are scrutinized with the goal of increasing
the fluidity of concentrated solutions of proteins with med-
ical applications, e.g., monoclonal antibodies (low viscosity
is deemed essential for enhanced production, purification,
and delivery of these drugs (4,7)).

Clusters of the third class have been called ‘‘mesoscopic’’
and demonstrated in solutions of numerous proteins at
various pH values ionicities, temperatures, and composi-
tions (12-16). They are distinct in several ways from the
former two. Their diameters vary from ~100 nm for the rela-
tively small lysozyme (14) to several hundred nanometers
for larger proteins (15,17). These clusters are likely liquid
(the liquid state of clusters has been evidenced in solutions
of lysozyme (18), glucose isomerase (18), lumazine syn-
thase (12), three human hemoglobin variants (19), and
several other proteins (17)), and are stable for extended
periods (14). Assuming that the protein concentration in
the clusters is ~500 mg mL�1, similar to that in the dense
protein liquid existing at similar conditions, each of them
contains 105–106 protein molecules (13,15,17,19). This
number is orders-of-magnitude greater than for clusters of
classes I and II. The free energy cost of high protein concen-
tration in the clusters was evaluated for lysozyme and hemo-
globin as ~10 kBT (kB, Boltzmann constant; T, temperature)
by integrating the concentration dependence of the osmotic
compressibility (determined by static light scattering) of
homogeneous solutions with concentrations similar to that
in the clusters (13,20). The Boltzmann relation predicts
that owing to this free energy excess, the mesoscopic
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clusters would hold only 10�5–10�3 of the total soluble pro-
tein. This prediction is borne out by experiment, demon-
strating that the clusters are in approximate equilibrium
with the solution (14,20); an early study had claimed that
the clusters are nonequilibrium formations (13). Experi-
mental determinations of the fraction of the solution volume
occupied by the cluster population yield values in the range
10�7–10�3 (13-15,17,19). The low fraction of protein held
in the mesoscopic clusters is in stark contrast with the clus-
ters of the other two classes. In further contrast, the sizes of
the mesoscopic clusters do not depend on the protein con-
centration in the host solution (14,15,21).

Because of their low population volume, the mesoscopic
clusters do not affect the bulk solution properties. They are
of interest because they may hold the key to understanding
and control of ordered protein aggregation: evidence sug-
gests that in many cases the clusters present essential sites
for the nucleation of ordered solids of both folded proteins,
such as crystals (17,18,22,23) and sickle-cell hemoglobin
polymers (24), and partially misfolded chains that form
amyloid fibrils (25-27). Furthermore, the mesoscopic clus-
ters may relate to the non-membrane-bound compartments
(nucleoli, centrosomes, Cajal bodies, etc.) found to consist
of dense protein/RNA liquid in several organisms (28-31).

The mechanisms of formation of the clusters of classes I
and II appear to be well understood in the context of colloid
clustering theories (32-34). These clusters represent a
balance among short-range attractions (due to depletion
agents (7,10), ion bridges (8), or shape complementarity
(4)), which cause condensation, and long-range screened
Coulomb repulsion, which constrains the size of the
condensate domains (4,7,8,10,35). In this approach, the
larger size of the class II clusters appears as the result of
the nearly neutral charge of the protein molecules at the con-
ditions of their synthesis. Furthermore, for clusters of both
classes I and II, tuning the strength of Coulomb repulsion
through the solution ionicity becomes an essential tool to
control the average cluster size, degree of clustering, and
the associated bulk solution properties (4,7,8,10).

There is significantly less clarity on the nature and mech-
anisms of the mesoscopic clusters. Their small population
volume and stable mesoscopic size challenge our under-
standing of phase ordering. Although the clusters are likely
liquid (12,17,19), their region of existence in the protein
solution phase diagram is away from the conditions of
liquid-liquid coexistence (12,13,19). These clusters are
much larger than what the colloid scenario for clusters of
classes I and II predicts (36). An entirely distinct approach
proposes that the mesoscopic clusters consist of a concen-
trated mixture of transient protein oligomers and monomers
(13). The clusters result from interplay of monomer influx,
oligomer formation, and subsequent oligomer outflow and
decay. Similar reaction-diffusion schemes are derived
within the hydrodynamic description by connecting the
rate of approach to equilibrium and the degree of deviation
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from equilibrium (37). By solving two coupled reaction-
diffusion equations, in which both diffusivities and reaction
constants are explicitly present, the cluster size R2 emerges
as a function of the oligomer diffusivity Doligomer and decay
rate constant koligomer (13):

R2 ¼ �
Doligomer

�
koligomer

�1=2
: (1)

While the oligomer mechanism appears to fit the available

data on themesoscopic clusters better than the colloid theory,
the applicability of eithermechanism to the latter cluster class
has never been systematically tested. In light of the important
role that Coulomb forces play for the clusters of classes I and
II, here we probe their effects on the properties of the meso-
scopic clusters as a test of the colloid clustering scenario.

From a fundamental perspective, Coulomb forces deter-
mine protein three-dimensional structure (38,39), substrate
binding (40,41), enzyme activation (42,43), signal transduc-
tion (44), etc. Importantly, Coulomb forces govern two
major classes of protein aggregation: amyloid fibrillation
(45-47) and crystallization (48,49). Hence, understanding
of their role in cluster formation will highlight the similar-
ities and differences between the formation mechanisms
of the mesoscopic clusters and those two major classes of
protein aggregates. Furthermore, as electrostatic forces
can bind protein oligomers (50), Coulomb interactions
could contribute to the oligomer scenario. Thus, quantifying
the effect of Coulomb forces on the mesoscopic clusters is
crucial for establishing how the clusters form. In turn, these
insights may suggest strategies to control cluster popula-
tions and, in view of the clusters’ role in nucleation, the for-
mation of ordered protein solids. Finally, the mesoscopic
clusters are sometimes misidentified as clusters of class II
(7-9). Thus, establishing the mechanism of formation of
the mesoscopic clusters and the respective role of the
Coulomb forces will allow clear distinctions between these
three cluster classes and elucidate complex clustering
behaviors in protein solutions.
MATERIALS AND METHODS

To quantify the characteristics of the cluster populations, we employ

dynamic light scattering (DLS) and Brownian microscopy (BM) (19,51).

The application of DLS to characterization of the cluster populations is dis-

cussed in detail in Pan et al. (19) and Li et al. (51). BM, illustrated later in

Fig. 1, a–c, is a relatively new method that serves to detect and monitor the

motions of protein-rich clusters as in Fig. 1 b; see the Supporting Material

for details. Fig. 1 d displays an example of a cluster size distribution, deter-

mined by BM. Both DLS and BM rely on light scattered at wavevectors of

order mm�1 and probe length scales in the range 10�3–10 mm. The Rayleigh

law, according to which the scattered intensity scales as the sixth power of

the scatterers’ sizes, makes these two techniques particularly well suited to

study the mesoscopic clusters, which are 50–100� larger than the mono-

mers, but are present at very low concentration.

Small-angle x-ray and neutron scattering (SAXS and SANS, respec-

tively) have been employed to characterize clusters of classes I and II

(1,2,4,6,8,9). These methods record intensity scattered at wavevectors of

order Å�1 and probe length scales of the order of nanometers. They identify



FIGURE 1 Cluster characterization by Brownian

microscopy. (a) Schematic of the BM setup. A green

laser illuminates a thin solution layer. The light

scattered by particles in the solution is collected by

a microscope lens. (b) A representative BM image

shown as a negative. The observed volume is

~120 � 80 � 5 mm3. The clusters are seen as black

spots. (c) A typical cluster trajectory determined

from a sequence of images. The cluster diffusivities

and sizes are evaluated from such trajectories. (d)

Distribution of cluster sizes, determined from trajec-

tories such as the one in (c). Only clusters registered

for longer than 1 s are considered.To see this figure in

color, go online.
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clusters owing to local ordering at the probed length scales within the

clusters and only detect clusters that occupy a significant fraction of solu-

tion volume. This requirement also applies to nuclear spin echo, a method

employed to probe the dynamic properties of small clusters (2,6). Thus,

these three methods would be of limited utility in investigations of the

mesoscopic clusters.
RESULTS AND DISCUSSION

Model system

Our model protein, lysozyme, has an isoelectric point
at pH ¼ 11.35 (52), which is one of the highest documented
for any protein (53). As a result, even at the highest pH¼ 7.8
probed here, protonation of basic and acidic surface amino-
acid groups leads to a significant þ8 net charge on the lyso-
zyme monomer (54); 17 positive and nine negative groups
were identified at this pH in Chan et al. (50). At the lowest
pH ¼ 3.8 tested here, the net charge increases to þ15 (54).
This high net positive charge, illustrated in Fig. 2, amplifies
the significance of the Coulomb forces for aggregation
behaviors of lysozyme, and makes this protein a suitable
model system for this work.
FIGURE 2 The distribution of electrostatic potential at the solvent-

accessible surface of a lysozyme molecule at pH ¼ 7.8; kB, Boltzmann

constant; T, temperature; and e, elementary charge. The Protein Data

Bank (PBD) structure file PDB: 2VB1 was used. The protonation state

of each acid or basic residue was evaluated at the chosen pH with

PROPKA 3.0 (propka.org). The electrostatic map was computed online

with the Adaptive Poisson-Boltzmann Solver and drawn using the software

PyMOL (www.pymol.org). To see this figure in color, go online.
Characterization of the intermolecular Coulomb
forces

We tune the strength of the Coulomb interactions between
lysozyme molecules in two ways: by varying the solution
ionic strength I, which directly controls the Debye
screening (55), and the solution pH, which determines
the protein’s charge. We characterize the intermolecular
interactions in terms of three parameters: the second os-
motic virial coefficient, B2, an azimuthally and spatially
averaged characteristic of the pairwise interaction potential
(56) that is obtained from the slopes of Debye plots, deter-
mined by static light scattering, and presented in Fig. S1 in
the Supporting Material; the diffusivity of protein mono-
mers in dilute solutions, D1

dilute; and the diffusivity in
concentrated solutions, D1

conc. The values D1
dilute and

D1
conc were determined from the faster shoulder in the

autocorrelation function of the intensity of light scattered
Biophysical Journal 109(9) 1959–1968
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off the solution, seen in Fig. S2. The viscosities of all
solvents used in this study were practically independent
of the salt concentration and identity. Hence, D1

dilute and
D1

conc trends in Fig. 3 b indicate the response of the pro-
tein dynamics to variations in intermolecular interactions.
Note that while B2 and D1

dilute account for the interactions
at long intermolecular separations, D1

conc is weighted to-
ward short separations.

The dependences of B2, D1
dilute, and D1

conc on the ionic
strength I are displayed in Fig. 3, a and b. We have
varied I from 3 to 333 mM by increasing the concentration
of HEPES buffer or adding NaCl, KCl, or (NH4)2SO4.
The data sets corresponding to the four salts follow the
same trend, implying that the intermolecular interactions
depend on the solution electrostatics but not on the salt iden-
tity. The decreasing values B2, D1

dilute, and D1
conc at

increasing I are consistent with the expectation that the
Debye screening due to free ions significantly weakens the
Coulomb repulsion. At I > 100 mM, B2 becomes lower
than its value for hard spheres B2(hs), while D1

dilute drops
below the value of lysozyme’s self-diffusivity D0. Both ob-
servations indicate a switch to weak intermolecular attrac-
tion and imply that electrostatic repulsion is largely
screened by the ions in the solution. The diffusivity D1

conc

exhibits a stronger dependence on I than D1
dilute, indicating

that Coulomb repulsion is more sensitive to electrolyte con-
centration at short than at long separations.

The dependences of B2, D1
dilute, and D1

conc on pH, dis-
played in Fig. 4, a and b, reveal that the values of the three
Biophysical Journal 109(9) 1959–1968
parameters decrease as pH increases. This is expected:
because higher pH values are closer to the isoelectric point,
the protein net molecular charge should decrease, leading to
weaker electrostatic repulsion. The decrease in D1

conc in
Fig. 4 b is stronger than in D1

dilute, again implying that
Coulomb repulsion is more sensitive to the protein’s charge
at short than at long separations.

While the effects of pH on B2, D1
dilute, and D1

conc link
directly to the decrease of the molecule’s charge at higher
pH, the correlation between B2 and I displayed in Fig. 3 a
requires additional discussion. We employ a computational
model following Chan et al. (50). We represent every pro-
tein molecule as a sphere with discrete charges as illustrated
in Fig. S3. We consider interactions of pairs of molecules.
Besides the Coulomb forces, we include an adjustable
short-range contribution to the overall interaction that
accounts for van der Waals attraction and steric repulsion;
we assume that neither of the latter forces depends on I.
Because of the molecules’ net positive charge, the majority
of pair configurations are repulsive; still, there are several
attractive configurations, such as the one depicted in
Fig. S3 b, in which a negative Asp87 faces a positive
Arg45 while a neutral His15 faces a positive Arg68.

We sample all possible orientations of a pair of molecules
using appropriate Boltzmann weights (50). The resulting
angular-averaged potential of mean force (PMF) at
I ¼ 13.3 mM and pH ¼ 7.8 is shown in Fig. 3 c. Three char-
acteristics of this PMF relevant to the discussion of aggrega-
tion include the energy at contact, association barrier,
FIGURE 3 Characterization of the intermolec-

ular interactions in solution at pH ¼ 7.8. (a) The

dependence of the second osmotic virial coeffi-

cient B2 on the ionic strength I, varied through

the concentration of HEPES buffer or by adding

KCl, NaCl, or (NH4)2SO4. The values of B2

computed using the model represented in Fig. S3

are also shown. B2(hs) ¼ 4 VM NA Mw
�2 ¼ 2.35 �

10�4 mol m3 kg�2 for hard spheres (VM ¼ 2.0 �
10�26 m3, molecular volume; NA, Avogadro’s

number; Mw ¼ 14.5 kg mol�1, lysozyme molecu-

lar weight) is shown for comparison. (b) The

dependence of monomer diffusivity in dilute

(D1
dilute, measured at 9 mg mL�1, open

symbols) and concentrated (D1
conc, measured at

100mgmL�1, solid symbols) solutions on the ionic

strength, varied by the addition of the same electro-

lytes as in (a). The Stokes-Einstein diffusivity (or

self-diffusivity) D0 ¼ 1.20 � 10�10 m2 s�1 of a

sphere of radius 1.7 nm in a solution with viscosity

1.06 mPa s is shown. Solid and dashed lines are

guides for the eye. (c) Potential of mean force

(PMF) between a pair of molecules as a function

of the distance between their centers of mass calcu-

lated using a numerical model illustrated in Fig. S3

at ionic strength I¼ 13.3mM. (d) The dependences

of the energy at contact, repulsive hump, and

detachment barrier, defined in (c) on the ionic

strength. To see this figure in color, go online.



FIGURE 4 pH effects on the intermolecular interactions. (a) Dependence

of the second osmotic virial coefficient B2 on the solution pH. (b) Depen-

dencies of the monomer diffusivities in dilute and concentrated solutions,

D1
dilute and D1

conc, respectively.
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i.e., repulsive hump, and detachment barrier; their depen-
dences on I are displayed in Fig. 3 d.

The values of B2 computed using these pairwise
potentials are shown in Fig. 3 a. The predictions of the
model agree well with the experimental data at high
ionic strengths, and slightly underestimate the attraction
at I < 120 mM. The latter discrepancy is likely due to
solvent-structuring interactions that are not included in
the model. The good overall agreement of the model
with the B2 data indicates that the Coulomb interactions
adequately account for the observed response of the
pairwise intermolecular interactions to increasing ionic
strength.
The effects of the Coulomb forces on the cluster
population

The responses of the average cluster radius R2 and the
volume fraction occupied by the clusters 42 to changes in
the solution ionic strength I are displayed in Fig. 5, a
and b. R2 is independent of I, within the experimental error,
while 42 decreases approximately fourfold as I increases
from 3 to ~100 mM and saturates at higher I values.
Fig. 5, c and d, reveals that the values of R2 and 42 are rela-
tively steady in time (the slow R2 growth likely reflects an
Ostwald-like ripening of the clusters (14)). The effects of
pH on R2 and 42 are displayed in Fig. 6, a and b, respec-
tively. Similarly to the trend in Fig. 5 a, the cluster radius
R2 depends weakly on solution pH; several repetitions of
this experiment revealed no pH dependence. The cluster
volume fraction 42 increases by ~4� as pH increases
from 3.8 to 7.8.

The apparent increase in the cluster volume fraction 42 at
higher pH is expected: the protein charge should decrease
with pH, thus reducing protein-protein repulsion; this reduc-
tion should be stronger when the molecules are closer,
i.e., at higher concentrations. The decreasing trends of
D1

high and D1
low with increasing pH in Fig. 3 b are consis-

tent with these expectations. However, Figs. 5 and 6 also
reveal at least three anomalous cluster behaviors. First, the
behaviors of R2 and 42 as functions of I are decoupled;
this observation is in contrast with conventional phase
transformations—such as solidification or liquefaction—in
which the domain size of the incipient phase increases
concurrently with its overall volume. Second is the anomaly
of the cluster size, which is independent of the solution’s
ionic strength or pH despite the decreasing intermolecular
repulsion at higher values of the two parameters, evidenced
by Figs. 3, a and b, and 4, a and b. Third, there is the
puzzling behavior is the decreasing cluster volume fraction
42 at high ionic strength I in Fig. 5 b. This contradicts
the expectation that weaker repulsion in concentrated solu-
tions, revealed by the D1

high trend in Fig. 3 b, should lead
to cluster stabilization and, hence, to a higher cluster
volume fraction, similarly to the observations at higher pH
in Fig. 6 b. Note that the three anomalous behaviors contra-
dict general rules of phase transformations and solution
thermodynamics irrespective of a specific model of cluster
formation.

The decoupled behaviors of R2 and 42 at increasing I
indicate that R2 and 42 are controlled by distinct mecha-
nisms. This observation agrees with the oligomer mecha-
nism of cluster formation by which R2 is determined by
the kinetics of decay of the oligomers accumulated in the
clusters (13), while 42 reflects the high free energy cost of
bringing together positively charged molecules (13,14).
The second feature, the lack of correlation between the clus-
ter size R2 and the solution ionic strength and pH, indicates
that cluster formation is not governed by Coulomb interac-
tions. Thus, neither the colloid scenario of Coulomb-regu-
lated cluster formation (32,36), discussed above, nor a
mechanism relying on electrostatically bound oligomer,
could underlie the mesoscopic clusters in lysozyme solu-
tions. The third peculiarity of the above data is discussed
in the next subsection.

Another example of Coulomb-independent behavior is
presented by proteins of the g-crystalline family (16). These
crystallines form clusters that are clearly mesoscopic: each
cluster contains a large number of monomers; the total clus-
ter population occupies low volume. Similarly to the lyso-
zyme clusters, the clusters of g-crystalline retain a size of
~100 nm as pH is varied from 6.8 to 10 and the NaCl con-
centration, from 150 to 350 mM (16). (The cluster disaggre-
gation at pH and NaCl concentration values outside these
ranges (16) may be due to a protein-specific mechanism
Biophysical Journal 109(9) 1959–1968



FIGURE 5 Populations of protein-rich clusters

in 100 mg mL�1 lysozyme solutions in HEPES

buffer at pH ¼ 7.8 characterized by DLS and

BM. (a) Dependence of the average cluster radius

R2 on ionic strength. Solution ionic strength was

varied through the concentration of four electro-

lytes, as indicated in the graph. (b) Cluster volume

fraction 42, determined from the same DLS auto-

correlation functions as R2, as a function of the

solution ionic strength. (c and d) The evolutions

of cluster size R2 in (c) and volume fraction 42 in

(d), determined by DLS and BM. The results of

the two methods are similar, within their errors;

the inherent error of the 42 determination may be

up to 50% (16).
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that is beyond the assumptions of the clustering models
discussed here.)

With many other studied proteins, clusters are observed
at ionic strengths higher than 100 mM (12-14,16,17,24),
at which the Debye length is shorter than the molecular
size and, hence, the lifetimes of electrostatically bound
oligomers would be insignificant. Hence, Coulomb-regu-
lated colloid clustering and Coulomb-mediated oligomeri-
zation can be dismissed as formation mechanisms of the
mesoscopic clusters in solutions of these proteins.
FIGURE 6 pH effects on the cluster characteristics, the cluster radius R2

in (a), and the cluster volume fraction 42 in (b).
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Water-structuring interactions and partial protein
unfolding

The anomalous decrease of 42 at high I in Fig. 5 b is akin to
salting-in, i.e., the increase of solubility of proteins and col-
loids at increasing ionicity. This decrease contradicts the
trend of decreasing molecular repulsion at high ionic
strength, revealed by Fig. 3, a and b, for protein concentra-
tions up to 100 mg mL�1, and suggests that forces other than
Coulomb are at play. These hypothetical forces must then
destabilize the dense liquid held in the clusters, in which
the protein concentration is ~500 mg mL�1 (13) and the
intermolecular separation is shorter than 1 nm (13). Possible
candidates are water-structuring forces that operate at simi-
larly short separations (55). They are classified either as
hydration, due to water structuring at polar surface patches
and augmented by the presence of ions and other kosmo-
tropes (55,57), or hydrophobic, due to water layering along
nonpolar surface patches (55). Thus, increasing concentra-
tions of kosmotropic ions could induce the buildup of hydra-
tion layers and hydration repulsion at short intermolecular
separations that destabilize the cluster phase.

To test the role of hydration and hydrophobic forces in
cluster formation, we added urea and ethanol to the probed
solutions. Urea is known to destabilize the native structure
of most proteins; addition of 8 M urea in aqueous solutions
causes full protein unfolding (58-60). The contemporary
consensus appears to be that urea is a universal denaturant
because it interacts favorably with the peptide backbone
(61). The amino-acid side chains assist the action of urea
by additional preferential interaction with it and by diluting
the effective concentration of the backbone amides (62-64).
The interactions of urea with the backbone and side chains



Coulomb-Independent Protein Cluster Sizes 1965
involve intercalation and destruction of the water structures
(chaotropic action) (65). Ethanol forms homogeneous solu-
tions with water at concentrations <2.8 M (66). Similarly
to urea, ethanol is a chaotropic agent; however, it accumu-
lates in the vicinity of nonpolar amino-acid residues and
disrupts adjacent water structures. It strips off as many as
16 bound water molecules from the lysozyme surface (67)
and may form hydrogen bonds to its hydroxyl groups (68).
In important contrast to urea, ethanol does not interact
with the peptide backbone and, hence, it induces protein
unfolding only at high concentrations: a recent study demon-
strated that ethanol does not affect the conformations of lyso-
zyme a-helixes and b-sheets at concentrations as high as
2.5 M (68).

We have characterized the effects of urea and ethanol at
concentrations up to ~2.5 M on the protein interactions in
terms of the second osmotic virial coefficient B2 (determined
from plots in Fig. S6) and the product ofmonomer diffusivity
and buffer viscosityD1

conchbuffer (in contrast to the salts used
to modify protein interactions in Figs. 3, 4, and 5, urea and
ethanol significantly affect the buffer viscosity at the applied
concentrations). The results in Fig. 7, a and b, reveal that the
addition of urea or ethanol perceptibly enhances intermolec-
ular repulsion, likely by weakening the hydrophobic attrac-
tion. The ethanol effects are consistent with disruption of
the water structures, likely around the nonpolar surface
amino-acid residues. In addition, urea likely acts also on
the peptide backbone exposed to the solvent (backbone seg-
ments accessible to urea in the native confirmation are illus-
trated in the inset in Fig. 7 a; the solvent exposure of
additional backbone segments due to partial protein unfold-
ing is supported by evidence below). Thus, stronger urea-
induced repulsion is consistent with weakening of the water
structures around these backbone segments.

While the ethanol-induced increase in B2 (~15%) is com-
parable to that of D1

conchbuffer, the increase in B2 with
adding urea (~40%) is stronger than that of D1

conchbuffer
(~20%). As discussed above, D1
conchbuffer is weighted to-

ward short intermolecular separations. Hence, this discrep-
ancy indicates that urea boosts repulsion more efficiently
at long distances. Because the mismatch is not observed
with ethanol, we assign it to urea-enhanced partial protein
unfolding. It exposes to the solvent nonpolar side chains
that in the native structure are tucked inside. The resulting
hydrophobic attraction acts at the short range, at which it
mitigates the repulsion caused by urea coating the protein
backbone.

The data in Fig. 7 c demonstrate that the addition of urea
reduces the cluster radius R2 approximately threefold, while
increasing the cluster population volume fraction 42 by an
order of magnitude. The addition of ethanol does not affect
R2 and weakly lowers 42 (Fig. 7 d). The decoupled behaviors
of R2 and 42 in the presence of urea exclude protein denatur-
ation and aggregation induced by this additive as the cause of
the observed trends.We carried out two additional tests of the
possibility of denaturation. First, we determined R2 and 42 in
a protein solution containing 1.25 M urea, prepared by
mixing a solution with 2.5 M urea with an equal volume of
a protein solution of the same concentration and no urea.
The measured R2 and 42 (Fig. S7) were practically identical
to those in directly prepared 1.25Murea, indicating that clus-
ter formation and its constituent processes are reversible.
Second, wemonitored the evolution of the cluster population
over 24 h. We found (Fig. S8) that R2 and 42 did not change
from the values established within 30 min after the addition
of urea (Fig. 7 c). In combination with the conclusion of clus-
ter reversibility, the latter observation implies that the cluster
population is in equilibrium with the solution, similar to its
behavior in the absence of urea (13).

The R2 and 42 responses to urea are anomalous
from a classical viewpoint: a significant increase in the clus-
ter-phase volume is accompanied by a decrease in its
characteristic dimension. On the other hand, they are
compatible with the oligomer mechanism of cluster
FIGURE 7 The role of hydrophobic interactions

and partial unfolding in cluster formation. All data

are for 100 mg mL�1 lysozyme solutions in 20 mM

HEPES at pH ¼ 7.8, in which the ionic strength

I ¼ 13.3 mM. (a and b) Variation of the second

virial coefficient B2 (left ordinate, solid symbols)

and of the product of monomer diffusion coeffi-

cient D1
conc in 100 mg mL�1 solutions and the

buffer viscosity hbuffer (right ordinate, open sym-

bols) as functions of the concentration of urea

and (a) and ethanol in (b). (Inset in a) The native

structure of lysozyme and its solvent-accessible

surface. (Arrows) Locations at which the peptide

backbone is exposed to the solvent. (c and d) The

response of the cluster radius R2 (left ordinate,

solid symbols) and volume fraction 42 (right ordi-

nate, open symbols) to increasing concentrations

of urea and (c) and ethanol in (d). To see this figure

in color, go online.
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formation, according to which R2 and 42 are independently
regulated. Furthermore, comparing the variations of R2 due
to the addition of urea and ethanol indicates that oligomers
bound by backbone-to-backbone contacts are crucial for
cluster formation. The accumulation of urea around the
peptide backbone would accelerate the decay of such oligo-
mers and increase the corresponding rate constant koligomer

and lead, according to Eq. 1, to smaller clusters. Because
ethanol does not interact with the backbone, it does not
affect R2. The responses of 42 to urea and ethanol highlight
the role of partial protein unfolding in oligomer stabilization
and cluster formation. Enhanced protein unfolding by
urea (tentatively indicated by the discrepancy in the B2

and D1
conchbuffer trends in Fig. 7 a) exposes hidden nonpolar

amino-acid residues. Because the attractive hydro-
phobic interactions between the residues are short-ranged,
this stabilizes the cluster phase more than in the dilute solu-
tion and hence increases 42.

Looking back at the effects of electrolytes, we note that
one of the used salts, (NH4)2SO4, combines electrostatic
with kosmotropic and chaotropic actions due to its two
ions, i.e., SO4

2- stabilizes the water shells around proteins
and the native protein conformation, while NH4

þ destabi-
lizes water structures and tends to denature proteins (69).
It appears that at the highest concentration used here,
100 mM (higher concentrations lead to fast crystallization),
the chaotropic action is not exhibited; the protein conforma-
tion is stable; and the action of (NH4)2SO4 is fully accounted
for by its contribution to the ionic strength I.

The responses of R2 and 42 to the presence of urea and
ethanol in Fig. 7 are not dramatic, implying that the cluster
formation mechanism has not been modified by these two
additives. These responses identify partial protein unfolding
as the likely cause behind the existence of mesoscopic
clusters in lysozyme solutions with widely ranging compo-
sitions. Note that only a small fraction, 10�6–10�4, of the
total soluble protein partially unfolds and is held in the
clusters. The unfolding exposes to the solvent the peptide
backbone and nonpolar amino-acid residues, hidden in the
native conformation, enables hydrophobic bonds between
backbone segments, and stabilizes the cluster phase through
hydrophobic attraction between the exposed nonpolar
amino-acid residues. We have demonstrated that the constit-
uent steps in this scenario are reversible, which indicates
that it is fully compatible with the oligomer mechanism of
cluster formation (13), wherein backbone-to-backbone
contacts support transient oligomers.
CONCLUSIONS

These results demonstrate that the Coulomb forces that
govern aggregation in biological systems and many other
phenomena in nature do not affect the size of the meso-
scopic clusters in lysozyme solutions. In addition to their
large size, high amount of protein contained in each cluster,
Biophysical Journal 109(9) 1959–1968
small fraction of total protein held in the clusters, and con-
centration independence of the size, the insensitivity of the
cluster size to Coulomb forces distinguishes the mesoscopic
clusters sharply from the two other classes of clusters
observed in protein solutions. The mesoscopic clusters ex-
hibits other behaviors that are in contrast with established
laws of phase equilibrium: decoupled responses of cluster
phase volume and cluster size to variations of the ionic
strength, pH, and additive concentration; and decreased clus-
ter phase volume upon stronger intermolecular attraction.
These responses demonstrate that the mesoscopic clusters
represent, to our knowledge, a novel class of protein conden-
sate that forms by a fundamentally different mechanism from
protein crystals and amyloid fibrils, and from the two other
known types of protein clusters. Our observations indicate
that the clusters form by a unique mechanism, i.e., by the
accumulation of transient protein oligomers that are linked
by hydrophobic bonds between the peptide backbones
exposed to the solvent after partial protein unfolding.Because
the mesoscopic clusters have been suggested in many cases
as crucial precursors to the formation of the two main classes
of protein aggregates, crystals and amyloid fibrils, our
findings indicate that fine-tuning of the intra- and intermolec-
ular water-structuring interactions may be an essential tool
to control the cluster population and in this way enhance
or suppress protein crystallization and fibrillization.
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