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Abstract

Estimating causal effects is a frequent goal of epidemiologic studies. Traditionally, there have 

been three established systematic threats to consistent estimation of causal effects. These three 

threats are bias due to confounders, selection, and measurement error. Confounding, selection, and 

measurement bias have typically been characterized as distinct types of biases. However, each of 

these biases can also be characterized as missing data problems that can be addressed with missing 

data solutions. Here we describe how the aforementioned systematic threats arise from missing 

data as well as review methods and their related assumptions for reducing each bias type. We also 

link the assumptions made by the reviewed methods to the missing completely at random 

(MCAR) and missing at random (MAR) assumptions made in the missing data framework that 

allow for valid inferences to be made based on the observed, incomplete data.

Keywords

Missing data; Confounding bias; Selection bias; Measurement bias

Corresponding author: Chanelle J. Howe, Department of Epidemiology, Center for Population Health and Clinical Epidemiology, 
Brown University School of Public Health, 121 South Main Street, Providence, RI 02912 (Phone: 401-863-7406, Fax: 401-863-3713, 
chanelle_howe@brown.edu). 

Conflict of Interest
CJ Howe, LE Cain, and JW Hogan all declare no conflicts of interest.

Human and Animal Rights and Informed Consent
All studies by CJ Howe involving animal and/or human subjects were performed after approval by the appropriate institutional review 
boards. When required, written informed consent was obtained from all participants.

HHS Public Access
Author manuscript
Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:
Curr Epidemiol Rep. 2015 September 1; 2(3): 162–171. doi:10.1007/s40471-015-0050-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

A common objective in epidemiologic studies is to estimate the causal effect of an exposure 

on the occurrence of a specific outcome. Historically, there have been three recognized 

systematic threats to consistent estimation of causal effects. These three threats are bias due 

to confounders, selection, and measurement error [1]. Confounding, selection, and 

measurement bias have typically been characterized as distinct types of biases. However, 

these biases can also be characterized as missing data problems that arise when incomplete 

information must be used to estimate quantities of interest (e.g., causal effect) that would be 

obtained from the complete information if it were available [2, 3].

In studies conducted to estimate causal effects, information is incomplete on the individual-

level potential outcomes (also known as the counterfactual outcomes). The individual-level 

potential outcome is the outcome that would have been observed for a given individual 

under an intervention to set the exposure for that individual to a specific level [1, 4]. At best 

researchers can observe the potential outcome for a given individual under their observed 

exposure while the individual-level potential outcome for their unobserved exposure level(s) 

is missing. Missing individual-level potential outcomes often shift the focus to estimating 

aggregate rather than individual causal effects [5]. Estimating aggregate causal effects 

typically requires calculating the mean or another relevant function (e.g., median) of the 

individual-level potential outcome distribution.

In epidemiologic studies confounding bias typically occurs when incomplete observed data 

are used to estimate relevant functions of the individual-level potential outcomes and in turn 

aggregate causal effects. Selection and measurement error can lead to additional missing 

individual-level potential outcomes, which can hinder accurate estimation of relevant 

functions and in turn result in bias. As with any missing data problem, however, these biases 

can be addressed by accurately completing the missing individual-level potential outcomes 

before estimating the relevant function [5–15]. Alternatively, the relevant function can often 

be directly estimated from the observed data without completing the missing individual-

level potential outcomes [4]. Accurate estimation of the relevant function will result in the 

aggregate associational effects that are commonly calculated using the observed data 

equaling the aggregate causal effects of interest that would have been obtained if the 

individual-level potential outcomes were known/available [4].

Therefore, the objective of this paper is to first describe how confounding, selection, and 

measurement bias arise from missing data on individual-level potential outcomes. Second, 

we will review methods that reduce bias stemming from missing individual-level potential 

outcomes while emphasizing techniques that directly estimate the relevant function of the 

potential outcome distribution without completing the missing individual-level potential 

outcomes given their greater use in the epidemiologic literature. Third, we will detail the 

assumptions that must be met for each of the described methods to reduce the relevant bias 

type. To further characterize the aforementioned biases as missing data problems, we will 

link the assumptions made by the reviewed methods to the missing completely at random 

(MCAR) and missing at random (MAR) assumptions that are made in the missing data 

framework and allow for valid inferences to be made based on the observed, incomplete data 
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[2]. A summary of our review is included in Table 1. To aid in our description, we first 

define general notation and provide basic definitions that we will build upon in subsequent 

sections of the paper.

General notation and basic definitions

Let capital letters denote random variables while lower case letters and numbers represent 

particular values of the random variables. Now suppose in a hypothetical cohort study, A(the 

exposure) represents a binary indicator of aspirin use at the start of the study (1: yes; 0: no) 

and Y(the outcome) is an individual-level indicator of dying subsequent to the start of the 

study (1: yes; 0: no). Further, Ya denotes the individual-level potential outcome for Y under 

an intervention to set aspirin use to level a and L is a binary indicator of male gender (1: yes; 

0: no).

Next we specify the consistency condition for all subjects that YA = Y. This condition states 

that the observed individual-level outcome among study participants is the individual-level 

potential outcome that would have been observed under an intervention to set the exposure 

to the observed exposure level if the exposure was measured without error [16–19]. For 

instance, study participants who used aspirin at study entry and died during follow up would 

have still died if they were assigned to use aspirin at the start of the study. The consistency 

condition is required to make appropriate causal inference based on the observed data.

Typically in epidemiologic studies the aggregate causal effect of interest is the average 

causal effect [4]. The causal risk ratio (RR) will be the average causal effect that will be the 

focus of this paper, acknowledging that the issues discussed in subsequent sections often 

equally apply to other measures (e.g., causal rate ratio). In the context of the hypothetical 

cohort study, the causal RR is a function of the mean of Ya, E[Ya], and compares aspirin 

users to non-aspirin users via the following quantity: E[Ya=1]/ E[Ya=0] = P(Ya=1 = 1)/P(Ya=0 

= 1). The numerator of the causal RR is the risk of subsequent death had all individuals in 

the study population used aspirin at study entry, while the denominator is the risk of 

subsequent death had no individuals in the study population used aspirin at study entry.

When there is a non-zero probability of observing each exposure level (i.e., positivity) and 

the exposure groups are equivalent/exchangeable on all factors related to Y (i.e., individual-

level potential outcomes are MCAR [2]), the mean of Y conditional on A, E[Y | A], can 

validly be used to calculate the aforementioned E[Ya] and in turn accurately estimate the 

causal RR via the associational RR, E[Y | A = 1]/E[Y | A = 0] = P(Y = 1 | A = 1)/P(Y = 1 | A = 

0). The associational RR is obtained by comparing disjoint subsets of the study population 

with different exposure levels. Specifically, the risk of death among individuals who used 

aspirin at study entry is compared to the risk of death among individuals who did not use 

aspirin at study entry. Bias occurs when the average associational and causal effects are 

unequal due to a lack of positivity or lack of exchangeability [4]. The lack of positivity or 

exchangeability in this context has also been referred to as non-ignorability of the treatment 

assignment mechanism [4, 20].
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Bias due to missing individual-level potential outcome data

If all potential outcomes were known at the individual level then the presence of factors that 

have been traditionally referred to as confounders, the presence of selection, or the presence 

of measurement error would pose no threat to identifying causal effects (i.e., no bias). 

Therefore, the following sections describe how confounding, selection, and measurement 

bias arise from missing individual-level potential outcomes. Table 2 depicts which 

individual-level potential outcomes are missing for each bias type. Further, the Figure 

represents each bias type as a causal diagram. Unless otherwise specified, when discussing 

one type of bias we assume the absence of other bias types.

Confounding bias

Confounding bias occurs because potential outcomes for a given person under study are not 

seen for unobserved exposure levels. For instance, as shown in Table 2, whether an aspirin 

user (A = 1) who died (Y = 1) would have lived had they not used aspirin is not observed 

(Ya=0 = ?). Similarly, whether a non-aspirin user (A = 0) who lived (Y = 0) would have died 

had they used aspirin is not observed (Ya=1 = ?). Missing individual-level potential outcomes 

often shifts the focus from estimating individual to aggregate causal effects (e.g., causal RR) 

in epidemiologic studies given the greater ease in accurately estimating aggregate rather 

than individual causal effects [4, 5].

Validly estimating the causal RR requires accurately estimating E[Ya]. When positivity and 

exchangeability hold, the mean of the observed outcomes conditional on A, E[Y | A], can be 

used to accurately estimate E[Ya]. For instance, the mean outcome among persons observed 

to take aspirin, E[Y | A = 1], can be used to estimate the mean potential outcome of the 

persons observed to not take aspirin had they taken aspirin, E[Ya=1 | A = 0], and in turn the 

mean potential outcome had all participants in our hypothetical cohort study taken aspirin, 

E[Ya=1]. Unfortunately, estimation of E[Ya] is not always accurate due to lack of positivity 

or exchangeability.

Exchangeability violations can occur when factors such as L in Diagram (I) of the Figure 

that are associated with the exposure and outcome exist (e.g., males are more likely than 

females to take aspirin and die). Such factors have traditionally been referred to as 

confounders [1, 4]. The existence of potential confounders may result in E[Y | A] ≠ E[Ya=A] 

since any observed outcome may be due to the effect of the exposure, the related 

confounder, or both. The lack of exchangeability on confounders across exposure levels can 

result in bias; meaning the average associational and causal effect measures are unequal 

(e.g., P(Y = 1 | A = 1)/P(Y = 1 | A = 0) ≠ P(Ya=1 = 1)/P(Ya=0 = 1)). This bias is depicted in 

Diagram (I) of the Figure by the open non-causal path from A to Y via L.

Selection bias

Now consider that the population from the hypothetical cohort study was selected from a 

source population that represents a target population that we would like to make inferences 

about. Therefore, let S be a binary indicator of selection into the study population from the 

source population (1:selected; 0:not selected) and Ya,s denote the potential outcome for Y 
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under an intervention to set aspirin use to a and selection to s. The causal RR with selection 

will now be represented as P(Ya=1,s=1 = 1)/P(Ya=0,s=1 = 1). This causal RR compares the 

same individuals had everyone in the source population been selected and aspirin use been 

assigned versus not assigned. In contrast, the associational RR with selection, P(Y = 1 | A = 

1, S = 1)/P(Y = 1 | A = 0, S = 1), compares disjoint subsets of the observed study population 

by their observed aspirin use.

Although not captured by the definition of S in the hypothetical cohort study, selection could 

also occur when going from the study population to the analytic sample and from the 

analytic sample at study entry to a given risk set subsequent to study entry [15]. As shown in 

Table 2, selection can result in missing exposure, observed outcome, and individual-level 

potential outcome values for persons who were not selected into a given study population, 

analytic sample, or risk set (A = ?, Y = ?, Ya=1 = ?, Ya=0 = ?) [3].

When estimating the causal RR, an analysis that disregards the aforementioned selection 

results in the mean of the observed outcomes among the selected persons (e.g., P(Y = 1 | A, S 

= 1)) being used to estimate the mean potential outcome of the not selected persons (e.g., 

P(Ya = 1 | A, S = 0)). This estimation is inaccurate when the probability of being selected is 

not greater than zero (i.e., non-positivity) or the mean potential outcomes among persons 

who were selected (e.g., P(Ya = 1 | A, S = 1)) are not exchangeable with the missing mean 

potential outcomes among those who were not selected (e.g., P(Ya = 1 | A, S = 0)).Here, 

exchangeability is defined as equivalence between those who were and were not selected on 

factors related to the outcome and in turn their potential outcomes conditional on the 

exposure [21]. Exchangeability occurs when the potential outcomes among those who were 

not selected are MCAR or MAR conditional on the exposure [2]. Positivity plus 

exchangeability is equivalent to ignorability of the selection mechanism [4, 20].

The lack of exchangeability between those who were and were not selected can occur if 

factors such as L in Diagram (II) of the Figure that are associated with selection and the 

outcome exist such that those who were selected (e.g., mostly men) are more or less likely to 

develop the outcome (e.g., die) than those who were not selected. The lack of 

exchangeability between those who were and were not selected may result in a lack of 

exchangeability across different exposure levels and in turn bias (e.g., P(Y = 1 | A = 1, S = 

1)/P(Y = 1 | A = 0, S = 1) ≠ P(Ya=1,s=1 = 1)/P(Ya=0, s=1 = 1)) [21, 22]. This bias in Diagram 

(II) of the Figure is represented by the open non-causal path from A to Y via L and S.

Measurement bias

Now consider that in the hypothetical cohort the exposure, outcome, or confounders/

covariates may have been measured with error. Measurement error is a type of missing data 

because the true value for the exposure, outcome, or confounder/covariate is not known. 

Therefore, let A* be the measured version of A via self-report, UA be the measurement error 

for A, Y* be the measured version of Y obtained from medical record abstraction, UY be the 

measurement error for Y, L* be the measured version of L obtained from medical record 

abstraction, and UL be the measurement error for L. The associational effect with 

measurement error is now represented as P(Y* = 1 | A* = 1, S = 1)/P(Y* = 1 | A* = 0, S = 1) 

Howe et al. Page 5

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and compares disjoint subsets of the observed study population by their reported rather than 

actual/true aspirin use.

In the presence of UY the individual-level potential outcomes that correspond to the 

observed exposure levels are missing since the observed outcomes are missing. Even when 

the outcome is measured perfectly (no UY) like in Table 2, if the exposure is measured with 

error (A ≠ A*), the individual-level potential outcomes that correspond to the observed 

exposure levels are still missing (Ya=A* = ?) due to the incorrect labeling of persons who are 

actually exposed as unexposed and vice versa [3].

Therefore, like in the case of Diagram (III) in the Figure where confounding and selection 

bias do not exist, errors in measurement of the exposure (UA) and/or outcome (UY) can 

result in bias (e.g., P(Y* = 1 | A* = 1, S =1)/P(Y* = 1 | A* = 0, S = 1) ≠ P(Ya=1,s=1 = 

1)/P(Ya=0,s=1 = 1)) that would not exist had study participants been compared based on their 

true outcome level and aspirin use (e.g., P(Y = 1 | A = 1, S = 1)/P(Y = 1 | A = 0, S = 1) = 

P(Ya=1,s=1 = 1)/P(Ya=0,s=1 = 1)). Even when the exposure and outcome are measured 

perfectly, confounder/covariate measurement error (L ≠ L*) is problematic when 

confounding or selection bias exist. Specifically, errors in the measurement of factors that 

contribute to the confounding or selection bias hinders the accurate estimation of E[Ya] 

based on information about the aforementioned factors using methods outlined in the next 

section [23].

Methods and assumptions necessary to reduce bias due to missing 

individual-level potential outcomes

Confounding bias

Approaches that have been more frequently used in the epidemiologic literature to address 

confounding bias due to missing individual-level potential outcomes include randomization, 

standardization, restriction, matching, stratification, standard regression adjustment, 

propensity scores, and inverse probability weighting (IPW) [1, 4, 24–28]. In the case of the 

binary time-fixed indicator of aspirin use, randomization, stratification, restriction, 

matching, standardization, standard regression adjustment, and propensity scores would use 

the mean observed outcome among the non-aspirin users to estimate the mean potential 

outcome among aspirin users and in turn the entire study population had they not used 

aspirin. Likewise, the mean observed outcome among the aspirin users would be used to 

estimate the mean potential outcome of non-aspirin users and in turn the entire study 

population had they used aspirin.

Randomization helps ensure that the estimate is accurate by assigning the exposure 

randomly such that the distribution of measured and unmeasured confounders is expected to 

be equivalent across different levels of the exposure. Standardization and matching (e.g., 

individual, frequency, propensity score) reduce differences in the confounder distribution 

across different exposure groups. Stratification, restriction, and standard regression 

adjustment ensures the estimation is accurate by only performing the estimation within strata 

of measured potential confounders where greater balance on potential confounders is 

expected. Propensity score subclassification analogously performs the estimation within 
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strata of scores that are a function of the potential confounders where again greater balance 

on potential confounders is expected.

The greater balance on the confounder distribution across different exposure levels expected 

to be achieved by each of the above described methods blocks the open non-causal pathway 

from A to Y via L in Diagram (I) of the Figure by effectively either removing the arrow from 

L to A or by conditioning on L. This blocking in turn reduces the occurrence of differences 

in the outcome across exposure levels that occur for reasons beyond the exposure that hinder 

accurate estimation. Despite the aforementioned expectation, balance is only achieved when 

necessary assumptions and conditions are met.

IPW procedures can be used to re-weight the observed data to generate a pseudo-population 

with the corresponding outcomes that would have been observed had everyone in the study 

population been exposed and unexposed (e.g., used aspirin and did not use aspirin). This re-

weighting is usually done as a function of the measured potential confounders and similar to 

randomization removes the arrow from L to A. The re-weighted data therefore yields a 

pseudo-population where the aforementioned measured potential confounders are not 

associated with the exposure and the estimation of E[Ya] is therefore accurate when 

necessary assumptions and conditions are met. Stabilized versions of the aforementioned 

weights can be estimated that preserve the original sample size of the study population and 

enhance the precision of estimates. When a measured time-varying confounder that is 

affected by prior exposure exists, IPW procedures may be less biased, but more imprecise, 

than more traditional approaches including standard regression adjustment [27, 28].

Less commonly used methods in the epidemiologic literature that address confounding bias 

when necessary assumptions and conditions are met include instrumental variable 

approaches [29–34], g-estimation [8–12], the g-computation formula [35–37], and Bayesian 

techniques [5, 7]. Despite their potential to circumvent bias due to measured and 

unmeasured potential confounders, instrumental variable approaches have been less 

frequently employed in observational epidemiologic studies in part due to the limited 

number of suitable instruments in this setting [31, 32]. Although g-estimation and the g-

computation formula may also be less biased than traditional approaches in the setting of a 

measured time-varying confounder that is affected by prior exposure, these g-methods are 

also infrequently used by epidemiologists along with Bayesian techniques [5, 7] likely due 

to their greater complexity compared to other methods. However, more recent applications 

of these g-methods and Bayesian approaches that provide code should facilitate greater 

consideration of these valuable techniques [5, 8, 9, 37, 38].

Another set of complex and therefore also less utilized methods include doubly robust 

estimators. Doubly robust estimators represent more flexible strategies for confounder 

control, which in certain settings can yield more valid and precise effect estimates compared 

to the aforementioned techniques [39, 40]. Thus, despite their greater complexity, doubly 

robust estimators should be more readily considered for use by applied researchers as well 

especially because code is now also widely available to implement these methods [41].
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Each of the previously described methods requires the consistency condition and assumes 

exchangeability (potential outcomes are MCAR or MAR conditional on measured potential 

confounders), positivity, and correct model specification (when semi-parametric and fully 

parametric techniques are employed) [4, 42]. Here positivity requires a non-zero probability 

of each instrument/exposure level marginally or within every observed combination of 

potential confounders. The exclusion restriction, which requires the instrument to only affect 

the outcome through the exposure, is also necessary for the instrumental variable approach.

Some methods are more sensitive to assumption violations and may be less efficient than 

others. Therefore, when selecting which method(s) to use to estimate a given causal effect, 

careful consideration should be given to which method(s) is most feasible and appropriate in 

a given research setting. The results from multiple methods can also be compared. Further, 

sensitivity analysis techniques [43–50] should be readily employed concurrently with the 

selected technique(s) to assess the robustness of inferences in the presence of potential 

assumption violations.

Selection bias

The two approaches that have been most commonly used in the epidemiologic literature to 

address selection bias due to missing individual-level potential outcomes include standard 

regression adjustment and IPW [4, 15, 51, 52]. Standard regression adjustment ensures that 

the estimation of a relevant function of the individual-level potential outcomes (e.g., P(Ya = 

1 | A, S = 0)) is accurate by only performing the estimation within strata of measured 

covariates that are associated with selection and the outcome of interest such as L in 

Diagram (II) of the Figure. Differences in the distribution of covariates like L between 

selected and not selected persons is the source of differences in the relevant function 

between selected and not selected persons and in turn the selection bias. Thus estimating the 

relevant function within strata of L should be accurate and reduce selection bias when 

necessary assumptions and conditions are met. Further, estimating the relevant function 

within strata of L is equivalent to conditioning on L in Diagram (II) of the Figure and 

blocking the open non-causal pathway from A to Y via S and L.

IPW can be used in a broader number of selection bias scenarios than standard regression 

adjustment to facilitate the accurate estimation of relevant functions and in turn reduce 

selection bias [15]. Specifically, IPW procedures re-weight the observed data to generate a 

pseudo-population that includes the missing individual-level potential outcomes of those 

individuals who were not selected. This re-weighting is performed as a function of the 

measured covariates that are associated with selection and the outcome of interest (e.g., L). 

The re-weighted data therefore yields a pseudo-population where the covariates used to 

estimate the weights are no longer associated with selection (e.g., the arrow from L to S in 

Diagram (II) of the Figure is removed) and the resulting estimated relevant function of the 

individual-level potential outcomes is accurate when necessary assumptions and conditions 

are met.

Stabilized versions of the aforementioned selection weights can be estimated that preserve 

the number of observed outcomes and enhance the precision of estimates. When competing 

risks are a source of the potential selection bias (e.g., dying before the outcome occurs or is 
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assessed), IPW [53, 54] as well as other methods [55–58] have been used to address the 

potential selection bias. However, there remains considerable debate regarding whether 

estimating relevant functions of the individual-level potential outcomes using methods such 

as IPW is appropriate when the potential outcome is undefined, like in the case where the 

competing risk is death [59, 60].

Standard regression adjustment, IPW, as well as other techniques including more flexible 

doubly robust estimators [13, 14, 35, 41, 54–57, 61] for reducing selection bias require the 

consistency condition and assume exchangeability, positivity, and correct model 

specification (when semi-parametric and fully parametric techniques are employed) [4, 21, 

42]. Here exchangeability requires no unmeasured covariates that contribute to the selection 

bias (i.e., potential outcomes are MAR conditional on exposure and measured covariates) 

while positivity requires a non-zero probability of being selected within every exposure 

level and observed combination of the exposure and the covariates that contribute to the 

selection bias. Given that unmeasured covariates likely exist, more recently employed 

instrumental variable approaches [62–64] to address selection bias related to measured and 

unmeasured covariates are appealing. However, suitable instruments that satisfy the 

exclusion restriction (instrument only associated with the outcome through selection) are 

likely limited. Therefore, after selecting the technique(s) most appropriate for the particular 

research setting, sensitivity analysis procedures [50, 65–72] should be employed 

concurrently with the selected technique(s) to assess the robustness of inferences in the 

presence of potential assumption violations.

Measurement bias

Bias analysis techniques [1, 50, 73–75] can be used to obtain more accurate estimates of 

relevant functions of the individual-level potential outcomes when measurement error is 

present and necessary assumptions and conditions are met. Specifically, simple bias analysis 

[1, 50] uses validity measures (e.g., sensitivity and specificity or positive predictive value 

and negative predictive value) obtained from validation data, expert opinions, or the 

published literature to correctly classify participants by their misclassified exposure, 

outcome, or covariate. When the validity measures are accurate this reclassification aids in 

the valid estimation of the functions of the individual-level potential outcomes of interest by 

effectively removing the arrows from UA to A* and UY to Y* in Diagram (III) of the Figure 

or from UL to L* (not shown).

Recently Funk and Landi [75] provided a nice review of the aforementioned simple bias 

analysis as well as other methods for addressing measurement bias. Other discussed methods 

include probabilistic bias analysis [1, 50], Bayesian bias analysis [1, 73, 74], regression 

calibration [76, 77], modified maximum likelihood [78–80], multiple imputation [77, 81], 

and propensity score calibration [82–84] which all also require that appropriate assumptions 

are met. The review also articulates the research settings when each of these approaches is 

most appropriate.
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Conclusions

In epidemiologic studies, the three main threats to obtaining consistent estimates of causal 

effects can be characterized as missing data problems that can be addressed using a myriad 

of methods so that associational effects equal the desired causal effects of interest. Each of 

these methods makes assumptions. Many of these assumptions cannot be tested empirically. 

Therefore, the application of these methods should be based on the research setting and 

combined with sensitivity analyses to examine how robust inferences are to potential 

violations in relevant assumptions.

Acknowledgements

LE Cain was supported by the National Institutes of Health [grant number R01-AI102634]. JW Hogan was 
supported by grants P30-AI42853, P01-AA019072 and R01-AI-108441 from the National Institutes of Health.

References

Papers of particular interest, published recently, have been highlighted as:

•• Of major importance

• Of importance

1. Rothman, KJ.; Greenland, S.; Lash, TL. Modern Epidemiology. 3rd ed.. Philadelphia, PA: 
Lippincott Williams & Wilkins; 2008. 

2. Rubin DB. Inference and missing data. Biometrika. 1976; 63:581–592.

3. Edwards JK, Cole SR, Westreich D. All your data are always missing: incorporating bias due to 
measurement error into the potential outcomes framework. Int J Epidemiol. 2015; 28 Consistent 
with the present review paper the authors use a simple example to describe causal inference as a 
problem of missing potential outcomes particularly focusing on the case of estimating a causal 
effect in the presence of potential bias due to measurement error.

4. Hernán MA, Robins J. Causal Inference Book. http://www.hsph.harvard.edu/miguel-hernan/causal-
inference-book/. The authors provide a cohesive introductory text to concepts and methods for 
causal inference.

5. Hill J. Bayesian Nonparametric Modeling for Causal Inference. Journal of Computational and 
Graphical Statistics. 2011; 20(1):217–240.

6. Little, RJA.; Rubin, DB. Statistical Analysis with Missing Data. New York: John Wiley & Sons; 
1987. 

7. Rubin DB. Bayesian inference for causal effects: the role of randomization. Ann Stat. 1978; 6(1):
34–58.

8. Naimi AI, Cole SR, Hudgens MG, Richardson DB. Estimating the effect of cumulative occupational 
asbestos exposure on time to lung cancer mortality: using structural nested failure-time models to 
account for healthy-worker survivor bias. Epidemiology. 2014; 25(2):246–254. [PubMed: 
24487207] The authors use g-estimation to estimate the cumulative effect of occupational asbestos 
exposure on time to lung cancer mortality with annotated SAS code provided in an earlier 
commentary [9].

9. Naimi AI, Richardson DB, Cole SR. Causal inference in occupational epidemiology: accounting for 
the healthy worker effect by using structural nested models. Am J Epidemiol. 2013; 178(12):1681–
1686. Epub 2013 Sep 27. [PubMed: 24077092] 

10. Robins JM. Estimation of the time-dependent accelerated failure time model in the presence of 
confounding factors. Biometrika. 1992; 79:321–334.

Howe et al. Page 10

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


11. Robins, JM. Causal inference from complex longitudinal data. In: Berkane, M., editor. Latent 
Variable Modeling and Applications to Causality. Lecture Notes in Statistics 120. New York: 
Springer-Verlag; 1997. p. 69-117.

12. Robins JM, Blevins D, Ritter G, Wulfsohn M. G-estimation of the effect of prophylaxis therapy for 
Pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology. 1992; 3(4):319–
336. [PubMed: 1637895] 

13. Hsu CH, Taylor JM, Murray S, Commenges D. Survival analysis using auxiliary variables via non-
parametric multiple imputation. Stat Med. 2006; 25(20):3503–3517. [PubMed: 16345047] 

14. Malani HM. A Modification of the Redistribution to the Right Algorithm Using Disease Markers. 
Biometrika. 1995; 82(3):515–526.

15. Hernán MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 
2004; 15(5):615–625. [PubMed: 15308962] 

16. VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology. 2009; 
20(6):880–883. [PubMed: 19829187] 

17. Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or an 
assumption? Epidemiology. 2009; 20(1):3–5. [PubMed: 19234395] 

18. Pearl J. On the consistency rule in causal inference: axiom, definition, assumption, or theorem? 
Epidemiology. 2010; 21(6):872–875. [PubMed: 20864888] 

19. Hernán MA, VanderWeele TJ. Compound treatments and transportability of causal inference. 
Epidemiology. 2011; 22(3):368–377. [PubMed: 21399502] 

20. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for 
causal effects. Biometrika. 1983; 70:41–55.

21. Howe CJ, Cole SR, Chmiel JS, Munoz A. Limitation of inverse probability-of-censoring weights 
in estimating survival in the presence of strong selection bias. Am J Epidemiol. 2011; 173(5):569–
577. Epub 2011 Feb 2. [PubMed: 21289029] 

22. Daniel RM, Kenward MG, Cousens SN, De Stavola BL. Using causal diagrams to guide analysis 
in missing data problems. Stat Methods Med Res. 2012; 21(3):243–256. Epub 2011 Mar 9. 
[PubMed: 21389091] 

23. Hernán MA, Cole SR. Invited Commentary: Causal diagrams and measurement bias. Am J 
Epidemiol. 2009; 170(8):959–962. discussion 63–4. Epub 2009 Sep 15. [PubMed: 19755635] 

24. Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 
1997; 127(8 Pt 2):757–763. [PubMed: 9382394] 

25. Slade EP, Stuart EA, Salkever DS, Karakus M, Green KM, Ialongo N. Impacts of age of onset of 
substance use disorders on risk of adult incarceration among disadvantaged urban youth: a 
propensity score matching approach. Drug Alcohol Depend. 2008; 95(1–2):1–13. Epub 08 Jan 31. 
[PubMed: 18242006] 

26. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci. 2010; 
25(1):1–21. [PubMed: 20871802] 

27. Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of 
zidovudine on the survival of HIV-positive men. Epidemiology. 2000; 11(5):561–570. [PubMed: 
10955409] 

28. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in 
epidemiology. Epidemiology. 2000; 11:550–560. [PubMed: 10955408] 

29. Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000; 
29(4):722–729. [PubMed: 10922351] 

30. Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug effects using a 
physician-specific prescribing preference as an instrumental variable. Epidemiology. 2006; 17(3):
268–275. [PubMed: 16617275] 

31. Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream? 
Epidemiology. 2006; 17(4):360–372. [PubMed: 16755261] 

32. Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH. Instrumental variables: 
application and limitations. Epidemiology. 2006; 17(3):260–267. [PubMed: 16617274] 

Howe et al. Page 11

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Davies NM, Smith GD, Windmeijer F, Martin RM. COX-2 selective nonsteroidal anti-
inflammatory drugs and risk of gastrointestinal tract complications and myocardial infarction: an 
instrumental variable analysis. Epidemiology. 2013; 24(3):352–362. [PubMed: 23532054] 

34. Swanson SA, Hernan MA. Commentary: how to report instrumental variable analyses (suggestions 
welcome). Epidemiology. 2013; 24(3):370–374. [PubMed: 23549180] The authors offer 
guidelines for how to report instrumental variable analyses to address confounding bias using the 
Davies et al. [33] paper as an example.

35. Robins JM. A new approach to causal inference in mortality studies with a sustained exposure 
period–application to control of the healthy worker survivor effect. Math Model. 1986; 7:1393–
1512.

36. Taubman SL, Robins JM, Mittleman MA, Hernan MA. Intervening on risk factors for coronary 
heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009; 38(6):1599–1611. 
Epub 2009 Apr 23. [PubMed: 19389875] 

37. Keil AP, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-
event data: intuition and a worked example. Epidemiology. 2014; 25(6):889–897. [PubMed: 
25140837] The authors provide a simple introduction to the parametric g-formula with annotated 
SAS code for implementing the method and demonstrate its use when examining the effect of a 
hypothetical treatment to prevent graft-versus-host disease on mortality among bone marrow 
transplant patients.

38. HSPH Program on Causal Inference Software. http://www.hsph.harvard.edu/causal/software/. 

39. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. 
Biometrics. 2005; 61(4):962–973. [PubMed: 16401269] 

40. van der Laan MJ, Gruber S. Targeted minimum loss based estimation of causal effects of multiple 
time point interventions. Int J Biostat. 2012; 8(1)

41. Neugebauer R, Schmittdiel JA, van der Laan MJ. Targeted learning in real-world comparative 
effectiveness research with time-varying interventions. Stat Med. 2014; 33(14):2480–2520. Epub 
2014 Feb 17. [PubMed: 24535915] The authors use doubly robust targeted minimum loss-based 
estimation with super learning to address confounding and selection bias while examining the 
effect of various glucose-lowering strategies on albuminuria among adults with Type-2 diabetes 
and provide annotated R code for implementation.

42. Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. 
Am J Epidemiol. 2008; 168(6):656–664. [PubMed: 18682488] 

43. Vanderweele TJ, Arah OA. Bias formulas for sensitivity analysis of unmeasured confounding for 
general outcomes, treatments, and confounders. Epidemiology. 2011; 22(1):42–52. [PubMed: 
21052008] 

44. Brumback BA, Hernan MA, Haneuse SJ, Robins JM. Sensitivity analyses for unmeasured 
confounding assuming a marginal structural model for repeated measures. Stat Med. 2004; 23(5):
749–767. [PubMed: 14981673] 

45. Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the estimation 
of treatment effects: assessing validity and interpreting results. Int J Biostat. 2007:3–14.

46. Small DS. Sensitivity analysis for instrumental variables regression with overidentifying 
restrictions. J Am Statist Assoc. 2007; 102:1049–1058.

47. Small DS, Rosenbaum P. War and wages: the strength of instrumental variables and their 
sensitivity to unobserved biases. J Am Statist Assoc. 2008; 103:924–933.

48. Baiocchi M, Small DS, Lorch S, Rosenbaum P. Building a stronger instrument in an observational 
study of perinatal care for premature infants.. 2010;105. J Am Statist Assoc. 2010; 105:1285–
1296.

49. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in 
mendelian randomization. Epidemiology. 2014; 25(3):427–435. [PubMed: 24681576] 

50. Lash, TL.; Fox, MP.; Fink, AK. Statistics for Biology and Health. New York, NY: Springer 
Science+Business Media, LLC; 2009. Applying Quantitative Bias Analysis to Epidemiologic 
Data. 

Howe et al. Page 12

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hsph.harvard.edu/causal/software/


51. Hernán MA, McAdams M, McGrath N, Lanoy E, Costagliola D. Observation plans in longitudinal 
studies with time-varying treatments. Stat Methods Med Res. 2009; 18(1):27–52. [PubMed: 
19036915] 

52. Gottesman RF, Rawlings AM, Sharrett AR, Albert M, Alonso A, Bandeen-Roche K, et al. Impact 
of differential attrition on the association of education with cognitive change over 20 years of 
follow-up: the ARIC neurocognitive study. Am J Epidemiol. 2014; 179(8):956–966. Epub 2014 
Mar 13. [PubMed: 24627572] 

53. Weuve J, Tchetgen Tchetgen EJ, Glymour MM, Beck TL, Aggarwal NT, Wilson RS, et al. 
Accounting for bias due to selective attrition: the example of smoking and cognitive decline. 
Epidemiology. 2012; 23(1):119–128. [PubMed: 21989136] 

54. Shardell M, Hicks GE, Ferrucci L. Doubly robust estimation and causal inference in longitudinal 
studies with dropout and truncation by death. Biostatistics. 2015; 16(1):155–168. Epub 2014 Jul 4. 
[PubMed: 24997309] The authors use doubly robust augmented inverse probability weighted 
estimation to address selection bias due to death and lost to follow up when examining the effect 
of Vitamin D use on physical functioning among older adults.

55. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J 
Epidemiol. 2009; 170(2):244–256. Epub 2009 Jun 3. [PubMed: 19494242] 

56. Lau B, Cole SR, Gange SJ. Parametric mixture models to evaluate and summarize hazard ratios in 
the presence of competing risks with time-dependent hazards and delayed entry. Stat Med. 2011; 
30(6):654–665. Epub 2010 Nov 30. [PubMed: 21337360] 

57. Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics. 2002; 58(1):21–
29. [PubMed: 11890317] 

58. Vanderweele TJ. Principal stratification--uses and limitations. Int J Biostat. 2011; 7(1) (pii):Article 
28. Epub 2011 Jul 11. 

59. Chaix B, Evans D, Merlo J, Suzuki E. Commentary: Weighing up the dead and missing: reflections 
on inverse-probability weighting and principal stratification to address truncation by death. 
Epidemiology. 2012; 23(1):129–131. discussion 32–7. [PubMed: 22157307] 

60. Tchetgen Tchetgen EJ, Glymour M, Shpitser I, Weuve J. To weight or not to weight? On the 
relation between inverse-probability weighting and principal stratification for truncation by death. 
Epidemiology. 2012; 23(4):644–646. [PubMed: 22659551] 

61. Murray S, Tsiatis AA. Nonparametric survival estimation using prognostic longitudinal covariates. 
Biometrics. 1996; 52(1):137–151. [PubMed: 8934589] 

62. Barnighausen T, Bor J, Wandira-Kazibwe S, Canning D. Correcting HIV prevalence estimates for 
survey nonparticipation using Heckman-type selection models. Epidemiology. 2011; 22(1):27–35. 
[PubMed: 21150352] 

63. Hogan DR, Salomon JA, Canning D, Hammitt JK, Zaslavsky AM, Barnighausen T. National HIV 
prevalence estimates for sub-Saharan Africa: controlling selection bias with Heckman-type 
selection models. Sex Transm Infect. 2012; 88(Suppl 2):i17–i23. [PubMed: 23172342] 

64. McGovern ME, Barnighausen T, Salomon JA, Canning D. Using interviewer random effects to 
remove selection bias from HIV prevalence estimates. BMC Med Res Methodol. 2015; 15(1):8. 
[PubMed: 25656226] The authors use an instrumental variable approach to correct for selection 
bias when estimating the prevalence of HIV among men in Ghana and Zambia.

65. Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for non-ignorable drop-out using semi-
parametric non-response models. J Am Statist Assoc. 1999; 94:1096–1120.

66. Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for non-ignorable drop-out using semi-
parametric non-response models [Comments and Rejoinder]. J Am Statist Assoc. 1999

67. Robins, JM.; Rotnitzky, A.; Scharfstein, DO. Sensitivity analysis for selection bias and 
unmeasured confounding in missing data and causal inference models. In: Halloran, MEB.; D, 
editors. Statistical Models in Epidemiology: The Environment and Clinical Trials. IMA. Vol. 116. 
New York: Springer-Verlag; 1999. p. 1-92.

68. Scharfstein D, Robins JM, Eddings W, Rotnitzky A. Inference in randomized studies with 
informative censoring and discrete time-to-event endpoints. Biometrics. 2001; 57(2):404–413. 
[PubMed: 11414563] 

Howe et al. Page 13

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



69. Scharfstein DO, Robins JM. Estimation of the failure time distribution in the presence of 
informative censoring. Biometrika. 2002; 89(3):617–634.

70. Robins J, Rotnitzky A, Vansteelandt S, Frangakis CE, Rubin DB, An M, MacKenzie E. Principal 
stratification designs to estimate input data missing due to death. Biometrics. 2007; 63(3):650–
653. In discussion of: [PubMed: 17824996] 

71. Long DM, Hudgens MG. Comparing competing risk outcomes within principal strata, with 
application to studies of mother-to-child transmission of HIV. Stat Med. 2012; 31(27):3406–3418. 
Epub 2012 Aug 28. [PubMed: 22927321] 

72. Geneletti S, Mason A, Best N. Adjusting for selection effects in epidemiologic studies: why 
sensitivity analysis is the only "solution". Epidemiology. 2011; 22(1):36–39. [PubMed: 21150353] 

73. Chu H, Wang Z, Cole SR, Greenland S. Sensitivity analysis of misclassification: a graphical and a 
Bayesian approach. Ann Epidemiol. 2006; 16(11):834–841. Epub 2006 Jul 13. [PubMed: 
16843678] 

74. MacLehose RF, Olshan AF, Herring AH, Honein MA, Shaw GM, Romitti PA. Bayesian methods 
for correcting misclassification: an example from birth defects epidemiology. Epidemiology. 2009; 
20(1):27–35. [PubMed: 19234399] 

75. Funk MJ, Landi SN. Misclassification in Administrative Claims Data: Quantifying the Impact on 
Treatment Effect Estimates. Curr Epidemiol Rep. 2014; 1:175–185. [PubMed: 26085977] The 
authors review the strengths and limitations including assumptions of various methods to reduce 
bias due to measurement error when estimating causal effects using administrative claims data.

76. Spiegelman D, McDermott A, Rosner B. Regression calibration method for correcting 
measurement-error bias in nutritional epidemiology. Am J Clin Nutr. 1997; 65(4 Suppl):1179S–
1186S. [PubMed: 9094918] 

77. Bang H, Chiu YL, Kaufman JS, Patel MD, Heiss G, Rose KM. Bias Correction Methods for 
Misclassified Covariates in the Cox Model: comparison offive correction methods by simulation 
and data analysis. J Stat Theory Pract. 2013; 7(2):381–400. [PubMed: 24072991] 

78. Magder LS, Hughes JP. Logistic regression when the outcome is measured with uncertainty. Am J 
Epidemiol. 1997; 146(2):195–203. [PubMed: 9230782] 

79. Neuhaus J. Bias and efficiency loss due to misclassified responses in binary regression. 
Biometrika. 1999; 86(4):843–855.

80. Lyles RH, Tang L, Superak HM, King CC, Celentano DD, Lo Y, et al. Validation data-based 
adjustments for outcome misclassification in logistic regression: an illustration. Epidemiology. 
2011; 22(4):589–597. [PubMed: 21487295] 

81. Cole SR, Chu H, Greenland S. Multiple-imputation for measurement-error correction. Int J 
Epidemiol. 2006; 35(4):1074–1081. Epub 2006 May 18. [PubMed: 16709616] 

82. Sturmer T, Schneeweiss S, Avorn J, Glynn RJ. Adjusting effect estimates for unmeasured 
confounding with validation data using propensity score calibration. Am J Epidemiol. 2005; 
162(3):279–289. Epub 2005 Jun 29. [PubMed: 15987725] 

83. Sturmer T, Glynn RJ, Rothman KJ, Avorn J, Schneeweiss S. Adjustments for unmeasured 
confounders in pharmacoepidemiologic database studies using external information. Med Care. 
2007; 45 Supl 2(10):S158–S165. [PubMed: 17909375] 

84. Lunt M, Glynn RJ, Rothman KJ, Avorn J, Sturmer T. Propensity score calibration in the absence of 
surrogacy. Am J Epidemiol. 2012; 175(12):1294–1302. Epub 2012 Apr 24. [PubMed: 22688682] 

Howe et al. Page 14

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure. 
Causal diagram depicting confounding, selection, and measurement bias in the absence of a 

true causal effect between an exposure (A) and outcome (Y)

Boxes represent restriction due to selection
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Table 1

Source of and methods to reduce bias due to missing data on the individual-level potential outcomes

Bias type and source Method Applications of less commonly used methods
published in the literature in the last 3 years

Confounding - missing 
individual-level potential 
outcomes for unobserved 
exposure levels

Randomization [1, 4], stratification [1, 4], restriction [1, 4], 
matching [1, 4], standardization [1, 4], standard regression 
adjustment [1, 4], propensity scores [24–26], inverse 
probability weighting [27, 28], instrumental variables [29–
32], g-estimation [10–12], g-computation formula [35, 36], 
bayesian approaches [5, 7], and doubly robust estimators 
[39, 40]

Davies et al. [33] use an instrumental variable 
approach to estimate the effect of COX-2 selective 
nonsteroidal antiinflammtory drugs on the 
incidence of upper gastrointestinal complications 
and myocardial infarction.

Swanson et al. [34] offer guidelines for how to 
report instrumental variable analyses using the 
Davies et al. [33] paper as an example.

Naimi et al. [8] use g-estimation to estimate the 
cumulative effect of occupational asbestos 
exposure on time to lung cancer mortality with 
annotated SAS code provided in an earlier 
commentary [9].

Keil et al. [37] provide a simple introduction to 
the parametric g-formula with annotated SAS 
code for implementing the method and 
demonstrate its use when examining the effect of a 
hypothetical treatment to prevent graft-versus-host 
disease on mortality among bone marrow 
transplant patients.

Neugebauer et al. [41] use doubly robust targeted 
minimum loss-based estimation with super 
learning to address confounding bias while 
examining the effect of various glucose-lowering 
strategies on albuminuria among adults with 
Type-2 diabetes and provide annotated R code for 
implementation.

Selection - missing 
individual-level potential 
outcomes among persons 
not selected

Standard regression adjustment [4, 15, 51], inverse 
probability weighting [4, 15, 51], redistribute-to-the-right 
algorithm [14], standardization [61], g-computation formula 
[35], multiple imputation [13], principal stratification [57], 
doubly robust estimators [41, 54], and instrumental variables 
[62–64]

Gottesman et al. [52] use inverse probability 
weighting as well as imputation to address 
potential selection bias due to death and loss to 
follow up when examining the effect of education 
on cognitive change.

Neugebauer et al. [41] use doubly robust targeted 
minimum loss-based estimation with super 
learning to address selection bias while examining 
the effect of various glucose-lowering strategies 
on albuminuria among adults with Type-2 
diabetes and provide annotated R code for 
implementation.

Shardell et al. [54] use doubly robust augmented 
inverse probability weighted estimation to address 
selection bias due to death and lost to follow up 
when examining the effect of Vitamin D use on 
physical functioning among older adults.

McGovern et al. [64] use an instrumental variable 
approach to correct for selection bias when 
estimating the prevalence of HIV among men in 
Ghana and Zambia.

Measurement - missing 
individual-level potential 
outcomes when 
exposure, outcome, or 
covariates are measured 
with error

Bias analysis [1, 50, 73–75], regression calibration [76, 77], 
modified maximum likelihood [78–80], multiple imputation 
[77, 81], and propensity score calibration [82–84]

See Funk and Landi [75] for recent published 
applications

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Howe et al. Page 17

T
ab

le
 2

M
is

si
ng

 in
di

vi
du

al
-l

ev
el

 p
ot

en
tia

l o
ut

co
m

es
 b

y 
bi

as
 ty

pe
 g

iv
en

 th
e 

co
ns

is
te

nc
y 

co
nd

iti
on

B
ia

s 
ty

pe
S

A
A

*
Y

Y
a=

0
Y

a=
1

C
on

fo
un

di
ng

 -
 m

is
si

ng
 in

di
vi

du
al

-l
ev

el
 p

ot
en

tia
l o

ut
co

m
es

 f
or

 u
no

bs
er

ve
d 

ex
po

su
re

 le
ve

ls
1

1
1

1
?

1

1
0

0
0

0
?

Se
le

ct
io

n 
- 

m
is

si
ng

 in
di

vi
du

al
-l

ev
el

 p
ot

en
tia

l o
ut

co
m

es
 a

m
on

g 
pe

rs
on

s 
no

t s
el

ec
te

d
0

?
?

?
?

?

0
?

?
?

?
?

M
ea

su
re

m
en

t -
 m

is
si

ng
 in

di
vi

du
al

-l
ev

el
 p

ot
en

tia
l o

ut
co

m
es

 w
he

n 
ex

po
su

re
, o

ut
co

m
e,

 o
r 

co
va

ri
at

es
 a

re
 m

ea
su

re
d 

w
ith

 e
rr

or
1

1
0

1
?

1

1
0

1
0

0
?

S 
(b

in
ar

y 
in

di
ca

to
r 

of
 s

el
ec

tio
n)

; A
 (

bi
na

ry
 e

xp
os

ur
e)

; A
*  

(m
ea

su
re

d 
ve

rs
io

n 
of

 A
);

 Y
 (

ou
tc

om
e)

;

Y
a  

(p
ot

en
tia

l o
ut

co
m

e 
fo

r 
Y

; n
ot

e 
fo

r 
si

m
pl

ic
ity

 th
e 

su
pe

rs
cr

ip
te

d 
s 

ha
s 

be
en

 s
up

pr
es

se
d)

Curr Epidemiol Rep. Author manuscript; available in PMC 2016 September 01.


